• No results found

Molecular electronic plasmonics

N/A
N/A
Protected

Academic year: 2021

Share "Molecular electronic plasmonics"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied

Materials

Today

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p m t

Molecular

electronic

plasmonics

Tao

Wang

a

,

Christian

A.

Nijhuis

a,b,∗

aDepartmentofChemistry,NationalUniversityofSingapore,3ScienceDrive3,117543,Singapore

bCentreforAdvanced2DMaterialsandGrapheneResearchCentre,NationalUniversityofSingapore,6ScienceDrive2,117546,Singapore

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received12February2016 Accepted1March2016 Keywords: Plasmonics

Moleculartunneljunctions Quantumplasmonics Chargetransferplasmons Plasmonexcitationanddetection Plasmonassistedtunneling

a

b

s

t

r

a

c

t

Molecularelectronicplasmonics(MEP)isanareaofresearchthatutilizestheelectronicpropertiesof moleculestocontrolandmodulatesurfaceplasmonsandholdsthepotentialtodevelopon-chip inte-gratedmolecular-plasmonicdevicesforinformationprocessingandcomputing.Combiningmolecular electronicswithplasmonicsgivestheopportunitytostudybothchargetransportinmolecular elec-tronicdevicesandplasmonicsinthequantumregime.Here,wereviewtherecentprogressinmolecular electronicplasmonicsandmainlyfocusontheareasofquantumplasmonics,andplasmonexcitation anddetection.Thisreviewalsoidentifieschallengesthatneedtoberesolvedtodrivethisfieldforward includingimprovingmodelsaimedtoadvanceourunderstandingofelectron-plasmoninteractionsin thequantumtunnelingregime.Futureprogressescanbeexpectedtowardsincorporatingfunctional moleculestoactivelycontrolMEPdevicesandintegrationofMEPswithothercircuitcomponents.

©2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Molecularelectronicsandsurfaceplasmons...73

2. Molecularelectronicsappliedinquantumplasmonics...75

2.1. Quantumplasmontheory...75

2.2. Quantumplasmonicswithair/vacuumtunnelingbarriers...76

2.3. Quantumplasmonicswithmoleculartunnelingbarriers...77

3. Molecularelectronicsappliedinplasmonexcitation...77

3.1. Mechanismsofplasmonexcitationintunneljunctions...78

3.2. STM-basedmolecularelectronicplasmonsources...78

3.3. On-chipmolecularelectronicplasmonsources...79

4. Molecularelectronicsappliedinplasmondetection...81

4.1. Mechanismofelectricaldetectionofplasmons...81

4.2. Directplasmondetectionwithmoleculartunneljunctions...81

5. Conclusionsandoutlook...82

Acknowledgements ... 82

References...82

1. Molecularelectronicsandsurfaceplasmons

Nano-electroniccircuitsprovidetheabilitytocontrolcharge

transportatthenanoscalebutdataprocessingandtransportation

speedsarelimitedattheirGHzbandwidths[1–3].Photonic

ele-mentscancarryinformationwithacapacityexceeding1000times

(>THz)thatofelectroniccomponents,howevertherelativelylarge

∗ Correspondingauthorat:DepartmentofChemistry,NationalUniversityof Singapore,3ScienceDrive3,117543,Singapore.

E-mailaddress:christian.nijhuis@nus.edu.sg(C.A.Nijhuis).

wavelengthoflightrequiresopticalcomponentstobetoolarge

tocompeteinsizewithmoderndaynanoelectronics[2–5].With

theability of subwavelength confinementand largebandwidth

(>100THz),surfaceplasmonpolaritons(SPPs)inmetallic

nanos-tructureshavethepotentialtobeintegratedwithnano-electronic

circuitsresultinginatruehybridofopticsandelectronicsatthe

nanoscale[2–7].

Molecular electronics utilizes single molecules or

self-assembled monolayers (SAMs) as electronic components in

molecularjunctions consisting of2 or 3 electrodes[8–17].The

mechanismofchargetransportacrosssuchmolecularjunctionsis

http://dx.doi.org/10.1016/j.apmt.2016.03.001

(2)

Fig.1.Operationprinciplesofthreedifferenttypesofmolecularelectronicplasmonic(MEP)devices.(a)Molecularelectronicsappliedinquantumplasmonics.Anincident lightinducesatunnelcurrentintheSAM-bridgedplasmonicdimerthatexcitesquantumplasmonresonances(QPR).(b)Molecularelectronicsappliedinplasmonexcitation. Anappliedbias(V)inducesatunnelingcurrentinthemoleculartunneljunctionthatexcitesplasmonemissionintheplasmonicdimer.(c)Molecularelectronicsappliedin plasmondetection.Thelightinducedtunnelingcurrentincreasesthecurrentofthemoleculartunneljunction.Energy-leveldiagramsoftunnelingjunctionswithconjugated (d)andaliphatic(e)moleculesasthetunnelingbarrier.ThealiphaticmoleculeshavelargerHOMO–LUMOgapsandbarrierheightsϕthanconjugatedmolecules.

quantummechanicaltunneling,andthusmetal–molecule–metal

junctionsare often calledmoleculartunnel junctions (MTJs) or

SAM-basedtunnel junctions (STJs).Recentexperimentsin MTJs

andSTJshaveadvancedourunderstandingofthemechanismsof

chargetransport acrosssuchjunctions significantlyand leadto

experimentaldemonstrationsofconductanceswitching[18–21],

rectificationofcurrents[17,22–27],quantuminterference[28–31],

negative differential conductance [32–34], magneto resistance

[35–39],oroptoelectronics[40–45].

Surfaceplasmonpolaritons(SPPs)arecollectiveoscillationsof

electronsatthemetal–dielectricinterface[6].Surfaceplasmons

areable totheconfine light beyondthediffractionlimit [7] at

thenanoscaletoformlocalizedsurfaceplasmons(LSPs)[46–50]

andpropagating SPPs[51–56].Benefittingfromthestrongfield

enhancementatthesurfacesofmetallicstructures,surface

plas-monsaresuitableforsensingatthesinglemoleculelevel[57–64].

Besidessensing,SPPsarealsopromisinginotherareasincluding

sub-diffractionimaging[65–70],energyharvesting[71–76],

non-linearoptics[77–82],andnano-optoelectronics[83–87].Tofurther

promotelocalfieldenhancement,plasmonicresonatorshavebeen

placedincloseproximitywitheachotherdowntoafew

nanome-ters[88–102]andreachthequantummechanicaltunnelingregime

[89,91,93–97,101,102],i.e.,theregimewherechargescantunnel

betweenthe two plasmonicstructures. This regime is alsothe

lengthscalewheremolecularelectronicsoperatesandthusitseems

anaturalchoicetostudytherelationbetweenplasmonsand

molec-ularelectronics.

Here,we reviewtherecent developments andprogresses of

molecularelectronicplasmonics(MEP).Fig.1showsthatin

prin-ciplethreetypesofMEPdevicescanbeidentified.Althoughthis

figuredepictstheelectrodesassphericalplasmonicresonators,one

orbothelectrodescanalsobeplanarmacroscopicelectrodes.

1.Molecularelectronicsappliedinquantumplasmonics(Fig.1a).

TwocloselyspacedplasmonicresonatorsarebridgedbyaSAM

ontowhichplasmonsareexcitedbyincidentlightorbyan

elec-tronbeam.Theplasmonsinduceanelectricfieldinthegapwhich

drives quantum mechanical tunneling betweenthe two

res-onatorsresultinginquantumplasmonresonances(QPRs)such

astheso-calledchargetransferplasmon(CTP)modes[103–112].

2.Molecularelectronicsappliedinplasmon excitation(Fig.1b).

Thesemolecularelectronicjunctionsarebasedontwoelectrodes

ofwhichatleastonesupportsplasmonsseparatedbyaSAMor

evenasinglemolecule.Anappliedbiasacrossthegapinduces

tunnelingbetweentheelectrodeswhichresultintheexcitation

ofplasmonseitherbydirecttunneling orvia

electrolumines-cencefromthemoleculesinsidethejunctions.

3.Molecularelectronicsappliedinplasmondetection(Fig.1c).The

samejunctionshowninFig.1bcanalsobeusedtodetect

plas-mons.Here,plasmonsareexcitedinthejunctionviaanexternal

light source.These plasmonscouple tothe tunneling charge

carriersandincreasethetunnelingcurrentacrossthejunction

makingitpossibletodetectplasmons.

AsimplifiedformoftheSimmonsequation(Eq.(1))[113]is

commonlyusedtoapproximatemoleculartunnel junctionsand

showshowthetunnelingrateJ(A/cm2)relatestothetunneling

barrierwidthd(innm)andheightϕ(ineV).

J=J0e−ˇdwithˇ=2



2meϕ

2 (1)

Here, ˇ (Å−1) is the tunneling decay coefficient, J0 is

pre-exponentialfactor(A/cm2),m

eistheeffectivemassofanelectron

(inkg),andisthereducedPlanck’sconstant.Thevalueofˇ

deter-mineshowquicklythemeasuredvalueofJdecaysasafunction

of dand depends onthe moleculesinside thejunctions which

determine both the values of d and ϕ. In molecular

electron-ics it is well-known that conjugated molecules have relatively

small HOMO–LUMO gaps (HOMO=highest occupied molecular

(3)

Fig.2.Quantumplasmontheories.(a)Schematicsofthedielectricsinvolume-basedQCM(left)andboundary-element-basedQCM(right).AdaptedwithpermissionfromRef. [112].Copyright2015AmericanPhysicalSociety(APS).(b)Generalbehavioursoftheclassicallocal,classicalnon-localandQCMmethodsforplasmonicdimers.Adaptedwith permissionfromRef.[110].Copyright2015theRoyalSocietyofChemistry(RSC).(c,d)OpticalresponseofaAunanospheredimercalculatedbyCEMandQCM,respectively. AdaptedwithpermissionfromRef.[106].Copyright2012Nature.PublishingGroup(NPG).(e)GapconductivitymodulatedCTPmodeinaAubowtiedimer.Adaptedwith permissionfromRef.[108].Copyright2013AmericanChemicalSociety(ACS).(f)GapmorphologymodulatedCTPmodeinaAubardimer.Bothspherical-gapandflat-gap casesareshown.AdaptedwithpermissionfromRef.[109].Copyright2015ACS.BDP=bondingdimerplasmon,CTP=chargetransferplasmon,LAP=longitudinalantenna plasmons.

lowtunnelingbarrierheightsasschematicallyindicatedinFig.1d.

