• No results found

In het kader van het vlina-project werden gemodelleerde deposities van stikstof en zwavel geconfronteerd met kritische depositieniveaus (kritische lasten) door toe-passing van de Simple Mass balance. Deze kritische las-ten geven een depositieniveau aan waarvoor een vooropgesteld beschermingscriterium voor een receptor van het bosecosysteem net gehaald wordt. Afhankelijk van het vooropgestelde beschermingscriterium of norm wordt een andere kritische last verkregen. In dit thema-nummer werden het aantal beschermingscriteria uitge-breid tot die m.b.t.:

• verzuring: voorkomen van verdere bodemverzuring en Al-toxiciteit bij haarwortels

• vermesting: verhinderen van nitraatcontanimatie in ondiep grondwater, verandering in kruidsamenstel-ling, verstoring voedingsbalans

Bij de verzuringseffecten blijkt de kritische last voor het voorkomen van bodemverzuring ongeveer dubbel zo streng (lees gevoelig) dan deze gerelateerd aan de haarwortelsterfte (Al-toxiciteit). Beperkte emissiereduc-ties die toereikend zijn om de effecten van de verzurende depositie op haarwortelsterfte te voorkomen, zijn aldus onvoldoende voor het behoud van buffercapaciteit (voorkomen verdere bodemverzuring). Daarnaast blijkt loofbos gevoeliger te zijn voor wortelschade dan naald-bos door de hogere opnamecapaciteit van basische kationen. Op basis van de huidige deposities is de kriti-sche last voor het criterium behoud van buffercapaciteit in alle receptorpunten in Vlaanderen overschreden; voor het criterium haarwortelschade wordt een over-schrijding geconstateerd in resp. 86 % (loofhout) en 95 % (naaldhout) van de receptorpunten.

Bij de vermestingseffecten worden, naast de verschillen in criterium, grote verschillen waargenomen tussen naaldhout en loofhout. De grotere gevoeligheid inzake vermestingseffecten bij naaldbomen wordt veroorzaakt door een geringe stikstofvastlegging, hogere verdamping van het geïntercepteerde regenwater en het voorkomen van naaldbos in Vlaanderen op goed gedraineerde voe-dingsarme zandgronden. Op basis van de huidige depo-sities wordt de kritische last voor het criterium behoud van de samenstelling van bosflora in alle receptor-punten overschreden, bij het criterium voor het beschermen van ondiep grondwater (25 ppm NO3) wordt een overschrijding geconstateerd in 99 % van de receptorpunten onder naaldhout en in 53 % onder loof-hout. Voor het criterium kritische stikstofgehalten in de bladeren worden de laagste overschrijdingen waargeno-men, nl. in 81 % van de receptorpunten onder naald-hout en slecht in 34 % van de gevallen onder loofnaald-hout. De strengere kritische last onder naaldhout leidt ook tot

meer overschrijdingen van de kritische lasten zodat maatregelen tot emissiereducties vooral eerst in loofbos tot opheffen van de effecten zal leiden. Gerichte omvor-ming van naaldbos tot loofbos in Vlaamse bosgebieden kan bijkomend, als effectgerichte maatregel, een belang-rijke bijdrage vormen om vermestingseffecten onge-daan te maken.

Voor de strengste eisen, zoals het behoud van de soorten-samenstelling in de kruidlaag en de buffercapaciteit moet voor een verbetering op korte termijn gezorgd worden door emissiereducties. Om een vermindering van de buffercapaciteit van bosbodems tegen te gaan, zijn drastische reducties van 2000 Zeq ha-1jaar-1

noodzakelijk. Gezien de dominantie van stikstof in de verzurende depositie kunnen deze het best door stik-stofreducties gerealiseerd worden. Daarnaast kan bos-beheer het bodemherstel op langere termijn bevorderen door de inbreng van bodemverplegende pionierboom-soorten (boswilg, berk, trilpopulier) of linde afhankelijk van de grootte van de verjongingsgroepen.

H o o f d s t u k 5 S u m m a r y

Forest condition monitoring in Belgium-Flanders start-ed in 1987 according to the guidelines of the un/ece icp Forests and the eu Scheme on the protection of Forests against Air Pollution. Atmospheric deposition is moni-tored since 1992 in 6 selected forest areas. Two perma-nent plots (0.25 ha) are located in coniferous (pines) and 4 in broad-leaved (beech, oak, ash) stands.

