• No results found

HOOFDSTUK 7: CONCLUSIES EN DISCUSSIE

7.5 IMPLICATIES VOOR VERDER ONDERZOEK

Op deze plaats wil ik een aantal suggesties doen langs welke wegen het onderzoek dat in dit proefschrift is beschreven, kan worden voortgezet.

Het gaat dan allereerst om verder onderzoek naar vakbeelden van leerlingen.

Daarbij kan, zoals in het in hoofdstuk 5 beschreven onderzoek is gebeurd, uitgegaan worden van de ontwikkeling van een rijk vakbeeld als leerresultaat.

(Scheikunde-) onderwijs dient een leerling in dat geval goed in staat te stellen een vakbeeld te ontwikkelen. De vraag is dan welke ontwerpeisen aan

dergelijk scheikundeonderwijs gesteld dienen te worden. Anderzijds is een vakbeeld ook op te vatten als een verzameling min of meer samenhangende opvattingen over wat een vak, in dit geval scheikunde, behelst die

gezamenlijk invloed hebben op de wijze waarop een leerling het vak leert. In die laatste benadering kan het vakbeeld van een leerling als een onderdeel van zijn persoonlijke leer- en actietheorie worden beschouwd. Daarvoor zou dan eerst meer onderzoek moeten gebeuren naar ‘kritische’ aspecten van

vakbeelden van leerlingen in relatie tot het leren van scheikunde. Overigens zijn beide benaderingen van het construct ook te verenigen. De ontwikkeling van een rijk vakbeeld kan immers gelijktijdig als zowel doel van

scheikundeonderwijs als middel tot het meer betekenisvol leren van scheikunde worden beschouwd.

Een tweede onderwerp uit dit proefschrift dat verder onderzoek vereist, is de wijze waarop in het scheikundeonderwijs omgegaan zou moeten worden met het micro/macro concept. In de eerder genoemde ontwikkeling van ‘nieuwe scheikunde’ zou aandacht moeten zijn voor dit kernconcept. Daarbij zou met name aandacht moeten zijn voor de wijze waarop leerlingen leren

heen-en-weer denken en voor de ontwikkeling van didactiek en curriculummaterialen die dat leren bevorderen en meer betekenisvol kunnen maken. In dit kader kan veel worden verwacht van het de lijn van onderzoek naar de wijze waarop structuur-eigenschaprelaties voor leerlingen betekenisvol kunnen worden geëxpliciteerd in scheikundeonderwijs. Daarbij gaan zij uit van module-ontwerpen waarin het leren micro-macro denken centraal staat.

Dit proefschrift werpt in hoofdstuk 6 ook de vraag op welke effecten met een meer omvangrijke en ingrijpende onderwijsinterventie kunnen worden bewerkstelligd. Is het mogelijk om de mate waarin leerlingen meer betekenisvolle leeractiviteiten ontplooien en de mate waarin zij een

competentiegerichte instelling hebben te beïnvloeden door een zorgvuldig herontwerp van de onderwijsomgeving? Ik noem op deze plaats een aantal zaken die daarbij mogelijk een rol zouden kunnen spelen. Ten eerste lijken metacognitieve opvattingen van leerlingen zich snel te stabiliseren. Uit onderzoek van Bakx (2001) bijvoorbeeld blijkt dat opvattingen van

leerlingen, zoals leerconcepties, voor een belangrijk deel samenhangen met relatief zeer stabiele persoonlijkheidskenmerken. Daaruit kan worden afgeleid dat het wellicht nodig is om al in een vroeg stadium leerlingen te helpen een meer competentiegerichte instelling te ontwikkelen.

Summary

Competence mindedness and learning chemistry:

About metacognitive beliefs, learning outcomes, and learning activities

Recent and ongoing curriculum innovations in Dutch secondary chemistry education have led to questions about which concepts should be central in the programme and which contexts should be used to embed these concepts into. Another important question is in the discussions about these

innovations is: how do students learn chemistry?

This thesis examines the relations between students’ metacognitive beliefs, their learning outcomes, and the learning activities they conduct in the domain of chemistry. In studying these relations, a useful framework is provided bij Novak’s educational theory on ‘meaningful learning’ as is described in chapter 2.

In chapter 3, the development of an instrument for assessing students’

metacognitive beliefs regarding chemistry is described. More specifically, this instrument, a questionnaire, consists of items that can be used to determine the nature of students’ epistemological beliefs, learning conceptions, and goal orientations concerning chemistry. Using this instrument, it was found that the students’ aforementioned metacognitive beliefs were highly interrelated.

By means of the data produced in this study, an improved version of the instrument was constructed. We used this version of the instrument in a follow-up study and identified a set of items to assess a student’s ‘competence mindedness’.

‘Competence mindedness’ is defined as the extent to which students are oriented towards coming to understand subject matter in the chemical domain. This orientation is for instance inferred from students’ beliefs about chemistry as a coherent body of knowledge and about chemistry learning as a

process in which knowledge is actively constructed. We describe a student’s score on this scale as the extent to which he is oriented towards developing chemical competence, or, in short, the student’s ‘competence mindedness’.