Becauseof theshallowtunneling barrier,thevalue ofˇ is low

(0.1–0.3Å−1[10,12,114])andcoherenttunnelingmaybeobserved

overlargedistancesofupto4–5nm[8–10,115–119].Incontrast,

aliphaticmolecules have relatively large HOMO–LUMOgaps of

8–9eVresulting inlargetunneling barrierheights (Fig.1e) and

ˇvaluesof0.8–0.9Å−1.Consequently,thetunnelingratesacross

thesejunctionsaresmallerthanacrossjunctionswithconjugated

moleculesofequivalentlength[11,114,120].Likewise,tunneling

thoughvacuumisinefficient(ˇ=2.9Å−1[11,120])andtunneling

phenomenacanbeignoredinplasmonicssystemsinvolving

dis-tance largerthan 1nm [106,110]. For these reasons, molecular

tunneljunctions[8–45]areinterestingcandidatesforapplications

inMEP.

2. Molecularelectronicsappliedinquantumplasmonics

Quantum plasmonics studies the interaction between light

withquantumproperties(e.g.,singlephotonsources)and

mat-tersupportingplasmons[121–125].Recently,quantumplasmonics

alsostudiesplasmonmodesinducedbynon-local [126–135]or

quantum mechanicaltunneling phenomena [103–112] between

near-touching (e.g., gap<5nm) plasmonic dimers. Plasmonic

dimershaveattractedintenseinterest becauseoftheenhanced

fieldenhancementsduetocoupledplasmonsinthedimer

junc-tions,leadingtosurfaceenhancedspectroscopiesenablingsingle

moleculedetection [88–102]. Classicalcalculations predict that

largechargedensities canbeinducedattheoppositesidesofa

plasmonicdimerwithasmallgap,leadingtolargefield

enhance-mentsatthegapandstronglyred-shiftedbondingdimerplasmon

(BDP)resonances[126,127].However, theseclassiccalculations

donottakenon-localeffects(thespilloutoftheelectroncharge

distribution)andpossibleelectrontunnelingacrosstheplasmonic

dimerintoaccount.Thenonlocaldielectricresponseand

tunnel-ingeffectscauseablue-shift(orlesspronouncedred-shift)ofthe

BDPresonancesandreducefieldenhancementsrelativeto

clas-sicallocalcalculations[103–112,126–135].Electronstunnelingat

subnanometergapsatsufficientlyhighfieldstrengthswillleadto

anewresonancemode,thecharge-transferplasmon(CTP)mode

[103–112].

2.1. Quantumplasmontheory

Mosttheoreticalinvestigationsofplasmonresonancesuse

clas-sicalelectromagneticmodels(CEM)whicharebasedonMaxwell’s

equations with a frequency-dependent local dielectric function

ε(␻)foreachpartofthenanostructure[126,127].TheCEMmodel

usesaclassicallocalapproach,i.e.,ε(␻)attheinterfacebetween

dif-ferentmaterialschangesabruptlyandisvalidformostplasmonic

systemswithlargevaluesofdof>5nm[110].

Whendreducestothenanometerorevensub-nanometerscale

theelectrondensityspill-outorthepossibleinter-structure

elec-trontunnelingcannotbeignoredandthelocaldielectricfunction

ε(␻)willnotchangeabruptlyattheinterface[128–135].Thus,a

fullquantummechanicaltreatmentofsuchplasmonicsystemis

required.However,becauseofthelargenumberofatoms(e.g.,a

20nmgoldsphereconsistsof∼25000atoms)involvedintypical

plasmonicsystems,itiscurrentlynotpossibletoaddressthis

prob-lemwithfirst-principlemethods[128,131].Instead,suchsystems

have beenmodelledwitha classicalnon-localmodel [128–135]

pioneered by Pendry, Maier, and García deAbajo et al. or the

quantum corrected model (QCM) developed by Aizpurua,

Nord-lander, and Borisov et al. [103–112]. In the classical non-local

calculations,themetalresponseisdescribedusingthe

hydrody-namicnon-localapproachbutwithoutconsideringchargetransfer

acrossthedimers[110].WhileintheQCMcalculations,themetal

is described using a classical local dielectric constant and

tak-ingelectrontunneling acrossthedimergapintoaccount[110].

Basedonthewaytodescribetheelectrontunnelingprocess,the

QCMmodelhasbeenfurtherclassifiedintovolume-basedQCM

[103–110]whichusesartificialdielectricmaterialsinthewhole

gapandboundary-element-basedQCM[112]whichusesnonlocal

boundaryconditionsonlyatthesurfacesofthedimergap(Fig.2a).

Fig.2bshowsthegeneralresultsoftheclassicallocal,

classi-calnon-local,andQCMmodels,forplasmonicdimersseparatedby

vacuum[110].Inthelocalregime(d>5nm),allthesemethodsgive

thesameresult.Inthenon-localregime(0.3nm<d<5nm),both

theclassicalnon-localandtheQCMmethodsgivesimilarresults

andpredicttheBDPmodesred-shiftlessthanpredictedbylocal

method.Inthequantummechanicaltunnelingregime(d<0.3nm),

QCMpredictCTPmodesatd≈0.3nmwhere tunnelinghappens

(4)

Fig.3.Quantumplasmonicswithanair/vacuumtunnelingbarrier.(a)Plasmonicresonancesofnear-touchingAubowtieantennas.Here,1=brightdipolemode;2=darkdipole mode;3=CTPmode;4=thecombinationofdarkdipolemodeandbrightdipolemode;5=brightquadrupolemode.AdaptedwithpermissionfromRef.[136].Copyright2012 ACS.(b)Quantumplasmonresonanceinsub-nmplasmoniccavitiesformedbetweentwoAu-coatedAFMtips.Here,A=thelowfrequencymode;BandC=higherfrequency modes;D,E=CTPmodes.AdaptedwithpermissionfromRef.[137].Copyright2012NPG.(c)Quantumplasmonresonanceinsub-nmAunanospheredimers.Adaptedwith permissionfromRef.[138].Copyright2013ACS.(Forinterpretationofthereferencestocolourinthetext,thereaderisreferredtothewebversionofthisarticle.)

classicalnon-localmethodsonlyobserveCTPmodesford≤0nm

(i.e.,touchingdimers),heretheCTPmodeissupportedby

conduc-tionthroughthemetalcontactandnottunneling.Inadditionto

blue-shiftedextinctionspectra,QCMalsopredictsadecreasedfield

enhancementinthedimergapwhentheplasmonicdimerreaches

quantumregimeatd<0.3nm.

Itisworthnotingthattheclassicalnon-localmodelingisusually

performedusingthefiniteelementmethod(FEM)withthe

hydro-dynamicDrudemodeltodescribethedielectricsofthemetal.While

thevolume-basedQCMisperformedusingtheboundaryelement

method(BEM) withtheartificialdielectric materials calculated

by thetime-dependent density functional theory (TDDFT). The

boundary-element-basedQCMusesmodifiednonlocalboundary

conditionsinsteadofTDDFTcalculationstosimplifythe

simula-tionsandshowssimilarresultsasthevolume-basedQCM.

Fig.2canddshowsthetypicalplasmonicresonancesofagold

nanoparticledimer(diameter50nmwithanairdimergap)atthe

near-touching regimecalculated by CEMand QCM respectively

[106].Thereareseveralmainobservations.TheQCMcalculations

showasmallernumberofmodesthantheCEMcalculationsbecause

theFabry-PerotresonancesinQCM arelesspronounced dueto

largedampingraisedbyelectrontunnelingintheinter-structure

junction.TheQCMcalculationsshowthatafirstorderCTPmode

(definedastunnelingCTPmodeortCTPmode)andhigherorder

CTPmodeareobservedford<0.3nmwheretheelectrontunneling

becomesimportant(wenotethatthevalueofdatwhichtunneling

ratesarehighenoughtoobserveCTPmodesdependalsoonthe

tunnelingbarrierheight;seeFig.1).Inotherwords,whentheair

gapdecreasestobelow0.3nm,theBDPswitchestoCTPmodewith

thefollowingfeatures:theresonancepeakblueshifts(insteadof

redshifts)andthepeakintensitydecreaseswhenelectron

tunnel-ingbecomemorepronouncedwithdecreasingvaluesofdbecause

theelectrontunnelingreducestheplasmoniccouplingby

screen-ingthesurfacechargesoflocalizedplasmons.Inaddition,thetCTP

modehappensatinfraredfrequencies(<1eV)withalowresonance

intensity.Astheinfraredresonanceisfarfromtheresonance

fre-quencyoftheplasmonicresonator,thetCTPmodeismainlydueto

theoscillationofelectrontunneling.ThesebehaviorsofbothBDP

andCTPmodesaroundthe<0.3nmairgaparetheindicationofthe

quantumplasmonresonances.

AsthetCTPmodeoriginatesfromtheelectrontunnelingacross

thedimer,thetCTPmodedirectlydependsonthegap

conductiv-ity,i.e.,tunnelingcurrentdensity,raisedbytheplasmonicfields

inthegap.Fig.2eshowsthatthetCTPmodeswitchestoalower

frequency resonance when the tunneling reaches the

Fowler-Nordheimregime[108].BecausethetunnelingcurrentandtheCTP

modeareinducedbytheplasmonicfields,theCTPmodesshould

alsobesensitivetothegeometryoftheplasmonicdimer.Fig.2f

showsthatthisisindeedthecaseandthatthereisnoclearCTP

modeinaplasmonicdimerwithaflatgap(modelledusingtwo

cylindricalplasmonicstructures)asthelongitudinalantenna

plas-mons(LAP)andtheCTPhavealmostthesameresonancefrequency

[109].

2.2. Quantumplasmonicswithair/vacuumtunnelingbarriers

Quantumplasmonicshavebeenstudiedwithplasmonicdimers

containingair/vacuumtunnelingbarriers.Asdiscussedabove,to

identifyquantum plasmon resonances, plasmonic dimers

sepa-ratedbyairorvacuumgapof∼0.3nmareneeded.Suchstructures

are extremely difficult to fabricate using top-down

lithogra-phy methods such as electron-beam lithography(EBL). Fig. 3a

shows theplasmonic resonances,measuredby electron energy

lossspectroscopy(EELS)insideatransmissionelectrontunneling

microscope(TEM),ofbowtieantennasfabricatedbyEBLwith

dif-ferentvaluesofd[136].TheCTPmodewasobservedfortouching

structures,butthesestructuresdidnotrevealtheBDPtoCTPmode

transitionorthetCTPmodelikelybecausethevalueofdof∼0.5nm

wastoolargetoenterthequantummechanicaltunnelingregime.