Total atmospheric deposition can be separated into wet deposition and dry deposition. Wet deposition consists of particles and gases which are extracted from the atmosphere by rain or snow. Dry deposition represents deposition due to turbulent exchange between atmos-phere and underlying surfaces. Because of the high aero-dynamic roughness of forests, the latter is strongly enhanced above forest, which results in elevated deposi-tions compared to low vegetation types. The precipita-tion reaches the forest floor as througfall and stemflow. At the level II sites throughfall and stemflow collectors have been installed to sample this deposition load to the forest floor. The chemical composition from this deposi-tion differs, however, from total deposideposi-tion. On the one hand, part of dry deposition can be taken up (e.g. ammo-nium) resulting in an underestimate of total deposition. On the other hand, it can overestimate total deposition because canopy leaching or exchange processes (e.g. base cations) enriche the incident precipitation. This study shows that ammonium and sulphate are the pre-vailing ions in the atmospheric deposition in Flanders. The prevalence of ammonium is responsible for the slight acidity of the precipitation. Using the model of Ulrich, canopy leaching of base cations is estimated to range from 0.6 till 3.1 kmolcha-1year-1in stands grow-ing on richer soil types. In the stands located on poor sandy soils the canopy leaching of cations is negligible (0.25 kmolcha-1year-1). Canopy leaching is mainly attributed by the canopy uptake of ammonium. On average, ammonium uptake in the stands during the monitoring period varies from 0.6 till 1.6 kmolcha-1 year-1(resp. 8 till 22 kg N ha-1year-1).

Total nitrogen deposition at the investigated sites varies between 34 and 46 kg N ha-1year-1, whereas sulphur deposition ranges between 18 and 32 kg S ha-1year-1. Total deposition of acidifying compounds varies between 3.8 and 5.5 kmolcha-1year-1and belongs to the highest classes in Europe. Taking into account that the atmospheric deposition is partly neutralised by base cations (12 till 24%), total potential acidifying deposi-tion ranges from 2.7 till 5.0 kmolcha-1year-1over the

period 1992-2002. Trend analysis of throughfall deposi-tion reveals a decrease in total nitrogen deposideposi-tion by 0.9 to 3.4 kg N ha-1year-1, which is mainly due to declin-ing ammonium deposition rates. Sulphur declines at an annual rate of 1.2 till 2.7 kg S ha-1and the potential acid-ifying deposition at an average rate of 0.23 kmolcha-1. The decrease in acidifying deposition is, however, partly offset by a concomitant decrease in base cations. Monitoring of gaseous air pollutants at the measuring tower site in Brasschaat reveals a declining trend for SO2 and a steady increase of ozone concentrations. The latter is especially due to increased background levels. For NOxno clear tendency can be discerned.

Annual average fluxes of SO2, calculated by the gradient method, follows declining trends between 1997 and 2002. This can be explained by the drop in SO2levels and raised canopy resistances (Rc).

Ozone deposition during the period 2000-2002 ranges between 64 and 103 kg ha-1yearly. At least 25 % of ozone deposition can be attributed to non-stomatal pathways. Analysis of ozone fluxes reveals that ozone concentrations and fluxes are decoupled. It is found that meteorological factors (rainfall, dew) might better account for stomatal and cuticular uptake of ozone, as ozone levels do. Rainfall or dew events can enhance ozone quenching at wet surfaces or improve the water supply which subsequently stimulates stomatal open-ing.

An average net ammonia flux of -90 ng m-2s-1(23.6 kg N ha-1year-1) is measured with corresponding concentra-tion ([NH3]) and deposition velocity of 4.1 ÷ 6.5 µg m-3

and 3.0 ÷ 4.6 cm s-1, respectively. Subdivision into cate-gories of day/nighttime, wind sector and canopy wet-ness helps explain fluxes and concentrations.

Variability in fluxes largely depends on canopy wetness and wind sector. Fluxes (F) are largest during dry condi-tions but when compared to the maximum flux permit-ted by turbulent transfer (Fmax), deposition efficiency (F/Fmax) is greater during wet events. The low F/Fmax ratios and substantial canopy resistance (Rc) are all indicative of the reduced capability for leaf surface to retain ammonia, especially at high ammonia levels. When all deposition fluxes of nitrogen compounds are totalised, the total dry deposition of nitrogen amounts to ca. 35 kg N ha-1year-1. This implies that contribution of dry deposition is more important than the wet depositon.

