• No results found

SUMMARY AND FUTURE DEVELOPMENT

In document POLYMER PHYSICS (pagina 126-139)

Jacques L. Zakin

2.6 SUMMARY AND FUTURE DEVELOPMENT

Turbulent drag reduction in homogeneous flows by polymer or surfactant additives is a striking phenomenon with both theoretical and practical implications. On the theoretical side, it remains a challenge to fully understand the drag reduction mech-anism and the interaction details between DRAs and the turbulent flow field. New methods, especially computational ones, have been developed to solve this problem, such as direct numerical simulations and stochastic simulations. On the application

116 POLYMER AND SURFACTANT DRAG REDUCTION IN TURBULENT FLOWS

side, polymer DRAs have been used routinely in crude oil and hydrocarbon product transport and oil production and operations. Surfactant DRAs have also been used successfully in small-scale DHC systems. Methods for improving polymer DRAs’

shear stability, such as by grafting or mixing different polymer species, are being developed. Also, novel surfactant DRAs are being synthesized and tested to satisfy the needs of targeted application areas.

REFERENCES

Agoston, G. A., Harte, W. H., Hottel, H. C., Klemm, W. A., Mysels, K. J., Pomeroy, H. H., and Thompson, J. M., Flow of gasoline thickened by napalm, J. Ind. Eng. Chem., 46, 1017–1019 (1954).

Aguilar, G., Gasljevic, K., and Matthys, E. F., On the relationship between heat transfer and drag reduction for polymer and surfactant solutions, HTD (Am. Soc. Mech. Eng.), 361(1), 139–146 (1998).

Aguilar, G., Gasljevic, K., and Matthys, E. F., Coupling between heat and momentum transfer mechanisms for drag-reducing polymer and surfactant solutions, J. Heat Transfer, 121, 796–

802 (1999).

Bello, J. B., Mueller, A. J., and Saez, A. E., Effect of intermolecular crosslinks on drag reduction by polymer solutions, Polym. Bull. (Berlin), 36, 111–118 (1996).

Beris, A. N., Dimitropoulos, C. D., Sureshkumar, R., and Handler, R. D., Direct numerical simulations of polymer-induced drag reduction in viscoelastic turbulent channel flows, in Proceedings of the 13th International Congress on Rheology, Cambridge, UK, Aug. 20–25, 2000, Vol. 2, pp. 190–192.

Berman, N. S., Drag reduction by polymers, Annu. Rev. Fluid Mech., 10, 47–64 (1978).

Berman, N. S., and George, W. K., Jr., Onset of drag reduction in dilute polymer solutions, Phys. Fluids, 17, 250–251 (1974).

Berner, C., and Scrivener, O., Drag reduction and structure of turbulence in dilute polymer solutions. in viscous flow drag reduction, in Progress in Astronautics and Aeronautics, Vol.

72, Hough, G. R., Ed., American Institute of Aeronautics and Astronautics, New York, 1980, pp. 290–299.

Bewersdorff, H.-W., Heterogeneous drag reduction in turbulent pipe flows, Rheol. Acta, 23, 522–543 (1984).

Bewersdorff, H.-W., Drag reduction in surfactant solutions, in Structure of Turbulence and Drag Reduction, Gyr, A., Ed., Springer-Verlag, Berlin, 1990, p. 293.

Bewersdorff, H.-W., Rheology of drag reducing surfactant solutions, Proc. ASME Fluids Eng.

Div., 237, 25–29 (1996).

Bewersdorff, H.-W., and Ohlendorf, D., The behavior of drag-reducing cationic surfactant solutions, Colloid Polym. Sci., 266, 941–953 (1988).

Bewersdorff, H.-W., Gyr, A., Hoyer, K., and Tsinober, A., An investigation of possible mecha-nisms of heterogeneous drag reduction in pipe and channel flows, Rheol. Acta, 32, 140–149 (1993).

Bijma, K., Rank, E., and Engberts, J. B. F. N., Effect of counterion structure on micellar growth of alkylpyridinium surfactants in aqueous solution, J. Colloid Interface Sci., 205, 245–256 (1998).