Savage et al. [137]used a conducting atomic forcemicroscope

(AFM)equippedwithtwogold-spheremodified probestoform

plasmonicdimers.Theseauthorscontrolledthetunnelingcurrent

betweentheAFMtipsinairandsimultaneouslymeasuredthedark

fieldscatteringspectraofthejunction(Fig.2candd).Asthevalueof

ddecreased,theBDPmodesfirstredshiftedwithdecreasingdbut

thenblueshiftedford<∼0.3nmwhichdemonstratesthequantum

behavioroftheplasmonicresonance.Scholletal.controlleddof

twogoldnanospheresinsideaTEMandmeasuredtheirresonance

propertieswithEELS[138].TheyalsoobservedtheBDPtoCTP

tran-sitionwhenthegapofthegoldnanoparticledimeris∼0.27nm

whichisaclearsignatureofthequantumplasmonresonance.

How-ever,inbothcases(Fig.3bandc)[132,133],thetCTPmodecould

notbedirectlyobservedlikelyduetothelimitedspectralrangein

(5)

2.3. Quantumplasmonicswithmoleculartunnelingbarriers

Quantumplasmonicshavealsobeenstudiedwithplasmonic

dimers containing molecular tunneling barriers. To form

sub-nanometer plasmonic dimers, SAMs are promising candidates

becauseoftheeaseatwithwhichdcanbecontrolledbysimply

changingthemolecularlengthofthemoleculesinsidetheSAM

greatlysimplifyingthefabricationofstructureswithsmallvalues

ofd[130,139–141].

ThequantumplasmonbehaviorofBDPmodewasfirst

inves-tigated using gold nanoparticles(Au NPs) deposited ona SAM

ofamine-alkanethiolates(S(CH2)nNH2)supportedonagoldfilm

(Fig.4a)[130].Bysimplychangingthevalueofn,theauthorscould

controldattheatomicleveloneCH2unitatatimeandtheBDP

moderedshiftedwithdecreasingn.Thisredshiftwasnotas

pro-nouncedaspredictedbyCEMbuttheexperimentaldatafittedwell

usingnonlocaldielectricfunctionsofAu.Inthisexperiment,the

transitionfromtheBDPmodetotheCTPmode—thekeysignature

ofenteringthequantumregime—wasnotobservedperhapsdueto

therelativelylargevalueofn=2–16,andthelargeHOMO–LUMO

gap(∼8–9eV)ofamine-alkanethiolatesresultinginlargetunneling

barrierheights(Fig.1e).Nevertheless,thisexperimentconfirmed

thenonlocalcontributiontosurfaceplasmonscattering.

ThequantumplasmonbehaviorofBDPmodewasconfirmed

withajunctionconsistingoftwogoldnanospheresseparatedby

a SAMofalkanedithiolates(S-(CH2)n-S)shown inFig.4b [139].

ThisAuNPbasedjunctionhasmoreconfinedandpronouncedgap

plasmonmodesthantheAuNP-SAM-Aufilmjunctiondescribed

above(Fig.4a)whichmayfacilitatetheelectrontunnelingdriven

bythelocalplasmonicfields.TheresonancepeakoftheBDPred

shiftedwithdecreasingn,butitblueshiftedford<∼1nm(orn<5)

whichstronglyindicatesthetransitionofBDPtoCTPmode,aclear

signatureofquantumeffectsintheplasmonicresonanceinthese

structures.

The tCTP mode could be directly observed in junctions

consisting of two silver nanocubes separated by SAM of

1,2-ethanedithiolates(EDT) or1,4-benzenedithiolates (BDT;Fig.4c)

[140]. The Ag nanocubes had atomically flat facets and large

cross-sectionalareas(∼103nm2)fortunnelingwhichincreasedthe

numberoftunnelingeventsacrossthejunctionsandenhancedthe

weaktCTPmode.Theplasmonicresonancesofthedimerswere

characterizedusingEELSinsideaTEM,whichprovidedthe

possi-bilitytocorrelatethespectratothegapsize.AsshowninFig.4c,

thetCTPmodewasobservedasanewlowenergypeakat0.5eV.

BecausetheconductanceoftheBDTSAMwashighercomparedto

theEDTSAM,theresonancepeakofthetCTPmodeshiftedfrom

∼0.6eVto∼1.0eVwhilekeepingthevalueofdequal(considering

thesimilarlengthsofBDTandEDT).ThisshiftinthetCTPenergy

wasrelatedtothereductionofthetunnelingbarrierheightasEDT

hasalargerHOMO–LUMOgap(8eV)thanBDT(5eV)asdepictedin

Fig.1.SincetheconjugateBDTSAMssupporthightunnelingrates,

thetCTPmodecouldbeobservedevenforvaluesofdofupto1.3nm.

ThemolecularelectroniccontrolovertheBDPmode(coupled

plas-monresonance)wasconfirmedinAuNP-SAM-Aufilmjunctions

withSAMsofBPDT(biphenyl-4,4-dithiolate)andBPT

(biphenyl-4-thiolate)byBenzetal.(Fig.4d)[141].HeretheBPDTmolecules

havealargerconductivitythanBPTmoleculesandconsequently

theBDPmodewasblueshifted∼50nmbysimplyreplacingtheBPT

SAMbyaBPDTSAM.Inthisexample,dandtherefractiveindices

ofbothSAMswereverysimilarandthusthechangeinthe

tunnel-ingratedefinedbythemoleculecausedthechangeintheoptical

propertiesofthejunctions.

Fig.4. Quantumplasmonicswithmoleculartunnelingbarriers.(a)Nonlocaleffects intheNP-SAM-filmsystemwithSAMsofamine-alkanethiolates(S(CH2)nNH2).The

scatteringpeakpositionredshiftsasddecreasesandfitswelltothemodelthat utilizesnonlocaldielectricfunctionofAu.AdaptedwithpermissionfromRef.[130]. Copyright2012AmericanAssociationfortheAdvancementofScience(AAAS).(b) Scanningelectronmicroscopy(SEM)imageoftheAuNPdimerslinkedwith alka-nedithiolates(S-(CH2)n-S).Thegraphsshowthescatteringpeakpositionofthe

dimersvsd.AdaptedwithpermissionfromRef.[139].Copyright2014ACS.(c) Directobservationofquantumplasmonresonance(tCTP)inAgnanocudedimers linkedbyEDT(1,2-ethanedithiolates)orBDT(1,4-benzenedithiolates).Duetothe higherconductivityoftheBDTmolecules,thetCTPisblueshiftedrelativetothat ofthejunctionswithEDT.AdaptedwithpermissionfromRef.[140].Copyright 2014AAAS.(d)Moleculeconductivityinducedquantumplasmonresonanceshift inAuNP-SAM-AufilmsystemwithSAMsofBPDT(biphenyl-4,4-dithiolate)orBPT

(biphenyl-4-thiolate)molecules.ThemoreconductiveBPDTmoleculescausethe BDPmodetoblueshiftcomparedrelativetothelessconductiveBPTjunctions. AdaptedwithpermissionfromRef.[141].Copyright2014ACS.(Forinterpretation ofthereferencestocolourinthetext,thereaderisreferredtothewebversionof thisarticle.)

(6)

3. Molecularelectronicsappliedinplasmonexcitation

Plasmonscanbeelectricallyexcitedbytwoapproacheswhich

wedefineasdirectandindirectplasmonexcitationasshownin

Fig.5.Directplasmonexcitationreliesonplasmonexcitationby

tunnelingelectronsdirectly.Inotherwords,thetunnelingcurrent

directlycouplestoplasmonmodesin,forinstance,

metal-insulator-metaljunctions[142–149].Indirectplasmonexcitationrelieson

twosteps.First,chargecarriersinducetheelectron–holepair

gen-erationinthejunctionwhichthenrecombineandemitaphoton.

Second,these emittedphotons then excite plasmons.Although

many examples of indirect plasmon sources are based on the

electroluminescenceofsemiconductors(e.g.,lightemitteddiodes

[150–153],siliconparticles[154],orcarbonnanotubes[155]),here

weonly focusin indirectand direct plasmonsources basedon

molecules.

3.1. Mechanismsofplasmonexcitationintunneljunctions

Whenatunnelingcurrentflowsthroughajunction,plasmons

areexcitedin theplasmonicelectrodes(usuallymadeof Auor

Ag).Thisplasmonexcitationprocesshasbeenoftenassumedto

proceedviainelastictunneling[142–149,156–158].Theschematic

diagramofinelastictunnelingisshowninFig.5a.Duringthe

tun-nelprocessmostof theelectronstunnel elastically,however, a

smallportionoftheelectronstunnelinelasticallyandexcite

plas-monsinthetunneljunctions.Thefirstexampleofadirectplasmon

sourcewasreportedbyLambeandMcCarthyin1976[142].They

observedbroadbandlightemissionfromplanar

metal-insulator-metal (MIM) tunnel junctions (Al–Al2O3–Ag/Au junction) from

radiativelydecayingplasmons.Thecolorofthelightdependson

theappliedbiasVapplandthehighfrequencycutoffoftheoptical

spectrafollowsthequantumrelationhcutoff=eVappl.Sincetheir

experiments, plasmonshave been excited in different types of

tunneljunctionsincludingMIMtunneljunctionsbasedon

metal-oxideinsulators[144–146],airgaps[147,148],hexagonalboron

nitride(hBN)[149],andscanningtunnelingmicroscopes(STMs)

[156–183].

Often,thephoton-assistedtunnelingmodelhasbeenusedto

explainhowchargecarrierscoupletoplasmons(seeSection4.1).

Thismodel implies that the emitted photon from thejunction

cannotexceedtheelectronenergyoftheappliedbiasVappl and

hcutoff=eVapplapplies(Fig.5c).Schulletal.reportedthatquantum

shotnoisebecomesimportantfortunneljunctionswithhigh

tun-nelingcurrentsclosetothequantumconductanceG0 [162,164].

These junctions emit photons with energies largerthan eVappl

(Fig.5c).Later,Nitzanetal.establishedthetheoreticallinkbetween

thequantumnoiseandtheacconductanceofthetunneljunction,

and theplasmoniclight emission based onthenonequilibrium

Greenfunction formalism[171]. Theshotnoise directlyexcites

theplasmonicresonanceofthetunneljunctionthroughits

spec-traldistributionattheopticalfrequency.Themodelalsoexplains

thatphotonsareemittedwithhigherenergythaneVapplbecauseof

strongelectron-electroncoupling(Fig.5c).