Critical loads (cl) are estimated for more than 1400 receptors supporting forest vegetation in northern Belgium using simple mass balance method. Necessary data are derived from an historical soil database, recent data from forest surveys, meteo data, level i and ii plots and regional studies concerning elemental sequestra-tion in woody biomass. Deposisequestra-tion estimates are per-formed with the ops-model, which has been validated with N and S deposition measured at 6 level ii plots over the period 1993-1998.

Magnitude of the critical loads depends on the criteria used for acceptable leaching of acidity and nitrogen. For eutrophying nitrogen, critical loads are related to pro-tection of shallow ground water for nitrate leaching (25 and 50 ppm NO3), maintaining balance nutrition (20 kg NO3leaching) or to conservation of floral compo-sition (1.4 kg NO3leaching). For acidifying nitrogen and sulphur, critical loads are related to criteria preventing root damage from Al toxicity (mol Ca/Al = 1) and further acidification of the soil profile (anc = 0).

The study reveals that demands to conserve species composition and prevent further soil acidification are the most stringent, followed by requirements to prevent nitrate leaching to contaminate ground water, misbal-ancing nutritional status and impairing root systems. Deciduous forest ecosystems are less vulnerable to nitrate leaching than coniferous sites. Calculations indicated that 53 % of deciduous plots received atmos-pheric nitrogen deposition in excess of their cl com-pared to 99% for coniferous sites. It is concluded that critical loads related to nitrate contamination of shallow ground water are less exceeded at deciduous sites. This is attributable to:

• higher critical loads due to

1. better dilution of nitrates in the soil water because of lower canopy evaporation;

2. higher immobilisation of N in woody biomass; 3. higher denitrification rates due to presence on

richer and wetter soils.

• higher depositions at coniferous sites due to more efficient canopy scavenging (> 20 %) and location nearby animal farms.

Emission reduction strategies must especially be aimed at reducing ammonia emissions being the main cause of acidification and eutrophication in Flemish forests.

64

ibw 2004•1

H o o f d s t u k 6 R e f e r e n t i e s

Aherne, J., Farrell, E.P., 2002. Deposition of sulphur, nitrogen and acidity in precipitation over Ireland: chemistry, spatial distribution and long-term trends. Atmospheric Environment 36, 1379-1389.

Alcock, M.R., Morton, A.J., 1985. Nutrient content of throughfall and stemflow in woodland recently esta-blished on heathland. Journal of Ecology 73, 625-632. Andersen, H.V., Hovmand, M., HummelshØj, P., Jensen, N.O., 1993. Measurements of ammonia flux to a spruce stand in Denmark. Atmospheric Environment 27A, 189-202.

Andersen, H.V., Hovmand, M., 1999. Review of dry depo-sition measurements of ammonia and nitric acid to forest. Forest Ecology and Management 114, 5-18. Andersen, H.V., Hovmand, M., HummelshØj, P., Jensen, N.O., 1999. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995. Atmospheric Environment 33, 1367-1383. Arp, P.A., Oja, T., Marsh, M., 1996. Calculating critical S and N current exceedances for upland forests in sout-hern Ontario, Cananda, Canadian Journal of Forest Research 26, 696-709.

Asche, A., 1988. Deposition, Interception und Pflanzenauswaschung im Kronenraum eines Eichen/Hainbuchen-Bestandes. Z. Pflanzenernähr. Bodenk.151, 103-107.

Bak, J., 2001. Uncertainties in large scale assessments of critical load exceedances. Water, Air and Soil Pollution: Focus 1: 265-280.

Barrett, K., Schaug, J., Bartonova, A., Semb, A., Hjellbrekke, A.G., Hanssen, J.E., 2000. A contribution from ccc to the reevaluation of the observed trends in sulphur and nitrogen in Europe 1978-1998. Input for further evaluation by the national laboratories and for use in the tfmm assessment work. Norwegian Institute for Air Research, Kjeller, Norway, 193pp.

Baumgardner, R.E., Lavery, T.F., Rogers, C.M., Isil, S.S., 2002. Estimates of the Atmospheric Deposition of Sulfur and Nitrogen Species: Clean Air Status and Trends Network, 1990-2000.

Berger, T.W., Glatzel, G., 1994. Deposition of atmosphe-ric consituents and its impact on nutrient budgets of oak forest (Quercus petraea and Quercus robur) in Lower Austria. Forest Ecology and Management 70, 183-193.

Berghmans, P., Bleux, N., Deams, J., Swaans, W., 2001. Metingen van ammoniumaërosol. Metingen van geoxi-deerd stikstof. 2001/mim/r90, vito, Juni 2001.