Broniarz-Press, L., Rozanski, J., and Rozanska, S., Drag reduction effect in pipe systems and liquid falling film flow, Rev. Chem. Eng., 23, 149–245 (2007).

Brostow, W., Drag reduction and mechanical degradation in polymer solutions in flow, Polymer, 24, 631–638 (1983).

Brostow, W., Ertepinar, H., and Singh, R. P., Flow of dilute polymer solutions: chain confor-mations and degradation of drag reducers, Macromolecules, 23, 5109–5118 (1990).

Brostow, W., Lobland, H. E. H., Reddy, T., Singh, R. P., and White, L., Lowering mechanical degradation of drag reducers in turbulent flow, J. Mater. Res., 22, 56–60 (2007).

Castro, W., and Squire, W., Effect of polymer additives on transition in pipe flow, Appl. Sci.

Res., 18, 81–96 (1967).

Cates, M. E., and Candau, S. J., Statics and dynamics of worm-like surfactant micelles, J. Phys.

Condens. Matter, 2, 6869–6892 (1990).

Chang, H. F. D., and Darby, R., Effect of shear degradation on the rheological properties of dilute drag-reducing polymer solutions, J. Rheol., 27, 77–88 (1983).

Chang, R. C., and Zakin, J. L., Drag reduction of non-ionic surfactant mixtures, in The Influence of Polymer Additives on Velocity and Temperature Fields. Symposium Universitat-GH, Essen, Germany, Gampert, B., Ed., Springer-Verlag, Berlin, 1985, pp. 61–70.

Chara, Z., Zakin, J. L., Severa, M., and Myska, J., Turbulence measurements of drag reducing surfactant systems, Exp. Fluids, 16, 36–41 (1993).

Chellamuthu, M., and Rothstein, J. P., Distinguishing between linear and branched worm-like micelle solutions using extensional rheology measurements, J. Rheol., 52, 865–884 (2008).

Choi, H. J., Kim, C. A., Sohn, J.-I., and Jhon, M. S., An exponential decay function for polymer degradation in turbulent drag reduction, Polym. Degrad. Stabil., 69, 341–346 (2000a).

Choi, H. J., Kim, C. A., Vinay, S. J., and Jhon, M. S., Effect of degradation on polymer-induced turbulent drag reduction, Book of Abstracts, 219th ACS National Meeting, San Francisco, Mar. 26–30, 2000, POLY-184, 2000b.

Choi, H. J., Lim, S. T., Lai, P.-Y., and Chan, C. K., Turbulent drag reduction and degradation of DNA, Phys. Rev. Lett., 89, 088302/1–088302/4 (2002).

Chou, L. C., Drag-reducing cationic surfactant solutions for district heating and cooling sys-tems, Ph.D. dissertation, Ohio State University, Columbus, 1991.

Chou, L. C., Christensen, R. N., and Zakin, J. L., Drag reducing additives for district cool-ing systems, in Proceedcool-ings of the International District Heatcool-ing and Coolcool-ing Conference, Virginia Beach, VA, 1989, pp. 352–367.

Chou, L. C., Christensen, R. N., and Zakin, J. L., The influence of chemical composition of quaternary ammonium salt cationic surfactants on their drag reducing effectiveness, in Drag Reduction in Fluid Flows, Sellin, R. H. J., and Moses, J. T., Eds., Ellis Horwood, Chichester, UK, 1989b, pp. 141–148.

Dembek, G., and Bewersdorff, H.-W., Short-time increase of sewer capacity by addition of water-soluble polymers, Das Wasser./Abwasser., 122, 392–395 (1981).

DeRoussel, P., Nonionic surfactant drag reduction, B.S. honors thesis, Department of Chemical Engineering, Ohio State University, Columbus, 1993.

Deshmukh, S. R., and Singh, R. P., Drag reduction effectiveness, shear stability and biodegra-dation resistance of guar gum-based graft copolymers, J. Appl. Polym. Sci., 33, 1963–1975 (1987).