In molecular tunnel junctions so far, plasmons have been

excited,ormodulated,usingelectrolumiscentmolecules.Fig.5b

showsthatelectronsandholesareinjectedinthemoleculewhich

thenrecombineandemitaphoton[174–183].Plasmonscanalso

beexcitedviadirecttunnelingbetweenthesubstrateandthetip

andthechallengeistodiscriminatebetweenplasmonsexcitedvia

thephotonsemittedfromthemoleculeorviadirecttunneling.The

energylevelsofmolecules(e.g.,HOMOorLUMO)mayparticipate

inthetunnelingprocessand thusaffecttheplasmonexcitation

process.Therefore, insystems withlow lyingenergy levelsthe

mechanismofplasmonexcitationcanbechallengingtodetermine.

3.2. STM-basedmolecularelectronicplasmonsources

ThehighlylocalizedtunnelingcurrentintheSTMmakeit

pos-sibletoexciteplasmonslocallywithasub-nanometerresolution.

PioneeringexperimentsbyCoombs,GimzewskiandBerndtetal.

[156–158]showedbroadbandlightemissionfromSTMjunctions

ondifferent(polycrystallineAg,Au(110), Cu(111),and Ag(111))

metallicsurfaces.Here,inelastictunnelingelectronsexcitedLSPs

betweentheproximityofthetipandthesample;theseLSPsthen

radiativelydecayedandweredetectedopticallybyplacing

objec-tivesnearbythejunction.Sincethen,plasmonexcitationinSTM

junctionshavebeenintensivelystudiedbothexperimentallyand

theoretically[159–173].Thesestudiesshowedthatthegeometry

ofthetipisimportantintheplasmonexcitation[172,173],enabled

sub-nanometerresolutionplasmonmodemapping[159–161],and

improvedtheunderstandingofplasmonexcitationbycouplingthe

localdensity ofelectronicand opticalstates [163].By

integrat-ingtheSTMwithaninvertedopticalmicroscope,SPPsexcitedby

STMjunctionshavebeendirectlyimagedthroughleakageradiation

microscopy[165–170].

Duringthelastdecade,indirectplasmonexcitationviathe

elec-troluminescenceofmoleculeshasbeeninvestigated[174–183].In

theseexperimentsitisimportanttodecouplethemoleculefrom

themetallicsurfacestoavoidquenching.Inpractice,this

decou-pling hasbeenrealizedby isolatingfluorophores frommetallic

substratesusingthin(in)organicinsulatinglayerssuchasmetal

oxides [174,177],or molecular layers [175,176]; thesetypes of

junctions have been recently reviewed in detail elsewhere by

Shamaiaetal.[40],Galperinaetal.[41],andRosseletal.[178].

Insteadof usinginsulating layerstodecouple themolecules

fromthebottom-electrode,recently“molecular”approacheshave

beenusedtominimizequenching.Usually,unmodifiedporphyrins

lie flaton metalsurfaces becauseof strongmolecule-substrate

interactions.Fig.6ashowsaporphyrinmoleculewitharigid

tripo-dalanchor and spacer to effectively place the porphyrin away

fromthebottom-electrode[181].Fig.6bshowstheSTM-induced

luminescencespectrawhicharecharacteristicfortheporphyrin

moiety proving effective decouplingof theporphyrin fromthe

bottom-electrode although electroluminescence intensity from

thesemoleculeswasabout oneorder ofmagnitude lowerthan

thatofthebaresubstrate.Thisreductionintheluminescent

inten-sitymaybeduetothereducedplasmonfieldsduetothelarge

tip-substratedistanceorthenon-radiativedecaychannelsrelated

tochargetransferordipole-dipoleenergytransfer.Althoughthe

decouplingoftheporphyrinmoleculeissuccessful,further

under-standingandtherecoveryoftheluminescenceintensityisneeded.

Anotherdecouplingexperimenthasbeenrealizedbysimply

lift-ingapolythiophenewirewithaSTMtipfromagoldsurface(Fig.6c

andd)[182].Duringtheexperiment,thepolythiophenewirewas

liftedofffromtheAusurfacebyseveralnanometersusingtheSTM

tip,sothewireendsweredirectlyconnectedtotheelectrodes,

whereasa partofthepolymer chainwassuspended insidethe

junctionanddisconnectedfromthesubstrate.TheSTM-induced

luminescencespectrafromthesuspendedwireshowedabroad

res-onancewhosemaximumdidnotshiftwithvoltage.Thesevoltage

independentspectrawerebelievedtobetheelectroluminescence

ofthesuspendedwiresbytherecombinationofelectronsinjected

fromthetipin theLUMOwithholesinjected fromthesample

intheHOMOofthewirejunction.Thisexperimentintroduceda

newexperimentalmethodtodecouplemoleculesfrommetallic

substratesbysimplyliftingupthemolecules,althoughthe

elec-tronicpropertiesofthejunctionsis notcompletelyclearasthe

tipgeometry,molecule-tipandmolecule-substrateinteractions,or

conformationofthemoleculeinsidethejunction,arenotknown.

Besides molecule-specific electroluminescence, individual

(7)

Fig.5. Molecularelectronicsappliedinplasmonexcitation.(a,b)Schematicsofdirect(a)andindirect(b)plasmonexcitationintunneljunctions,respectively.Themolecule canmodulatetheinelastictunnelingbytheirelectronictransitionsbetweenHOMO–LUMOorbitals.(c)Theleftpanelshowthejunctionconductanceasafunctionof tip-substratedistance.TherightpanelshowsthelightemissionspectraasafunctionofthedistancebetweentheAutipandAusubstrate.WhenG/G0<0.3,thespectrafallinthe

hv<eV(inelastictunnelingregime),butforG/G0>0.3,photonenergieswithhv>eVareobserved(quantumshotnoisedominatedregime).AdaptfromRef.[162],Copyright

2009APS.

junctionsbymodifyingtheinelastictunnelingprocess.Fig.6eand

fshowtheschematicofanSTMjunctionwithIr(ppy)3molecules

physisorbed on a monolayer of C60 monolayer supported by

Ag(111)substrate.Here,C60monolayerfunctionsasthedielectric

spacertodecoupleIr(ppy)3moleculesfromtheAgsubstrate[183].

FromthisSTM junction,there aretwomain observations.First,

theSTM-induced plasmon map onsingleIr(ppy)3 molecules at

−1.8VhadthesamespatialshapeastheirHOMOorbitalmapat

−0.2V. Second,thecut-off energy of theplasmonspectrafrom

single Ir(ppy)3 molecules was 0.2V lower than that from the

C60 monolayer. These observations suggest that the HOMO of

theIr(ppy)3 moleculesmodulates theplasmonexcitation both

spatially and spectrally. In other words, the plasmon emission

patternandspectracanbecontrolledatthemolecularscale.

3.3. On-chipmolecularelectronicplasmonsources

Electrically-driven on-chipplasmon sources areessential for

integratedplasmoniccircuits.Recenteffortsmainlyreliedon

indi-rect electrically-driven plasmon sources based onminiaturized

light sources that exploit electroluminescence from nanoscale

semiconductorssuchasnano-lightemittingdiodesorcarbon

nano-tubes[150–155].However,theseplasmonsourcesarelimitedin

speed becausetheyrelyonelectron–holerecombination which

typicallyoccursonthenanosecondtime-scales.Directelectrical

excitationsofplasmonsintunneljunctionsoccuratthequantum

mechanicaltunnelingtimescalesandarethusfast[184].In

princi-ple,MIMjunctionsarecompatiblewithon-chipapplications,butso

fartheyhavenotbeencoupledtoplasmonicwaveguides.Recently,

MIMjunctionsbasedonhexagonalboronnitrideorvacuumasthe

insulatorhavebeencombinedwithopticalantennas[147–149].

Werecentlyreportedon-chipdirectplasmonexcitationusing

moleculartunneljunctionsbasedonSAMs[185].Wefoundthat

theplasmonsinthesejunctionsoriginatefromsingle,

diffraction-limitedspots,followpower-lawdistributedphotonstatistics,and

havewell-definedpolarizationorientationswhicharecontrolled

bythetunnelingdirectiondefinedbythetiltangleoftheSAMor

bysimplychangingtheappliedbiasofthejunction.Fig.7ashows

theschematicof theSTJ which consistsofan EGaIn/Ga2O3 top

electrodeconfinedinathrough-holeinatransparentrubber

(poly-dimethylsiloxane;PDMS)andanultra-flattemplate-strippedAu

(AuTS)electrodesupportingSAMsofSC12.Thesejunctionsexcited

bothlocalizedandpropagatingSPPs(Fig.7bandc).Intherealplane

image(Fig.7b),LSPsarecharacterizedbydiffractionlimited

emis-sionspots andtheSPPsby theunidirectionaland un-diffracted

emissionspotsaroundtheboundaryofthejunction.Intheback

focal planeimage(Fig.7c), the SPPsare shown asnarrowarcs

with specificwavevectors kSPP and labelled with modeI (SPPs

alongtheAu/SAM—Airinterface,kSPP=1.01)andII(SPPsalongthe

Au/SAM—PDMSinterface,kSPP=1.47).Fig.7dshowsthedefocused

plasmonemissionimageofFig.7bwhichindicatesthepolarization

orientationoftheplasmonemissionspots.Theoreticalcalculations

confirmthatthepolarizationorientationoftheplasmonemissionis

∼30◦withrespecttothesurfacenormalandequalstothetiltangle

oftheSAMs.Thisrelationimpliesthattheplasmonexcitationinthe

(8)

Fig.6.MolecularelectronicsappliedinplasmonexcitationinSTMs.(a,b)ElectroluminescencemodulatedplasmonexcitationinaSTMjunctionwithafluorophorefromthe bottomelectrodebyintramolecularspacer.AdaptedwithpermissionfromRef.[181].Copyright2013ACS.(c,d)Electroluminescencemodulatedplasmonexcitationina STMjunctionwithasuspendedelectroluminescentoligomer.AdaptedwithpermissionfromRef.[182].Copyright2014APS.(e,f)Molecularorbitalgatedplasmonexcitation inaSTMjunctionwithIr(ppy)3adsorbedonamonolayerofC60.AdaptedwithpermissionfromRef.[183].Copyright2013ACS.

Fig.7. On-chipplasmonexcitationwithSTJs.(a)Schematicoftheon-chipSTJs.Here,thesubstrateisglass,OAisanopticaladhesivethatwasusedintemplate-stripping, AuTSistemplatestrippedAu,PDMSispolydimethylsiloxanebasedrubbermoldwithmicrochannelsthatstabilizesthetop-electrode,EGaInstandsforeutecticalloyofGa

andIn,andGa2O3isanative,conductiveoxidesurfacelayerof0.7nmontheEGaIn.(b,c)Realplaneimage(b)andbackfocalplaneimage(c)oftheplasmonemissionwitha

(9)

Fig.8. Tunneljunctionsappliedinplasmondetection.(a)Directplasmon detec-tionbyphoto-assistedtunneling(PAT).(b)Indirectplasmondetectionthrough electron–holeseparation.

tunneling.Thisobservationwasfurtherconfirmedbychangingthe

tiltangleto∼10◦ bysimplyreplacingtheAuTSbyaAgTSbottom

electrode.Usingthesejunctions,plasmonscouldalsobeexcitedin

plasmonicwaveguidesandbias-selectiveplasmonexcitationwas

achievedwithmoleculardiodes.