Block, J., 2001. Belastung des rheinland- pfälzischen Waldes durch die Ammoniak-Emission aus der Landwirtschaft. Forst und Holz 57, 10-15.

Bosveld, F.C., 1991. Turbulent Exchange Coefficients over a Douglas Fir Forest. Final report Dutch Priority Programme on Acidification, project 190.1 Royal Netherlands Meteorological Institute (knmi), De Bilt. Bredemeier, M., 1988. Forest canopy transformation of atmospheric deposition. Water, Air and Soil Pollution 40, 121-138.

Brown, A.H.F., Iles, M.A., 1991. Water chemistry profiles under four tree species at Gisburn, nw England. Forestry 64, 169-187.

Bussche B., 1998. Opmaken van een nutriëntenbudget in het proefbos Aelmoeseneie. Afstudeerwerk, Universiteit Gent, 93 p.

Cape, J.N., Sheppard, L.J., Fowler, D., Harrison, A.F., Parkinson, J.A., Dao, P., Paterson, I.S., 1992. Contribution of canopy leaching to sulfate deposition in a Scots pine stand. Environmental Pollution 75, 229-236.

Cappellato, R., Peters, N.E., Ragsdale, H.L., 1992. Acidic atmospheric deposition and canopy interactions of adjacent deciduous and coniferous forests in the Georgia Piedmont. Canandian Journal of Forest Research 23, 1114-1124.

Carlisle, A., Brown H.F., White E.J., 1966. The organic matter and nutrient elements in the precipitation bene-ath a sessile oak (Quercus petraea) canopy. Journal of Ecology 54, 87-98.

Cermak, J., Riguzzi, F., Ceulemans, R., 1998. Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry. Annales des Sciences Forestières 55 (1-2): 63-88.

Craenen, H., Van Ranst, E., Groenemans, R., Tack, F.M.G., Verloo, M.G., 1996. Berekening en kartering van de kritische lasten voor Vlaanderen. rg, 33pp.

Cronan, G.S., Reiners, W.A., 1983. Canopy processing of acid precipitation by coniferous and hardwood forest in New England. Oecologia 59, 216-223.

Dämmgen, U. Zimmerling, R., 2002. Vertical Fluxes of Air-Borne Acidifying and Eutrophying Species in the

Schorfheide Nature Reserve in Brandenburg, Germany. Journal of Applied Botany 76, 190-202.

De Lannoy, G., Cabus, P., Van Hoydonck, G., 2002. Modellering van de impact van vegetatie (heide, loofbos, naaldbos) van infiltratiegebieden op de waterkwaliteit in stroombekkens. vlina 9907. Eindverslag.

De Leeuw, F.A.M. De Paus T.A., 2001. Exceedance of ec ozone treshold values in Euorpe in 1997. Water, Air and Soil Pollution 128, 255-281.

De Ridder, K., Mensink, C., 2001. Validatie en calibratie van het OPS model. In: Neirynck J., de Ridder K.,

Langouche D., Wiedeman T., Kowalski, A., Ceulemans R., Mensink C., Roskams P. en van Ranst E. Verzuring en ver-mestinggevoeligheid van Vlaamse bosgebieden met gemodelleerde depositiefluksen. Eindverslag van project

vlina 98/01, studie uitgevoerd voor rekening van de Vlaamse Gemeenschap binnen het kader van Vlaams Impulsprogramma Natuurontwikkeling in opdracht van de Vlaamse minister bevoegd voor natuurbehoud, 44-112. De Ridder, K., Neirynck, J., Mensink, C., 2004. Paramete-rising forest edge deposition using effective roughness length. Agricultural and Forest Meteorology, 123, 1-11. De Schrijver, A., Lust, N., 1999. Deelaspecten van de intensieve monitoring van het bosecosysteem in het Vlaamse Gewest. Laboratorium voor Bosbouw, Universiteit Gent, rapport.

De Schrijver, A., Nachtergale, L., Lust, N., 2000. Deelaspecten van de intensieve monitoring van het bosecosysteem in het Vlaamse Gewest. Laboratorium voor Bosbouw, Universiteit Gent, rapport.

De Temmerman, L., Overloop, S., 1999. Vergelijkende metingen van concentraties en deposities van ammonia-kale stikstof op de meettoren van Brasschaat. In: Mededelingen Instituut voor Bosbouw en Wildbeheer 1999/1: 89-101.