118 POLYMER AND SURFACTANT DRAG REDUCTION IN TURBULENT FLOWS

Deshmukh, S. R., Sudhakar, K., and Singh, R. P., Drag-reduction efficiency, shear stabil-ity, and biodegradation resistance of carboxymethyl cellulose-based and starch-based graft copolymers, J. Appl. Polym. Sci., 43, 1091–1101 (1991).

Dimitropoulos, C. D., Sureshkumar, R., and Beris, A. N., Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters, J. Non-Newtonian Fluid Mech., 79, 433–468 (1998).

Dingilian, G., and Ruckenstein, E., Positive and negative deviations from additivity in drag reduction of binary dilute polymer solutions, AIChE J., 20, 1222–1224 (1974).

Drappier, J., Divoux, T., Amarouchene, Y., Bertrand, F., Rodts, S., Cadot, O., Meunier, J., and Bonn, D., Turbulent drag reduction by surfactants, Europhys. Lett., 74, 362–368 (2006).

Dujmovich, T., and Gallegos, A., Drag reducers improve throughput, cut costs, Offshore, 65, 1–4 (2005).

Dunlop, E. H., and Cox, L. R., Influence of molecular aggregates on drag reduction, Phys.

Fluids, 20, S203–S213 (1977).

Fabula, A. G., Fire-fighting benefits of polymeric friction reduction, J. Basic Engi., 93, 453–455 (1971).

Fabula, A. G., Lumley, J. L., and Taylor, W. D., Some interpretations of the Toms effect, in Modern Developments in the Mechanics Continua, Eskanazi, S., Ed., Academic Press, New York, 1966, p. 145.

Figueredo, R. C. R., and Sabadini, E., Firefighting foam stability: the effect of the drag reducer poly(ethylene) oxide, Colloids Surf. A, 215, 77–86 (2003).

Fullerton, G., and McComb, D., Investigation of isotropic non-Newtonian fluid turbulence using direct numerical simulation, in Turbulence and Shear Flow Phenomena 1, First International Symposium, Santa Barbara, CA, Sept. 12–15, 1999, pp. 633–638.

Gampert, B., and Rensch, A., Polymer concentration and near wall turbulence structure of channel flow of polymer solutions, Proc. ASME Fluids Eng. Div., 237, 129–136 (1996).

Gasljevic, K., An experimental investigation of drag reduction by surfactant solutions and of its implementation in hydronic systems (turbulent flow, heat transfer), Ph.D. disserta-tion, Department of Mechanical Engineering. University of California at Santa Barbara, 1995.

Gasljevic, K., Hoyer, K., and Matthys, E. F., Field test of a drag-reducing surfactant additive in the hydronic cooling system of a building: Phase 2. Heat transfer control, HTD (Am. Soc.

Mech. Eng.), 361(3), 255–263 (1998).

Gasljevic, K., Aguilar, G., and Matthys, E. F., On two distinct types of drag-reducing fluids, diameter scaling, and turbulent profiles, J. Non-Newtonian Fluid Mech., 96, 405–425 (2001).

Gasljevic, K., Hoyer, K., and Matthys, E. F., Temporary degradation and recovery of drag-reducing surfactant solutions, J. Rheol., 51, 645–667 (2007).

Ge, W., Studies on the nanostructure, rheology and drag reduction characteristics of drag reducing cationic surfactant solutions, Ph.D. dissertation, Ohio State University, Columbus, 2008.

Ge, W., Kesselman, E., Talmon, Y., Hart, D. J., and Zakin, J. L., Correlation of micellar nanostructure, drag reduction and rheological behavior of dilute CTAC–halogen benzoate counterion systems with different halogen substitutions and counterion to CATC ratio, J.

Non-Newtonian Fluid Mech., 154, 1–12 (2008).

Giles, W. B., and Pettit, W. T., Stability of dilute viscoelastic flows of polymers, Nature (London), 216, 470–472 (1967).

Gold, P. I., Amar, P. K., and Swaidan, B. E., Friction reduction degradation in dilute poly(ethylene oxide) solutions, J. Appl. Polym. Sci., 17, 333–350 (1973).