Noteworthyisthattheplasmonsareexcitedindiscretespots

(Fig.7b).Itiswell-knowninelectricalengineeringthatthecurrent

doesnotflowuniformlyacrossmostjunctionsandthatthe

effec-tiveelectricalcontactareamaybe2–4ordersofmagnitudesmaller

thanthegeometricalcontactarea[186].Theeffectiveelectrical

con-tactareainSAM-basedjunctionswithEGaIntop-electrodeswas

recentlyestimatedtobe4ordersofmagnitudesmallerthanthe

geometricalcontactarea[187,188].ThedatashowninFig.7bshows

visuallythatindeedthecurrentflowacrossthesejunctionsishighly

inhomogeneous.

4. Molecularelectronicsappliedinplasmondetection

Theelectricaldetectionofplasmonsisthereverseprocessof

plasmonexcitation,andcanalsobeclassifiedasdirectand

indi-rect plasmon detection strategies as depicted in Fig. 8. Direct

plasmondetectionisrealizedbyplasmonassistedtunneling.

Indi-rect plasmon detectionhastwo steps. Firstly,plasmons induce

electron–holepairgeneration.Secondly,theseelectron–holepairs

areseparatedandcollectedresultinginaphotocurrent.Here,we

reviewthedirectplasmondetectionbasedonthemoleculartunnel

junctions.

4.1. Mechanismofelectricaldetectionofplasmons

Moleculartunneljunctionscanbeusedtodetectplasmonsboth

indirectlyanddirectly.Becauseoftheplasmonicfield,theaverage

tunnelbarrierheightofthejunctionsisreducedandthusthetunnel

currentincreases(Fig.8a).Thisprocessisin-principlethe

photon-assistedtunneling(PAT)introducedbyTienandGordon[189,190],

however,becauseinplasmondetectiontheelectromagneticfield

isprovidedbyplasmons,thiseffectcanalsobenamedas

plasmon-assistedtunneling.InPAT,theplasmonicfieldsproduceanelectric

fieldwhichcanbeapproximatedasaneffectiveacbiasVaccos(ωt)

addedtotheapplieddcbiaswhereVacistheacbiasamplitude,

ωisthefrequencyoftheplasmonandtistime.Thisacbiasthen

modulatesthedctunnelcurrentgivenbyRefs.[85,189,190].

Idc+ac(Vdc+Vaccos(ωt))=

n=∞



n=−∞

Jn2(eVac )Idc(Vdc+nωe ) (2)

whereisthereducedPlanck’sconstantandeistheelementary

charge.TheincreasedcurrentIdcduetotheacbiasinthelimitof

smallacamplitudes(eVac≤ω)canbeapproximatedby

Idc=Idc+ac(Vdc+Vaccos(ωt))−Idc(Vdc)

= 1

4V

2 ac



Idc(Vdc+ω/e)+Idc(Vdc−ω/e)−2Idc(Vdc)

(␻/e)2



(3)

Ifthevariationofthetunnelingcurrentissmallonthebiasscale

ofω/e,Eq.(3)canbesimplifiedto[85]

Idc= 1 4V 2 ac



d2Idc dVdc2



(4)

Onthecontrary,indirectplasmondetectionwithmolecular

tun-neljunctions utilizeselectronically decoupledmoleculeswitha

smallerbandgap(e.g.,conjugatedmolecules,Fig.1d)asthe

tun-nelingbarrier.Similartophotondetectionusingsemiconductors,

when plasmonic electromagnetic fields reach the tunnel

junc-tions,themoleculeswillabsorbtheplasmonenergyandgenerate

electron–holepairswhicharethenseparatedinanapplied

elec-tricfieldresultinginaphotocurrent(Fig.8b).Torealizeeffective

indirectplasmondetectionusingmolecules,thereare

fundamen-tal issues to overcome. Firstly, the intrinsic HOMO–LUMO gap

of the moleculelimits the detection bandwidth. Secondly, the

electron–holegenerationisusuallyonthetime-scaleof

nanosec-ondswhich limitstheresponse speed. Sofar,indirectplasmon

detection has mainly been investigated based on miniaturized

semiconductorsconnectedtoplasmonicwaveguidesinformsof

Au films [191], single crystalline Ag nanowires [192,194,198],

polycrystallineAuwaveguides[195–197],andMIMgapplasmon

waveguides[193].

4.2. Directplasmondetectionwithmoleculartunneljunctions

Directplasmondetectionwithmoleculartunneljunctionshas

beenrealizedusingmoleculeswithlargeHOMO–LUMOgaps(e.g.,

aliphaticmolecules,Fig.1e)asthetunnelbarrierusingjunctions

oftheformofAuNW-SAM-Au(NW=nanowire)sandwichbyNoy

etal.[199,200].Fig.9ashowsthesuspendnanowiremolecular

tun-neljunctionswithSAMsofSCnwithn=8,10,12.SPPswereexcited

usingalaserandpropagatedalongtheAuNWtothejunctions.

TheSPPscausedanincreaseintheobserveddctunnelingcurrent

(Fig.9b).TheinsetofFig.9bshowsafitofEq.(4)toaplotofthe

increaseinthedccurrentasafunctionofVapplandtheauthors

concludedthatPATexplainstheirobservationswell.Fromthe

mag-nitude ofthe plasmonmodulated current, it isalsopossible to

determinethestrengthsoftheplasmonicfieldinthejunctions.The

enhancementbytheplasmonicfieldsshoulddecayexponentially

withthelengthofthemolecule(i.e.,thevalueofn).Theauthors

foundaplasmonicfieldenhancementofafactorof∼550forn=8,

∼250forn=10,and∼100forn=12.Suchanevolutionofplasmonic

fieldenhancementisnormallydifficulttomeasuredirectlyby

opti-calmeansbecauseofthesmalldimensionsofthegap(∼1nm).The

directplasmondetectionofthemoleculartunneljunctionprovides

theopportunitytocombinemolecularelectronicswithplasmonics

andinsitudeterminationofplasmoniceffects.

Directplasmondetectionhasalsobeenperformedwith

junc-tionsusingcontinuousgoldfilmsastheelectrodes.Fig.9cshows

squeezable breakjunctionsoftheformofAufilm-SAM-Aufilm

[201].ThesejunctionssupportSPPsontheircontinuousgoldfilms

whichcanbeexcitedwithap-polarizedlightintheKretschmann

configurationusingaglassprism.Whenthethingoldfilmswere

squeezedtoforma singlemoleculetunnel junction,SPPs were

(10)

electro-Fig.9.Directplasmondetectionwithmoleculartunneljunctions.(a,b)PlasmondetectionbyPATinaAuNW-SAM-Aufilmtunneljunctionwherelocalizedplasmonswere excited.Adaptedwithpermissionfrom[200].Copyright2010ACS.(c,d)PlasmondetectionbyPATinaAufilm-SAM-AufilmtunneljunctionwherepropagatingSPPswere excited.AdaptedwithpermissionfromRef.[201].Copyright2013ACS.

magneticfieldsandsignificantincreaseoftheobservedtunneling

current(Fig.9d).

5. Conclusionsandoutlook

ThisReviewhighlightsthegreat opportunitiesformolecular

plasmonicsbytakingadvantageofboththeconceptsofplasmonics

andmolecularelectronics.Judiciouslydesignedmoleculartunnel

junctionsprovideaninterestingexperimentalplatformtoimprove

ourunderstandingofquantumplasmonics(includingcharge

trans-ferplasmons)andtodemonstratepromisingapplicationsinvolving

nanoscaleplasmongenerationanddetection.Althoughthe

feasi-bilityofcombiningmolecularelectronicsandplasmonicshasbeen

clearlydemonstratedinthestudieshighlightedinthisReview,

sev-eralchallengesremaininmolecularelectronicplasmonics.

Modelingquantum plasmon resonances inmolecular tunnel

junctionsis challenging.Usually,quantum plasmonmodelsuse

homogeneouseffectivedielectricscorrectedbyquantumtunneling

asthetunnelbarriers.Inreality,themoleculesinsidethejunctions

arenotstatic,butvibrateasaresultofthermalorinelastic

excita-tions[185,202–205],causingforinstanceblinkingphenomena.For

agivenjunction,thecurrentflowmaynotbeuniformlydistributed

acrossthejunctionareaand,ingeneral,theshapeofthetunneling

barrierisdisputed[27,206,207].Theseuncertaintiescomplicatethe

constructionofrealisticmodels.Ontheotherhand,although

quan-tumplasmonresonanceshavebeendemonstratedusingmolecule

junctions,activemolecularelectroniccontroloftheseresonances

havenotbeendemonstratedyet.

Molecularelectronicon-chip plasmon sources and detectors

havebeeninvestigated withdcbiases,butthesearepotentially

veryfastastheyoperatedonthequantumtunnelingtime-scales.

To realize ultra-fast plasmonic electroniccircuitry, it is

impor-tanttofabricatemoleculartunneling junctionswithsmallareas

(e.g.,<1␮m2)toensuresmallcapacitancesandminimalRCdelay

times.Finally, experimentaldemonstrationof simple molecular

plasmonicelectroniccircuitsisstilllacking.Oneofthereasonsis

thatreliablelarge-scalefabricationofmoleculartunneling

junc-tionsisstillchallengingalthoughrecentprogresshasbeenmade

[208–210]. Despite these challenges we believe that molecular

electronicplasmonicsisanexcitingplaygroundforboththeorists

andexperimentalistswithpromisingapplicationsinareas

compli-mentarytotraditionalsemiconductorbasedelectronics.

Acknowledgements

WeacknowledgetheNationalResearchFoundation(NRF)for

supporting this research under the Competitive Research

Pro-gramme(CRP)program(awardNRF-CRP8-2011-07).

References

[1]InternationalTechnologyRoadmapforSemiconductors,2013,edn,available onlineathttp://public.itrs.net/.

[2]R.Zia,J.A.Schuller,A.Chandran,M.L.Brongersma,Plasmonics—thewaveof chip-scaledevicetechnologies,Mater.Today9(2006)20–27.