De Vries, W., Reinds, G.J., Klap, J., van Leeuwen, E., Erisman, J.W., 1997. Critical thresholds for sulphur and nitrogen compounds and ozone. In: Müller-Edzards, C., de Vries, W., Erisman, J.W. (eds.), Ten years of monito-ring forest condition in Europe. un/ece.

De Vries, W., Reinds, G.J., van der Salm, C., Draaijers, G.P.J., Bleeker, A., Erisman, J.W., Auée, J., Gundersen, P., Kristensen, H.L., van Dobben, H, de Zwart, D, Derome, J., Voogd, J.C.H., Vel, E.M., 2001. Intensive Monitoring of Forest Ecosystems in Europe. Technical Report 2000. Forest Intensive Monitoring Coordinating Institute, 2001, 177 pp.

Derwent, R.G., Jenkin, M.E., Saunders, S.M., Pilling, M.J., Simmonds, P.G., Passant, N.R., Dollard, G.J., Dumitrean,

P., Kent, A., 2003. Photochemical ozone formation in north west Europe and its control. Atmospheric Environment 37, 1983-1991.

De Vries, W., Reinds, G.J., van Kerkvoorde, M.S., Hendriks, C.M.A., Leeters, E.E.J.M., Cross, C.P., Voogd, J.C.H., Vel, E.M., 2000. Intensive Monitoring of Forest Ecosystems in Europe. Technical Report 2000. Forest Intensive Monitoring Coordinating Institute, 2000, 197 pp. De Vries, W., Reinds, G.J., van der Salm, C., Draaijers, G.P.J., Bleeker, A., Erisman, J.W., Auée, J., Gundersen, P., Kristensen, H.L., van Dobben, H., de Zwart, D., Derome, J., Voogd, J.C.H., Vel, E.M., 2001. Intensive Monitoring of Forest Ecosystems in Europe. Technical Report 2001. Forest Intensive Monitoring Coordinating Institute, 2000, 177 pp.

De Wit, H., Mulder, J., Nygaard, P.H., Aamlid, D., Huse, M., Kortnes, E., Wollebæk, G., Brean, R., 2001.

Aluminium: the need for a re-evaluation of its toxicity and solubility in mature forest stands. Water, Air and Soil Pollution, Focus 1: 103-118.

Draaijers, G.P.J., Erisman, J.W., 1995. A canopy budget model to assess atmospheric deposition from through-fall measurements. Water, Air and Soil Pollution 85: 2253-2258.

Draaijers, G.P.J., Van Leeuwen, E.P., Römer, de Jong, P.G.H., Erisman, J.W., 1997a. Base-cation deposition in Europe-Part ii. Acid neutralization capacity and contri-bution to forest nutrition. Atmospheric Environment 31, 4159-4168.

Draaijers, G.P.J., Erisman, J.W., Van Leeuwen, N.F.M., Römer, F.G., Te Winkel, B.H., Veltkamp, A.C., Vermeulen, A.T., Wyers, G.P., 1997b. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment 31, 387-397.

Duyzer, J.H., 1986. Factors affecting dry and wet deposi-tion. Cost 612 workshop: Definition of European Pollution Climates and their Perception by Terrestrial Ecosystems.20 pp.

Duyzer, J.H., Verhagen, H.L.M., Westrate, J.H., Bosveld, F.C., 1992. Measurement of the dry deposition flux of NH3onto coniferous forest. Environmental Pollution 75, 3-13.

Duyzer, J., Fowler, D., 1994. Modelling land atmosphere exchange of gaseous oxides of nitrogen in Europe. Tellus 46B, 353-372.

Dyer, A.J., Hicks, B.B., 1970. Flux-gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society 96, 715-721.

66

ibw

Erisman, J.W., 1994. Evaluation of a surface resistance parametrization of sulphur dioxide. Atmospheric Environment 28, 2583-2594.

Erisman, J.W., Van Pul, A., Wyers, P., 1994. Parametri-zation of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment 28, 2595-2607. Erisman, J.W., Draaijers, G.P.J., 1995. Atmospheric depo-sition in relation to acidification and eutrophication. Elsevier, Amsterdam, Nederland, 403 pp.

Erisman, J.W., Draaijers, G.P.J., Mennen, M.G., Hogenkamp, J.E.M., van Putten, E., Uiterwijk, W., Kemkers, E., Wiese, H., Duyzer, J.H. Otjes, R. Wyers, G.P., 1996. Towards development of a deposition monitoring network for air pollution of Europe. Deposition monito-ring over the Speulder forest; Report no. 722108014,

rivm, Bilthoven, The Netherlands. pp. 80 Eyckmans, K., Deutsch, F., Van Grieken, R., 2001. Metingen van ammoniak, salpeterzuur, salpeterigzuur en fijne aërosolen op meettoren ibw te Brasschaat juli, oktober, november 2000. uia, 45 pp.

fao, 1988. fao-unesco Soil Map of the World. Revised Legend. fa, Rome, 79pp.