Golda, J., Hydraulic transport of coal in pipes with drag reducing additives, Chem. Eng.

Commun., 43, 53–67 (1986).

Graham, M. D., Drag reduction in turbulent flow of polymer solutions, in Rheology Reviews 2004. British Society of Rheology, Binding, D. M., and Walters, K., Eds., 143–170 (2004).

Gravsholt, S., Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents, J.

Colloid Interface Sci., 57, 575–577 (1976).

Gyr, A., and Bewersdorff, H.-W., Drag Reduction of Turbulent Flows by Additives, Kluwer Academic, Dordrecht, The Netherlands, 1995.

Hand, J. H., and Williams, M. C., Effect of secondary polymer structure on the drag-reducing phenomenon, J. Appl. Polym. Sci., 13, 2499–2503 (1969).

Hansen, R. J., and Little, R. C., Pipe diameter, molecular weight, and concentration effects on the onset of drag reduction, Chem. Eng. Prog. Symp. Ser., 67, 93–97 (1971).

Harwigsson, I., and Hellsten, M., Environmentally acceptable drag-reducing surfactants for district heating and cooling, J. Am. Oil Chem. Soc., 73, 921–928 (1996).

Hellsten, M., and Harwigsson, I., Use of a betaine surfactant together with an anionic surfactant as a drag-reducing agent, WO patent application, 96-EP950, 9628527, 1996.

Hellsten, M., and Oskarsson, H., A drag-reducing agent for use in injection water at oil recovery, WO patent application, 2003-SE1015, 2004007630, 2004.

Hellsten, M., Harwigsson, I., Blais, C., and Wollerstrand, J., Drag reduction by N-alkylbetaines:

a type of zwitterionic surfactants, Proc. ASME Fluids Eng. Div., 237, 37–46 (1996).

Hershey, H. C., Drag reduction in Newtonian polymer solutions, Ph.D. dissertation, University of Missouri–Rolla, 1965.

Hershey, H. C., and Zakin, J. L., The existence of two types of drag reduction in pipe flow of dilute polymer solutions, Ind. Eng. Chem. Fundam., 6, 381–387 (1967a).

Hershey, H. C., and Zakin, J. L., Molecular approach to predicting the onset of drag reduc-tion in the turbulent flow of dilute polymer solureduc-tions, Chem. Eng. Sci., 22, 1847–1857 (1967b).

Hershey, H. C., Kuo, J. T., and McMillan, M. L., Drag reduction of straight and branched chain aluminum disoaps, Ind. Eng. Chem. Prod. Res. Dev., 14, 192–199 (1975).

Hoffmann, H., Schwandner, B., Ulbricht, W., and Zana, R., The transition from isotropic micel-lar solutions to lamelmicel-lar phases, in Proceedings of the International School of Physics Enrico Fermi, Varenna on Lake Como, Degiorgio, V., and Corti, M., Eds., Elsevier, Amsterdam, 1985, pp. 261–280.

Hoffmann, H., Hofmann, S., and Illner, J. C., Phase behavior and properties of micellar solutions of mixed zwitterionic and ionic surfactants, Prog. Colloid Polym. Sci., 97, 103–109 (1994).

Horiuchi, T., Majima, T., Yoshii, T., and Tamura, T., Effect of chemical structure of quaternary ammonium salt-type cationic surfactants and temperature on aggregate size, Nippon Kagaku Kaishi, 7, 423–427 (2001a).

Horiuchi, T., Yoshii, T., Majima, T., Tamura, T., and Sugawara, H., Effect of alkyl chain length and number of 2-hydroxyethyl groups on drag reduction behaviors of quaternary ammonium salt-type cationic surfactant solutions, Nippon Kagaku Kaishi, 415–421 (2001b).

Hoyt, J. W., Friction reduction as an estimator of molecular weight, J. Polym. Sci. B, 4, 713–716 (1966).