[3]M.L.Brongersma,V.M.Shalaev,Thecaseforplasmonics,Science328(2010) 440–441.

[4]E.Ozbay,Plasmonics:mergingphotonicsandelectronicsatnanoscale dimensions,Science311(2006)189–193.

[5]H.A.Atwater,Thepromiseofplasmonics,Sci.Am.296(2007)56–62. [6]W.L.Barnes,A.Dereux,T.W.Ebbesen,Surfaceplasmonsubwavelength

optics,Nature424(2003)824–830.

[7]D.K.Gramotnev,S.I.Bozhevolnyi,Plasmonicsbeyondthediffractionlimit, Nat.Photon.4(2010)83–91.

[8]C.Joachim,J.K.Gimzewski,A.Aviram,Electronicsusinghybrid-molecular andmono-moleculardevices,Nature408(2000)541–548.

[9]A.Nitzan,M.Ratner,Electrontransportinmolecularwirefunctions,Science 300(2003)1384–1389.

[10]A.Salomon,D.Cahen,S.Lindsay,J.Tomfohr,V.B.Engelkes,C.D.Frisbie, Comparisonofelectronictransportmeasurementsonorganicmolecules, Adv.Mater.15(2003)1881–1890.

[11]R.L.McCreery,Molecularelectronicjunctions,Chem.Mater.16(2004) 4477–4496.

(11)

[12]N.J.Tao,Electrontransportinmolecularjunctions,Nat.Nanotechnol.1 (2006)173–181.

[13]H.Haick,D.Cahen,Contactingorganicmoleculesbysoftmethods:towards molecule-basedelectronicdevices,Acc.Chem.Res.41(2008)359–366. [14]M.Ratner,Abriefhistoryofmolecularelectronics,Nat.Nanotechnol.8

(2013)378–381.

[15]L.Sun,Y.A.Diaz-Fernandez,T.A.Gschneidtner,F.Westerlund,S.Lara-Avilab, K.Moth-Poulsen,Single-moleculeelectronics:fromchemicaldesignto functionaldevices,Chem.Soc.Rev.43(2014)7378–7411.

[16]Y.Zhang,Z.Zhao,D.Fracasso,R.C.Chiechi,Bottom-upmoleculartunneling junctionsformedbyself-assembly,Isr.J.Chem.54(2014)513–533. [17]R.M.Metzger,Unimolecularelectronics,Chem.Rev.115(2015)5056–5115. [18]A.S.Blum,J.G.Kushmerick,D.P.Long,C.H.Patterson,J.C.Yang,J.C.

Henderson,Y.Yao,J.M.Tour,R.Shashidhar,B.R.Ratna,Molecularlyinherent voltage-controlledconductanceswitching,Nat.Mater.4(2005)167–172. [19]P.Liljeroth,Peter,J.Repp,G.Meyer,Current-inducedhydrogen

tautomerizationandconductanceswitchingofnaphthalocyanine molecules,Science317(2007)1203–1206.

[20]S.Y.Quek,M.Kamenetska,M.L.Steigerwald,H.J.Choi,S.G.Louie,M.S. Hybertsen,J.B.Neaton,L.Venkataraman,Mechanicallycontrolledbinary conductanceswitchingofasingle-moleculejunction,Nat.Nanotechnol.4 (2009)230–234.

[21]F.Schwarz,G.Kastlunger,F.Lissel,C.Egler-Lucas,S.N.Semenov,K. Venkatesan,H.Berke,R.Stadler,E.Lörtscher,Field-inducedconductance switchingbycharge-statealternationinorganometallicsingle-molecule junctions,Nat.Nanotechnol.11(2016)170–176.

[22]M.Elbing,R.Ochs,M.Koentopp,M.Fischer,C.vonHanisch,F.Weigend,F. Evers,H.B.Weber,M.Mayor,Asingle-moleculediode,Proc.Natl.Acad.Sci. U.S.A.102(2005)8815–8820.

[23]I.Díez-Pérez,J.Hihath,Y.Lee,L.Yu,L.Adamska,M.A.Kozhushner,I.I. Oleynik,N.J.Tao,Rectificationandstabilityofasinglemoleculardiodewith controlledorientation,Nat.Chem.1(2009)635–641.

[24]N.Nerngchamnong,L.Yuan,D.Qi,J.Li,D.Thompson,C.A.Nijhuis,Theroleof vanderWaalsforcesintheperformanceofmoleculardiodes,Nat. Nanotechnol.8(2013)113–118.

[25]H.J.Yoon,K.C.Liao,M.R.Lockett,S.W.Kwok,M.Baghbanzadeh,G.M. Whitesides,Rectificationintunnelingjunctions:2,2-bipyridyl-terminated

n-alkanethiolates,J.Am.Chem.Soc.136(2014)17155–17162. [26]B.Capozzi,J.Xia,O.Adak,E.J.Dell,Z.F.Liu,J.C.Taylor,J.B.Neaton,L.M.

Campos,L.Venkataraman,Single-moleculediodeswithhighrectification ratiosthroughenvironmentalcontrol,Nat.Nanotechnol.10(2015)522–527. [27]L.Yuan,N.Nerngchamnong,L.Cao,H.Hamoudi,E.DelBarco,M.Roemer,R.

Sriramula,D.Thompson,C.A.Nijhuis,Controllingthedirectionof rectificationinamoleculardiode,Nat.Commun.6(2015)6324. [28]D.Fracasso,H.Valkenier,J.C.Hummelen,G.C.Solomon,RyanC.Chiechi,

Evidenceforquantuminterferenceinsamsofarylethynylenethiolatesin tunnelingjunctionswitheutecticGa–In(EGAIN)top-contacts,J.Am.Chem. Soc.133(2011)9556–9563.

[29]C.M.Guédon,H.Valkenier,T.Markussen,K.S.Thygesen,J.C.Hummelen,S.J. vanderMolen,Observationofquantuminterferenceinmolecularcharge transport,Nat.Nanotechnol.7(2012)305–309.

[30]H.Vazquez,R.Skouta,S.Schneebeli,M.Kamenetska,R.Breslow,L. Venkataraman,M.S.Hybertsen,Probingtheconductancesuperpositionlaw insingle-moleculecircuitswithparallelpaths,Nat.Nanotechnol.7(2012) 663–667.

[31]C.R.Arroyo,S.Tarkuc,R.Frisenda,J.S.Seldenthuis,C.H.M.Woerde,R. Eelkema,F.C.Grozema,H.S.J.vanderZant,Signaturesofquantum interferenceeffectsonchargetransportthroughasinglebenzenering, Angew.Chem.Int.Ed.52(2013)3152–3155.

[32]J.He,S.Lindsay,Onthemechanismofnegativedifferentialresistancein ferrocenylundecanethiolself-assembledmonolayers,J.Am.Chem.Soc.127 (2005)11932–11933.

[33]X.W.Tu,G.Mikaelian,W.Ho,Controllingsingle-moleculenegative differentialresistanceinadouble-barriertunneljunction,Phys.Rev.Lett. 100(2008)126807.

[34]M.L.Perrin,M.Koole,J.S.Seldenthuis,J.A.CelisGil,H.Valkenier,J.C. Hummelen,N.Renaud,F.C.Grozema,J.M.Thijssen,D.Dulic,H.S.J.vander Zant,Largenegativedifferentialconductanceinsingle-moleculebreak junctions,Nat.Nanotechnol.9(2014)830–834.

[35]C.M.Ramsey,E.delBarco,S.Hill,S.J.Shah,C.C.Beedle,D.N.Hendrickson, Quantuminterferenceoftunneltrajectoriesbetweenstatesofdifferentspin lengthinadimericmolecularnanomagnet,Nat.Phys.4(2008)277–281. [36]S.Schmaus,A.Bagrets,Y.Nahas,T.K.Yamada,A.Bork,M.Bowen,E.

Beaurepaire,F.Evers,W.Wulfhekel,Giantmagnetoresistancethrougha singlemolecule,Nat.Nanotechnol.6(2011)185–189.

[37]E.Burzurí,A.S.Zyazin,A.Cornia,H.S.J.vanderZant,Directobservationof magneticanisotropyinanindividualFe4single-moleculemagnet,Phys. Rev.Lett.109(2012)147203.

[38]B.Warner,F.ElHallak,H.Prüser,J.Sharp,M.Persson,A.J.Fisher,C.F. Hirjibehedin,Tunablemagnetoresistanceinanasymmetricallycoupled single-moleculejunction,Nat.Nanotechnol.10(2015)259–263.

[39]A.C.Aragonès,D.Aravena,J.I.Cerdá,Z.Acís-Castillo,H.Li,J.A.Real,F.Sanz,J. Hihath,E.Ruiz,I.Díez-Pérez,Largeconductanceswitchingina

single-moleculedevicethroughroomtemperaturespin-dependent transport,NanoLett.16(2016)218–226.

[40]T.Shamaia,Y.Selzer,Spectroscopyofmolecularjunctions,Chem.Soc.Rev. 40(2011)2293–2305.

[41]M.Galperina,A.Nitzan,Molecularoptoelectronics:theinteractionof molecularconductionjunctionswithlight,Phys.Chem.Chem.Phys.14 (2012)9421–9438.

[42]S.V.Aradhya,L.Venkataraman,Single-moleculejunctionsbeyondelectronic transport,Nat.Nanotechnol.8(2013)399–410.

[43]S.Battacharyya,A.Kibel,G.Kodis,P.A.Liddell,M.Gervaldo,D.Gust,S. Lindsay,Opticalmodulationofmolecularconductance,NanoLett.11(2011) 2709–2714.

[44]C.Jia,J.Wang,C.Yao,Y.Cao,Y.W.Zhong,Z.R.Liu,Z.F.Liu,X.F.Guo, Conductanceswitchingandmechanismsinsingle-moleculejunctions, Angew.Chem.Int.Ed.52(2013)8666–8670.

[45]J.A.Fereiro,R.L.McCreery,A.J.Bergren,Directopticaldeterminationof interfacialtransportbarriersinmoleculartunneljunctions,J.Am.Chem. Soc.135(2013)9584–9587.

[46]S.A.Maier,H.A.Atwater,Plasmonics:localizationandguidingof electromagneticenergyinmetal/dielectricstructures,J.Appl.Phys.98 (2005)011101.

[47]E.Hutter,J.H.Fendler,Exploitationoflocalizedsurfaceplasmonresonance, Adv.Mater.16(2004)1685–1706.

[48]K.A.Willets,R.P.VanDuyne,Localizedsurfaceplasmonresonance spectroscopyandsensing,Annu.Rev.Phys.Chem.58(2007)267–297. [49]M.E.Stewart,C.R.Anderton,L.B.Thompson,J.Maria,S.K.Gray,J.A.Rogers,

R.G.Nuzzo,Nanostructuredplasmonicsensors,Chem.Rev.108(2008) 494–521.