Farmer, A.M., Bates, J.W., Bell, J.N., 1991. Seasonal variations in acidic pollutant inputs and their effects on the chemistry of stemflow, bark and epiphyte tissues in three oak woodlands in nw Britain. New Phytologist 118, 441-451.

Fiala, J., Rieder, M., Dvorakova, M., Livorova, H., 2001. Trends in the atmospheric and hydrological cycle of sulphur at catchments in the Czech Republic. Atmospheric Environment 35, 55-62.

Fottova, D., 2003. Trends in sulphur and nitrogen depo-sition fluxes in the Geomon network, Czech Republic, between 1994 and 2000. Water, Air and Soil Pollution 150, 73-87.

Fowler, D., Coyle, M., Pasimon, H.M., Ashmore, M.R., Bareham, S.A., Battarbee, R.W., Derwent, R.G., Erisman, J.W., Goodwin, J., Grennfelt, P., Hornung, M., Erwin, J., Jenkins, A., Metcalfe, S.E., Ormerod, S.J., Reynolds, B., Woodin, S., 2001a. Transboundary Air Pollution: Acidification, Eutrophication and Ground-Level Ozone in the uk. National Expert Group on Transboundary Air Pollution, ceh Edinburgh, 313 pp.

Fowler, D., Flechard, C., Cape, J.N., Storeton-West, R.L., Coyle, M., 2001b. Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air and Soil Pollution 130, 63-74.

Garland, J.A., 1978. Dry and wet removal of sulfur from the atmosphere. Atmospheric Environment 12, 349. Ganzeveld, L., Lelieveld, J., 1995. Dry deposition parame-terization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. Journal of geophysical research 100, 20999-21012. Gauger, Th., Köble, R., Anshelm, F., 1999. Kritische Luft-schadstoff-Konzentration und Eintragsraten sowie ihre Überschreitung für Wald- und Agrarökosysteme sowie naturnahe waldfreie Ökosysteme. Teil 2: Kartierung von Critical Levels. Endbericht zum Forschungsvorhaben FE-Nr 297 85 079 im Auftrag des Umwelsbundesamtes. Institut für Navigation. Universität Stuttgart, 65 S. Gehrmann, J., Henning, A., Fischer, U., Wolfgang, L., Spranger, T., 2001. Luftqualität und atmosphärische Stoffeinträge an Level ii-Dauerbeobachtungsflächen in Deutschland. Arbeitskreis B der Bund-Länder-Arbeits-gruppe Level ii. Bundesministerium für Verbracher-schutz, Ernährung und Landwirtschaft. 94 pp. Genouw, G., Neirynck, J., Roskams, P., 2003. Intensieve Monitoring van het bosecosysteem in het Vlaamse Gewest. Meetjaar 2002. Eindverslag 2003. pp. 40. Göransson, A., Eldhuset, E.D., 2001. Is the Bc/Al ratio in the soil solution a predictive tool for estmating forest damage? Water, Air and Soil Pollution Focus 1: 57-74. Hall, J., Reynolds, B., Langan, S., Hornung, M., Kennedy, F. Aherne, J., 2001a. Investigating the uncertainties in the simple mass balance equation for acidity critical loads for terrestrial ecosystems in the United Kingdom. Water, Air, and Soil Pollution Focus 1, 43-56

Hall, J., Reynolds, B., Aherne, J. Hornung, M., 2001b. The importance of selecting appropriate criteria for calcula-ting acidity critical loads for terrestrial ecosystems using the simple mass balance equation. Water, Air, and Soil Pollution 36, 29-41.

Hall, J., Broughton, R., Bull, K., Curtis, C., Fowler, D., Heywood, E., Hornung, M., Metcalfe, S., Reynolds, B., Ullyett, J., Whyatt, D., 2003. Status of uk Critical Loads and Exceedances. Part 2: Exceedances. Report to the Department of Environment, Transport and the Regions. detr/nerc Contract epg1/3/116.

Hansen, B., Nielsen, K.E., 1998. Comparison of acidic deposition to semi-natural ecosystems in Denmark-coastal heath, inland heath and oak wood. Atmospheric