120 POLYMER AND SURFACTANT DRAG REDUCTION IN TURBULENT FLOWS

Hoyt, J. W., Turbulent-flow interactions and drag reduction, AIP Conf. Proc., 137, 95–115 (1985).

Hoyt, J. W., Drag reduction. in Encyclopedia of Polymer Science and Engineering, Vol. 5, Kroschwitz, J., Mark, H. F., Bikales, N. M., Overberger, C. G., and Menges, G., Eds., Wiley, New York, 1986, 129–151.

Hu, Y., Wang, S. Q., and Jamieson, A. M., Kinetic studies of a shear thickening micellar solution, J. Colloid Interface Sci., 156, 31–37 (1993a).

Hu, Y., Wang, S. Q., and Jamieson, A. M., Rheological and flow birefringence studies of a shear-thickening complex fluid: a surfactant model system, J. Rheol., 37, 531–546 (1993b).

Hu, Y., Rajaram, C. V., Wang, S. Q., and Jamieson, A. M., Shear thickening behavior of a rheopectic micellar solution: salt effects, Langmuir, 10, 80–85 (1994).

Hunston, D. L., Effects of molecular weight distribution in drag reduction and shear degradation, J. Polym. Sci. Polym. Chem. Ed., 14, 713–727 (1976).

Hunston, D. L., and Reischman, M. M., The role of polydispersity in the mechanism of drag reduction, Phys. Fluids, 18, 1626–1629 (1975).

Hunston, D. L., and Zakin, J. L., Effect of molecular parameters on the flow rate dependence of drag reduction and similar phenomena, in Progress in Astronautics and Aeronautics, Vol. 72, Hough, S. R., Ed., American Institute of Aeronautics and Astronautics, New York, 1980a, pp. 373–385.

Hunston, D. L., and Zakin, J. L., Flow-assisted degradation in dilute polystyrene solutions, Polym. Eng. Sci., 20, 517–523 (1980b).

Israelachvili, J. N., Intermolecular and Surface Forces, Academic Press, San Diego, CA, 1991.

Kalashnikov, V. N., Degradation accompanying turbulent drag reduction by polymer additives, J. Non-Newtonian Fluid Mech., 103, 105–121 (2002).

Kameneva, M. V., Wu, Z. J., Uraysh, A., Repko, B., Litwak, K. N., Billiar, T. R., Fink, M. P., Simmons, R. L., Griffith, B. P., and Borovetz, H. S., Blood soluble drag-reducing polymers prevent lethality from hemorrhagic shock in acute animal experiments, Biorheology, 41, 53–64 (2004).

Kawaguchi, Y., Tawaraya, Y., Yabe, A., Hishida, K., and Maeda, M., Active control of turbulent drag reduction in surfactant solutions by wall heating, Proc. ASME Fluids Eng. Div., 237, 47–52 (1996).

Kawaguchi, Y., Yu, B., Wei, J., and Feng, Z., Rheological characterization of drag-reducing cationic surfactant solution: shear and elongational viscosities of dilute solutions, in Pro-ceedings of the 4th ASME/JSME Joint Fluids Engineering Conference, Honolulu, HI, 2003, pp. 721–728.

Kim, O. K., Little, R. C., and Ting, R. Y., Polymer structural effects in turbulent drag reduction, AIChE Symp. Ser., 69, 39–44 (1973).

Koehler, R. D., Raghavan, S. R., and Kaler, E. W., Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants, J. Phys. Chem. B, 104, 1, 1035–11044 (2000).

Kowalik, R. M., Drag reduction with interpolymer complexes, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 29, 447–448 (1988).

Kowalik, R. M., Duvdevani, I., Peiffer, D. G., Lundberg, R. D., Kitano, K., and Schulz, D. N., Enhanced drag reduction via interpolymer associations, J. Non-Newtonian Fluid Mech., 24, 1–10 (1987).

Kreke, P. J., Magid, L. J., and Gee, J. C.,1H and13C NMR studies of mixed counterion, cetyltrimethylammonium bromide/cetyltrimethylammonium dichlorobenzoate, surfactant solutions: the intercalation of aromatic counterions, Langmuir, 12, 699–705 (1996).