[50]K.M.Mayer,J.H.Hafner,Localizedsurfaceplasmonresonancesensors, Chem.Rev.111(2011)3828–3857.

[51]R.M.Dickson,L.A.Lyon,Unidirectionalplasmonpropagationinmetallic nanowires,J.Phys.Chem.B104(2000)6095–6098.

[52]A.V.Zayats,I.I.Smolyaninovb,A.A.Maradudinc,Nano-opticsofsurface plasmonpolaritons,Phys.Rep.408(2005)131–314.

[53]E.Moreno,S.G.Rodrigo,S.I.Bozhevolnyi,L.Martin-Moreno,F.J.Garcia-Vidal, Guidingandfocusingofelectromagneticfieldswithwedgeplasmon polaritons,Phys.Rev.Lett.100(2008)023901.

[54]S.I.Bozhevolnyi,V.S.Volkov,E.Devaux,J.Y.Laluet,T.W.Ebbesen,Channel plasmonsubwavelengthwaveguidecomponentsincludinginterferometers andringresonators,Nature440(2006)508–511.

[55]R.Zia,M.L.Brongersma,Surfaceplasmonpolaritonanaloguetoyoung’s double-slitexperiment,Nat.Nanotechnol.2(2007)426–429.

[56]P.Berini,I.DeLeon,Surfaceplasmon–polaritonamplifiersandlasers,Nat. Photon.6(2012)16–24.

[57]P.Anger,P.Bharadwaj,L.Novotny,Enhancementandquenchingof single-moleculefluorescence,Phys.Rev.Lett.96(2006)113002. [58]S.Kühn,U.Håkanson,L.Rogobete,V.Sandoghdar,Enhancementof

single-moleculefluorescenceusingagoldnanoparticleasanoptical nanoantenna,Phys.Rev.Lett.97(2006)017402.

[59]S.Lal,S.Link,N.J.Halas,Nano-opticsfromsensingtowaveguiding,Nat. Photon.1(2007)641–648.

[60]X.M.Qian,S.M.Nie,Single-moleculeandsingle-nanoparticleSERS:from fundamentalmechanismstobiomedicalapplications,Chem.Soc.Rev.37 (2008)912–920.

[61]A.Kinkhabwala,Z.Yu,S.Fan,Y.Avlasevich,K.Müllen,W.E.Moerner,Large single-moleculefluorescenceenhancementsproducedbyabowtie nanoantenna,Nat.Photon.3(2009)654–657.

[62]P.Zijlstra,P.M.Paulo,M.Orrit,Opticaldetectionofsinglenon-absorbing moleculesusingthesurfaceplasmonresonanceofagoldnanorod,Nat. Nanotechnol.7(2012)379–382.

[63]D.Punj,M.Mivelle,S.B.Moparthi,T.S.vanZanten,H.Rigneault,N.F.van Hulst,M.F.García-Parajó,JérômeWenger,Aplasmonic‘antenna-in-box’ platformforenhancedsingle-moleculeanalysisatmicromolar concentrations,Nat.Nanotechnol.8(2013)512–516.

[64]M.D.Sonntag,J.M.Klingsporn,A.B.Zrimsek,B.Sharma,L.K.Ruvunaa,R.P. VanDuyne,Molecularplasmonicsfornanoscalespectroscopy,Chem.Soc. Rev.43(2014)1230–1247.

[65]N.Fang,H.Lee,C.Sun,X.Zhang,Sub-diffraction-limitedopticalimaging withasilversuperlens,Science308(2005)534–537.

[66]Z.W.Liu,H.Lee,Y.Xiong,C.Sun,X.Zhang,Far-fieldopticalhyperlens magnifyingsub-diffraction-limitedobjects,Science315(2007)1686. [67]X.Zhang,Z.Liu,Superlensestoovercomethediffractionlimit,Nat.Mater.7

(2008)435–441.

[68]S.Kawata,A.Ono,P.Verma,Subwavelengthcolourimagingwithametallic nanolens,Nat.Photon.2(2008)438–442.

[69]S.Kawata,Y.Inouye,P.Verma,Plasmonicsfornear-fieldnano-imagingand superlensing,Nat.Photon.3(2009)388–394.

[70]P.Li,T.Wang,H.B ¨ockmann,T.Taubner,Graphene-enhancedInfrared near-fieldmicroscopy,NanoLett.14(2014)4400–4405.

[71]S.Pillai,K.R.Catchpole,T.Trupke,M.A.Green,Surfaceplasmonenhanced siliconsolarcells,J.Appl.Phys.101(2007)093105.

[72]K.R.Catchpole,A.Polman,Plasmonicsolarcells,Opt.Express16(2008) 21793–21800.

[73]H.A.Atwater,A.Polman,Plasmonicsforimprovedphotovoltaicdevices,Nat. Mater.9(2010)205–213.

[74]C.Cesar,Plasmon-inducedhot-electrongenerationat

nanoparticle/metal-oxideinterfacesforphotovoltaicandphotocatalytic devices,Nat.Photon.8(2014)95–103.

(12)

[75]I.Thomann,B.A.Pinaud,Z.Chen,B.M.Clemens,T.F.Jaramillo,M.L. Brongersma,Plasmonenhancedsolar-to-fuelenergyconversion,NanoLett. 11(2011)3440–3446.

[76]J.L.Wu,F.C.Chen,Y.S.Hsiao,F.C.Chien,P.L.Chen,C.H.Kuo,M.H.Huang,C.S. Hsu,Surfaceplasmoniceffectsofmetallicnanoparticlesontheperformance ofpolymerbulkheterojunctionsolarcells,ACSNano5(2011)959–967. [77]S.C.Kim,J.H.Jin,Y.J.Kim,I.Y.Park,Y.S.Kim,S.W.Kim,High-harmonic

generationbyresonantplasmonfieldenhancement,Nature453(2008) 757–760.

[78]J.Renger,R.Quidant,N.VanHulst,L.Novotny,Surface-enhancednonlinear four-wavemixing,Phys.Rev.Lett.104(2010)046803.

[79]M.Kauranen,A.V.Zayats,Nonlinearplasmonics,Nat.Photon.6(2012) 737–748.

[80]S.M.Chen,G.X.Li,F.Zeuner,W.H.Wong,E.Y.B.Pun,T.Zentgraf,K.W.Cheah, S.Zhang,Symmetry-selectivethird-harmonicgenerationfromplasmonic metacrystals,Phys.Rev.Lett.113(2014)033901.

[81]K.O’Brien,H.Suchowski,J.Rho,A.Salandrino,B.Kante,X.Yin,X.Zhang, Predictingnonlinearpropertiesofmetamaterialsfromthelinearresponse, Nat.Mater.14(2015)379–383.

[82]M.Celebrano,X.F.Wu,M.Baselli,S.Großmann,P.Biagioni,A.Locatelli,C.De Angelis,G.Cerullo,R.Osellame,B.Hecht,L.Duò,F.Ciccacci,M.Finazzi, Modematchinginmultiresonantplasmonicnanoantennasforenhanced secondharmonicgeneration,Nat.Nanotechnol.10(2015)412–417. [83]L.Tang,S.E.Kocabas,S.Latif,A.K.Okyay,D.S.Ly-Gagnon,K.C.Saraswat,

D.A.B.Miller,Nanometre-scalegermaniumphotodetectorenhancedbya near-infrareddipoleantenna,Nat.Photon.2(2008)226–229.

[84]J.A.Dionne,K.Diest,L.A.Sweatlock,H.A.Atwater,PlasMOStor:a metal–oxide–Sifieldeffectplasmonicmodulator,NanoLett.9(2009) 897–902.

[85]D.R.Ward,F.Hüser,F.Pauly,J.C.Cuevas,D.Natelson,Opticalrectification andfieldenhancementinaplasmonicnanogap,Nat.Nanotechnol.5(2010) 732–736.

[86]W.Cai,A.P.Vasudev,M.L.Brongersma,Electricallycontrollednonlinear generationoflightwithplasmonics,Science333(2010)1720–1723. [87]M.W.Knight,H.Sobhani,P.Nordlander,N.J.Halas,Photodetectionwith

activeopticalantennas,Science332(2011)702–704.

[88]H.X.Xu,E.J.Bjerneld,M.Kall,L.Borjesson,Spectroscopyofsingle hemoglobinmoleculesbysurfaceenhancedRamanscattering,Phys.Rev. Lett.83(1999)4357.

[89]C.Sönnichsen,B.M.Reinhard,J.Liphardt,A.P.Alivisatos,Amolecularruler basedonplasmoncouplingofsinglegoldandsilvernanoparticles,Nat. Biotechnol.23(2005)741–745.

[90]C.E.Talley,J.B.Jackson,C.Oubre,N.K.Grady,C.W.Hollars,S.M.Lane,T.R. Huser,P.Nordlander,N.J.Halas,Surface-enhancedRamanscatteringfrom individualAunanoparticlesandnanoparticledimersubstrates,NanoLett.5 (2005)1569–1574.

[91]D.R.Ward,N.K.Grady,C.S.Levin,N.J.Halas,Y.Wu,P.Nordlander,D. Natelson,Electromigratednanoscalegapsforsurface-enhancedRaman spectroscopy,NanoLett.7(2007)1396–1400.

[92]P.K.Jain,W.Huang,M.A.El-Sayed,Ontheuniversalscalingbehaviorofthe distancedecayofplasmoncouplinginmetalnanoparticlepairs:aplasmon rulerequation,NanoLett.7(2007)2080–2088.

[93]M.Danckwerts,L.Novotny,Opticalfrequencymixingatcoupledgold nanoparticles,Phys.Rev.Lett.98(2007)026104.

[94]M.W.Chu,V.Myroshnychenko,C.H.Chen,J.P.Deng,C.Y.Mou,F.J.Garcíade Abajo,Probingbrightanddarksurface-plasmonmodesinindividualand couplednoblemetalnanoparticlesusinganelectronbeam,NanoLett.9 (2009)399–404.

[95]A.M.Funston,C.Novo,T.J.Davis,P.Mulvaney,Plasmoncouplingofgold nanorodsatshortdistancesandindifferentgeometries,NanoLett.9(2009) 1651–1658.

[96]S.S.A ´cimovi ´c,M.P.Kreuzer,M.U.González,R.Quidant,Plasmonnear-field couplinginmetaldimersasasteptowardsingle-moleculesensing,ACS Nano3(2009)1231–1237.