Kulicke, W. M., Koetter, M., and Graeger, H., Drag reduction phenomenon with special empha-sis on homogeneous polymer solutions, Adv. Polym. Sci., 89, 1–68 (1989).

Landahl, M. T., Drag reduction by polymer addition, in Proceedings of the 13th Interna-tional Congress on Theoretical and Applied Mechanics (ICTAM), Moscow (USSR), 21–26 August 1972, pp. 177–199, Becker, E., and Mikhailov, G. K., Eds., Springer-Verlag, Berlin (Germany), 1973.

Laughlin, R. G., The Aqueous Phase Behavior of Surfactants, Academic Press, Harcourt Brace

& Company, London, 1996.

Levinthal, C., and Davison, P. F., Degradation of deoxyribonucleic acid (DNA) under hydro-dynamic shearing forces, J. Mol. Biol., 3, 674–683 (1961).

Li, F., Li, G.-Z., and Chen, J.-B., Synergism in mixed zwitterionic-anionic surfactant solu-tions and the aggregation numbers of the mixed micelles, Colloids Surf. A, 145, 167–174 1998.

Liaw, G. C., Effect of polymer structure on drag reduction in nonpolar solvents, Ph.D. disser-tation, University of Missouri–Rolla, 1969.

Liaw, G.-C., Zakin, J. L., and Patterson, G. K., Effects of molecular characteristics of polymers on drag reduction, AIChE J., 17, 391–397 (1971).

Liberatore, M. W., Pollauf, E. J., and McHugh, A. J., Shear-induced structure formation in solutions of drag reducing polymers, J. Non-Newtonian Fluid Mech., 113, 193–208 (2003).

Liberatore, M. W., Baik, S., McHugh, A. J., and Hanratty, T. J., Turbulent drag reduction of polyacrylamide solutions: effect of degradation on molecular weight distribution, J. Non-Newtonian Fluid Mech., 123, 175–183 (2004).

Lin, Z., The effect of chemical structures of cationic surfactants or counterions on solution drag reduction effectiveness, rheology and micellar microstructures, Ph.D. dissertation, Ohio State University, Columbus, 2000.

Lin, Z., Chou, L. C., Lu, B., Zheng, Y., Davis, H. T., Scriven, L. E., Talmon, Y., and Zakin, J.

L., Experimental studies on drag reduction and rheology of mixed cationic surfactants with different alkyl chain lengths, Rheol. Acta, 39, 354–359 (2000).

Lin, Z., Lu, B., Zakin, J. L., Talmon, Y., Zheng, Y., Davis, H. T., and Scriven, L. E., Influence of surfactant concentration and counterion to surfactant ratio on rheology of wormlike micelles, J. Colloid Interface Sci., 239, 543–554 (2001).

Lin, Z., Mateo, A., Zheng, Y., Kesselman, E., Pancallo, E., Hart, D. J., Talmon, Y., Davis, H. T., Scriven, L. E., and Zakin, J. L., Comparison of drag reduction, rheology, microstructure and stress-induced precipitation of dilute cationic surfactant solutions with odd and even alkyl chains, Rheol. Acta, 41, 483–492 (2002).

Little, R. C., Hansen, R. J., Hunston, D. L., Kim, O.-K., Patterson, R. L., and Ting, R.

Y., Drag reduction phenomenon: observed characteristics, improved agents, and proposed mechanisms, Ind. Eng. Chem. Fundam., 14, 283–296 (1975).

Lodes, A., and Macho, V., The influence of poly(vinyl acetate) additive in water on turbulent velocity field and drag reduction, Exp. Fluids, 7, 383–387 (1989).

Lu, B., Characterization of drag reducing surfactant systems by rheology and flow birefringence measurements, Ph.D. dissertation, Ohio State University, Columbus, 1997.

122 POLYMER AND SURFACTANT DRAG REDUCTION IN TURBULENT FLOWS

Lu, B., Li, X., Zakin, J. L., and Talmon, Y., A non-viscoelastic drag reducing cationic surfactant system, J. Non-Newtonian Fluid Mech., 71, 59–72 (1997).

Lu, B., Li, X., Scriven, L. E., Davis, H. T., Talmon, Y., and Zakin, J. L., Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions, Langmuir, 14, 8–16 (1998a).

Lu, B., Zheng, Y., Davis, H. T., Scriven, L. E., Talmon, Y., and Zakin, J. L., Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems, Rheol. Acta, 37, 528–548 (1998b).

Lumley, J. L., Drag reduction by additives, Annu. Rev. Fluid Mech., 1, 367–384 (1969).

Malik, S., Shintre, S. N., and Mashelkar, R. A., Enhancing the shear stability in drag-reducing polymers through molecular associations, Macromolecules, 26, 55–59 (1993).

Manfield, P. D., Lawrence, C. J., and Hewitt, G. F., Drag reduction with additives in multiphase flow: a literature survey, Multiphase Sci. Technol., 11, 197–221 (1999).

Marques, C. M., Turner, M. S., and Cates, M. E., Relaxation mechanisms in worm-like micelles, J. Non-Cryst. Solids, 172–174, 1168–1172 (1994).

McCormick, C. L., Hester, R. D., Morgan, S. E., and Safieddine, A. M., Water-soluble copoly-mers: 31. Effects of molecular parameters, solvation, and polymer associations on drag reduction performance, Macromolecules, 23, 2132–2139 (1990).

McMillan, M. L., Drag reduction and light scattering studies of aluminum disoaps in toluene, Ph.D. dissertation. Ohio State University, Columbus, 1970.

McMillan, M. L., Hershey, H. C., and Baxter, R. A., Effects of aging, concentration, tempera-ture, method of preparation, and other variables on the drag reduction of aluminum disoaps in toluene, Chem. Eng. Prog. Symp. Ser., 67, 27–44 (1971).

Minoura, Y., Kasuya, T., Kawamura, S., and Nakano, A., Degradation of poly(ethylene oxide) by high-speed stirring, J. Polym. Sci., Polym. Phys. Ed., 5, 125–142 (1967).

Mitsoulis, E., Computational rheology with integral constitutive equations, Appl. Rheol., 9, 198–203 (1999).

Mostardi, R. A., Thomas, L. C., Greene, H. L., VanEssen, F., and Nokes, R. F., Suppression of atherosclerosis in rabbits using drag reducing polymers, Biorheology, 15, 1–14 (1978).

Motier, J. F., and Carreir, A. M., Recent studies on polymer drag reduction in commercial pipelines, in Drag Reduction in Fluid Flows: Techniques for Friction Control, Sellin, R., and Moses, R., Eds., Ellis Horwood, Chichester, UK, 1989, pp. 197–204.

Motier, J. F., Chou, L. C., and Kommareddi, N. S., Commercial drag reduction: past, present, and future, in 1996 ASME Fluids Engineering Division Summer Meeting, San Diego, CA, Coleman, H., Ed., ASME, New York, 1996, pp. 229–234.

Moussa, T., and Tiu, C., Factors affecting polymer degradation in turbulent pipe flow, Chem.

Eng. Sci., 49, 1681–1692 (1994).

Mumick, P. S., and McCormick, C. L., Hydrophobically associating water soluble copolymers for the study of drag reduction, ANTEC-1992, Proceedings of the Society of Plastic Engineers 50th Annual Technical Conference, Detroit, Michigan, USA, May 4–7, 1992, 50, 2095–2099 (1992).

Mysels, K. J., Flow of thickened fluids, U.S. patent 2,492,173, 1949.

Myska, J., and Chara, Z., New view of the surfactant drag reduction ability, in 11th Euro-pean Drag Reduction Working Meeting, Prague, Czech Republic, Chara, Z., Ed., Institute of Hydrodynamics, AS, Czech Republic, 1999.

Myˇska, J., Zakin, J. L., and Chara, Z., Viscoelasticity of a surfactant and its drag-reducing ability, Appl. Sci. Res., 55, 297–310 (1996).