[97]A.L.Koh,K.Bao,I.Khan,W.E.Smith,G.Kothleitner,P.Nordlander,S.A. Maier,D.W.McComb,Electronenergy-lossspectroscopy(EELS)ofsurface plasmonsinsinglesilvernanoparticlesanddimers:influenceofbeam damageandmappingofdarkmodes,ACSNano3(2009)3015–3022. [98]F.M.Huang,J.J.Baumberg,Activelytunedplasmonsonelastomerically

drivenaunanoparticledimers,NanoLett.10(2010)1787–1792.

[99]K.L.Wustholz,A.I.Henry,J.M.McMahon,R.G.Freeman,N.Valley,M.E.Piotti, M.J.Natan,G.C.Schatz,R.P.VanDuyne,Structure-activityrelationshipsin goldnanoparticledimersandtrimersforsurface-enhancedRaman spectroscopy,J.Am.Chem.Soc.132(2010)10903–10910.

[100]N.J.Halas,S.Lal,W.S.Chang,S.Link,P.Nordlander,Plasmonsinstrongly coupledmetallicnanostructures,Chem.Rev.111(2011)3913–3961. [101]J.M.Romo-Herrera,R.A.Alvarez-Puebla,LuisM.Liz-Marzán,Controlled

assemblyofplasmoniccolloidalnanoparticleclusters,Nanoscale3(2011) 1304–1315.

[102]D.Punj,R.Regmi,A.Devilez,R.Plauchu,S.B.Moparthi,B.Stout,N.Bonod,H. Rigneault,J.Wenger,Self-assemblednanoparticledimerantennasfor plasmonic-enhancedsingle-moleculefluorescencedetectionatmicromolar concentrations,ACSPhotonics2(2015)1099–1107.

[103]J.B.Lassiter,J.Aizpurua,L.I.Hernandez,D.W.Brandl,I.Romero,S.Lal,J.H. Hafner,P.Nordlander,N.J.Halas,Closeencountersbetweentwonanoshells, NanoLett.8(2008)1212–1218.

[104] J.Zuloaga,E.Prodan,P.Nordlander,Quantumdescriptionoftheplasmon resonancesofananoparticledimer,NanoLett.9(2009)887–891. [105] O.Pérez-González,N.Zabala,A.G.Borisov,N.J.Halas,P.Nordlander,J.

Aizpurua,Opticalspectroscopyofconductivejunctionsinplasmonic cavities,NanoLett.10(2010)3090–3095.

[106] R.Esteban,A.G.Borisov,P.Nordlander,J.Aizpurua,Bridgingquantumand classicalplasmonicswithaquantum-correctedmodel,Nat.Commun.3 (2012)825.

[107] D.C.Marinica,A.K.Kazansky,P.Nordlander,J.Aizpurua,A.G.Borisov, Quantumplasmonics:nonlineareffectsinthefieldenhancementofa plasmonicnanoparticledimer,NanoLett.12(2012)1333–1339. [108] L.Wu,H.Duan,P.Bai,M.Bosman,J.K.W.Yang,E.Li,Fowler–Nordheim

tunnelinginducedchargetransferplasmonsbetweennearlytouching nanoparticles,ACSNano7(2013)707–716.

[109] R.Esteban,G.Aguirregabiria,A.G.Borisov,Y.M.Wang,P.Nordlander,G.W. Bryant,J.Aizpurua,Themorphologyofnarrowgapsmodifiestheplasmonic response,ACSPhotonics2(2015)295–305.

[110] R.Esteban,A.Zugarramurdi,P.Zhang,P.Nordlander,F.J.Garcia-Vidal,A.G. Borisov,J.Aizpurua,Aclassicaltreatmentofopticaltunnelinginplasmonic gaps:extendingthequantumcorrectedmodeltopracticalsituations, FaradayDiscuss.178(2015)151–183.

[111] F.Wen,Y.Zhang,S.Gottheim,N.S.King,Y.Zhang,P.Nordlander,N.J.Halas, Chargetransferplasmons:opticalfrequencyconductancesandtunable infraredresonances,ACSNano9(2015)6428–6435.

[112] U.Hohenester,Quantumcorrectedmodelforplasmonicnanoparticles:a boundaryelementmethodimplementation,Phys.Rev.B91(2015)205436. [113] J.G.Simmons,Generalizedformulafortheelectrictunneleffectbetween

similarelectrodesseparatedbyathininsulatingfilm,J.Appl.Phys.34 (1963)1793–1803.

[114] H.B.Akkerman,B.deBoer,Electricalconductionthroughsinglemolecules andself-assembledmonolayers,J.Phys.Condens.Matter20(2008)013001. [115] L.Lafferentz,F.Ample,H.Yu,S.Hecht,C.Joachim,L.Grill,Conductanceofa

singleconjugatedpolymerasacontinuousfunctionofitslength,Science 323(2009)1193–1197.

[116] L.Sepunaru,I.Pecht,M.Sheves,D.Cahen,Solid-stateelectrontransport acrossazurin:fromatemperature-independenttoatemperature-activated mechanism,J.Am.Chem.Soc.133(2011)2421–2423.

[117] H.Yan,A.J.Bergren,R.L.McCreery,M.L.DellaRocca,P.Martin,P.Lafarge,J.C. Lacroix,Activationlesschargetransportacross4.5–22nminmolecular electronicjunctions,Proc.Nat.Acad.Sci.110(2013)5326–5330.

[118] N.Amdursky,D.Rchak,L.Sepunaru,I.Pecht,M.Sheves,D.Cahen,Electronic transportviaproteins,Adv.Mater.26(2014)7142–7161.

[119] K.S.Kumar,R.R.Pasula,S.Lim,C.A.Nijhuis,Long-rangetunnelingprocesses acrossferritin-basedjunctions,Adv.Mater.28(2016)1824–1830. [120] C.A.Nijhuis,W.F.Reus,J.R.Barber,G.M.Whitesides,Comparisonof

SAM-basedjunctionswithGa2O3/EGaIntopelectrodestootherlarge-area

tunnelingjunctions,J.Phys.Chem.C116(2012)14139–14150.

[121] A.V.Akimov,A.Mukherjee,C.L.Yu,D.E.Chang,A.S.Zibrov,P.R.Hemmer,H. Park,M.D.Lukin,Generationofsingleopticalplasmonsinmetallic nanowirescoupledtoquantumdots,Nature450(2007)402–406. [122] R.Kolesov,B.Grotz,G.Balasubramanian,R.J.Stöhr,A.A.L.Nicolet,P.R.

Hemmer,F.Jelezko,J.Wrachtrup,Wave-particledualityofsinglesurface plasmonpolaritons,Nat.Phys.5(2009)470–474.

[123] R.W.Heeres,L.P.Kouwenhoven,V.Zwiller,Quantuminterferencein plasmoniccircuits,Nat.Nanotechnol.8(2013)719–722.

[124] M.S.Tame,K.R.McEnery,S.K.Özdemir,J.Lee,S.A.Maier,M.S.Kim,Quantum plasmonics,Nat.Phys.9(2013)329–340.

[125] J.S.Fakonas,H.Lee,Y.A.Kelaita,H.A.Atwater,Two-plasmonquantum interference,Nat.Photon.8(2014)317–320.

[126] P.Nordlander,C.Oubre,E.Prodan,K.Li,M.I.Stockman,Plasmon hybridizationinnanoparticledimers,NanoLett.4(2004)899–903. [127] I.Romero,J.Aizpurua,G.W.Bryant,F.J.GarcíadeAbajo,Plasmonsinnearly

touchingmetallicnanoparticles:singularresponseinthelimitoftouching dimers,Opt.Express14(2006)9988–9999.

[128] F.J.GarcíadeAbajo,Nonlocaleffectsintheplasmonsofstronglyinteracting nanoparticles,dimers,andwaveguides,J.Phys.Chem.C112(2008) 17983–17987.

[129] C.David,F.J.GarcíadeAbajo,Spatialnonlocalityintheopticalresponseof metalnanoparticles,J.Phys.Chem.C115(2011)19470–19475. [130] C.Ciraci,R.T.Hill,Y.Urzhumov,A.I.Fernandez-Dominguez,S.A.Maier,J.B.

Pendry,A.Chilkoti,D.R.Smith,Probingtheultimatelimitsofplasmonic enhancement,Science337(2012)1072–1074.

[131] T.V.Teperik,P.Nordlander,J.Aizpurua,A.G.Borisov,Robustsubnanometric plasmonrulerbyrescalingofthenonlocalopticalresponse,Phys.Rev.Lett. 110(2013)263901.

[132] Y.Luo,A.I.Fernandez-Dominguez,A.Wiener,S.A.Maier,J.B.Pendry,Surface plasmonsandnonlocality:asimplemodel,Phys.Rev.Lett.111(2013) 093901.

[133] N.A.Mortensen,S.Raza,M.Wubs,T.Sondergaard,S.I.Bozhevolnyi,A generalizednon-localopticalresponsetheoryforplasmonicnanostructures, Nat.Commun.5(2014)3809.

[134] C.David,F.J.GarcíadeAbajo,Surfaceplasmondependenceontheelectron densityprofileatmetalsurfaces,ACSNano8(2014)9558.

[135] G.Toscano,C.Rockstuhl,F.Evers,H.Xu,N.A.Mortensen,M.Wubs, Resonanceshiftsandspill-outeffectsinself-consistenthydrodynamic nanoplasmonics,Nat.Commun.6(2015)7132.

Referenties

GERELATEERDE DOCUMENTEN

Er zijn interviews gehouden met 19 sleutelfiguren rondom drie Natura 2000 gebieden. De interviews zijn gehouden aan de hand van een gestandaardiseerde vragenlijst. De

Bij het opstellen van de begroting 1993 is geen rekening gehouden met de subsidie die de Stichting Dr. Pieter de Koning Fonds aan de Werkgroep

Due to the edge-on geometry of the PDRs in L1630 with respect to the illuminating star system σ Ori (and the low dust optical depth), we expect that I FIR depends on the

In a previous work, we showed that the temperature dependent the conductivity of the In x Ga 1x N samples can be well explained by the 3D model that takes into

Because of the partial electrostatic transparency of graphene (22), the applied electric field penetrates through the graphene layer and tunes the energy levels of the SAM re- lative

Problemen bij matige en late prematuren persisteren of verdwijnen vaker dan bij op tijd geboren kinderen, terwijl problemen bij vroege prematuren vaker persisteren

The idea that some people may not experience reductions in well-being in response to low relationship satisfaction seems to contradict the notion that it is adaptive to experi-

The largest difference between the theories of lying and the statues of perjury found in the analysis of this research is that in order to charge anyone with perjury, there has to