Nadolink, R. H., and Haigh, W. W., Bibliography on skin friction reduction with polymers and other boundary-layer additives, Appl. Mech. Rev., 48, 351–460 (1995).

Nijs, L., New generation drag reducer, in 2nd International Pipeline Technology Conference, Ostend, Belgium, Denys, R., Ed., Elsevier, Amsterdam, 1995, pp. 143–149.

Nobuchika, K., Nakata, T., Sato, K., Yamagishi, F., Tomiyama, S., Inaba, H., Horibe, A., and Haruki, N., Drag reduction and heat transfer enhancement of water flow in a pipe using new surfactants for environmentally acceptable drag reducing additives, Proceedings of the Symposium on Energy Engineering in the 21st Century, Hong-Kong, Cheng, P., Ed., 2000, pp. 695–700.

Ohlendorf, D., Interthal, W., and Hoffmann, H., Surfactant systems for drag reduction: physic-ochemical properties and rheological behavior, Rheol. Acta, 25, 468–486 (1986).

Park, S. R., Suh, H. S., Moon, S. H., and Yoon, H. K., Pump and temperature effects on and flow characteristics of drag reducing surfactants, Proc. ASME Fluids Eng. Div., 237, 177–182 (1996).

Paterson, R. W., and Abernathy, F. H., Turbulent flow drag reduction and degradation with dilute polymer solutions, J. Fluid Mech., 43, 689–710 (1970).

Patterson, G. K., Hershey, H. C., Green, C. D., and Zakin, J. L., Effect of degradation by pumping on normal stresses in polyisobutylene solution, Trans. Soc. Rheol., 10, 489–500 (1966).

Patterson, G. K., Zakin, J. L., and Rodriguez, J. M., Drag reduction: polymer solutions, soap solutions, and solid particle suspensions in pipe flow, Ind. Eng. Chem., 61, 22–30 (1969).

Patterson, G. K., Shen, A.-M., and Chen, I.-M., Rates of shear degradation of drag reducing polymer, in 3rd International Conference on Drag Reduction, University of Bristol, Bristol, UK, Sellin, R., and Moses, R., Eds., 1984, pp. E4-1, E4-6.

Pollert, J., and Sellin, R. J., Mechanical degradation of drag reducing polymer and surfactant additives: a review, in Drag Reduction in Fluid Flows: Techniques for Friction Control, Sellin, R., and Moses, R., Eds., Ellis Horwood, Chichester, UK, 1989, pp. 179–188.

Pollert, J., Zakin, J. L., Myska, J., and Kratochvil, P., Use of friction reducing additives in district heating system field test at Kladno-Krocehlavy, Czech Republic, in Proceedings of the 85th International District Heating and Cooling Association, Seattle, 1994, pp. 141–

156.

Qi, Y., Investigation of relationships among microstructure, rheology, drag reduction and heat transfer of drag reducing surfactant solutions, Ph.D. dissertation, Ohio State University, Columbus, 2002.

Qi, Y., and Zakin, J. L., Chemical and rheological characterization of drag-reducing cationic surfactant systems, Ind. Eng. Chem. Res., 41, 6326–6336 (2002).

Rakitin, A. R., and Pack, G. R., Necessity of aromatic carboxylate anions to be planar to induce growth of cationic micelles, Langmuir, 21, 837–840 (2005).

Reddy, G. V., and Singh, R. P., Drag reduction effectiveness and shear stability of polymer–

polymer and polymer–fiber mixtures in recirculatory turbulent flow of water, Rheol. Acta, 24, 296–311 (1985).

Rehage, H., and Hoffmann, H., Viscoelastic surfactant solutions: model systems for rheological research, Mol. Phys., 74, 933–973 (1991).

124 POLYMER AND SURFACTANT DRAG REDUCTION IN TURBULENT FLOWS

Rehage, H., Hoffmann, H., and Wunderlich, I., A rheological switch: shear induced phase

Rehage, H., Hoffmann, H., and Wunderlich, I., A rheological switch: shear induced phase

In document POLYMER PHYSICS (pagina 126-139)