As an indicator of students’ chemical competence we used the so-called

‘macro-micro concept’. The macro-micro concept consists of the ability to use the macro perspective (focusing on chemical phenomena on a substance level) and micro perspective on chemistry (focusing on the structure and behavior of subatomic particles) interchangeably. Although the macro-micro concept is considered to be a central chemical competence by many experts in the field of chemistry education, the concept itself is not mentioned explicitely in any Dutch chemistry textbook used in secondary education.

Using the final version of the instrument described in chapter 3, relations between the competence mindedness of students and a central chemical competency were assessed in chapter 4.

Consequently, an explorative study was conducted in which a small number of chemistry teachers was questioned on the extent to which they paid attention to the macro-micro concept in their own teaching. Five out of nine teachers interviewed, held the opinion that the macro-micro concept should be a part of chemistry teaching and consequently dedicated time in class to this concept. The other teachers that were interviewed, did not mention the macro-micro concept as a central chemical concept in the interviews.

In another study, students’ use of the macro-micro concept when answering regular chemistry test questions, was examined. From this study, it can be concluded that there are large differences in the students’ use of this concept.

However, from answers given by the students involved, it can be concluded that they use the macro-micro concept.

Following from the last two studies mentioned, two more studies were conducted that focused on the use of the macro-micro concept by students.

In particular we were interested in the way students use this concept

differently than is to be expected from the sequencing of learning contents in chemistry textbooks. More specifically, we conducted two studies to

determine if students’ competence mindedness and the way they use the macro-micro concept (i.e. starting from the micro aspect or not) are related.

In the first, small-scale, study, we concluded that senior students that are more competence minded, more often take the micro aspect of chemistry as a starting point when relating the micro and macro aspects of chemistry.

In a follow-up study, a standardized instrument was used to assess students’

use of the macro-micro concept. This instrument made it possible to include a larger sample of students in the study. This study confirmed the results found in the small-scale study: more competence minded students were found to prefer relations between the macro and micro aspects of chemistry that started from the micro aspect.

Chapter 5 consists of several studies concerning students’ notions about how the chemical domain can be described: their chemical domain beliefs. The development of these notions are considered an important indicator of chemical competence. Relations between students’ competence mindedness and aspects of their chemical domain beliefs were examined through a

repertory test procedure. More specifically, the students involved in this study were asked to compare the subject of chemistry with several other subjects.

Thereby, data were gathered on constructs these students’ used to describe

the subject of chemistry and how they contrasted with the other subjects or resembled them.

In another study, relations between students’ chemical domain beliefs and the extent to which these students are competence minded were examined. The results show a number of relations between students’ competence

mindedness and selections of their chemical domain beliefs: in general, more competence minded students more often use concepts like ‘chemistry as a science’, ‘properties of substances’, and ‘chemical reactions’ to typify chemistry.

Having found indications that students’ competence mindedness regarding chemistry is related to their learning outcomes, the question arises how students’ competence mindedness can be enhanced. Moreover, relations between students’ competence mindedness and the learning strategies they deploy, have not been taken into consideration up to this point.

In chapter 6, a learning environment was redesigned in the form of a student study guide, that is used as a supplement to the chemistry textbook students were used working with. The main purpose of the study guide was to change the type of learning activities students use. The two quasi-experimental studies in which the study guide was used as an intervention, did not lead to significant changes in students’ learning activities. However, relations were found between students’ learning activities and the extent to which students were competence minded. We conclude therefore, that the learning strategies used by the students involved in the study are in particular a consequence of their metacognitive beliefs, i.e. their competence mindedness, and not of the learning environment concerned.

Literatuur

Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32, 665-683.

Ali, K. (1990). Instructiestrategieën voor het activeren van preconcepties. Helmond:

Wilbro.

Attenweiler, W. J. & Moore, D. (2006). Goal orientations: Two, three or more factors? Educational and Psychological Measurement, 66(2), 342-352.

Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston, Inc.

Ausubel, D. P., Novak, J. D. & Hanessian, H. (1978). Educational psychology: A cognitive view 2nd edition. New York: Holt, Rinehart and Winston.

Bakx, A. W. E. A. (2001). Acquisition, development and assessment of social-communicative competence. Wageningen: Ponsen & Looijen.

Bell, B. S. & Kozlowksi, S. W. J. (2002). Goal orientation and ability:

Interactive effects on self-efficacy, performance, and knowledge. Journal of Applied Psychology, 87 , 497-505.

Ben-Zvi, N., & Gai, R. (1994). Macro- and micro-chemical comprehension of real-world phenomena. Journal of Chemical Education, 71(9), 730-732.

Biemans, H. J. A. (1997). Fostering activation of prior knowledge and conceptual change.

Nijmegen: Katholieke Universiteit Nijmegen.

Boekaerts, M. & Simons, P. R. J. (1995). Leren en instructie: Psychologie van de leerling en het leerproces. Assen: Van Gorcum.

Bos, E.S., (1998). Competentie: Verheldering van een begrip. Heerlen: Open Universiteit Nederland.

Boschma, J. & Groen, I. (2006). Generatie Einstein - slimmer, sneller en socialer:

Communiceren met jongeren van de 21ste eeuw. Amsterdam: Pearson Prentice Hall.

Bretz, S. L. (2001). Novak’s theory of education: Human constructivism and meaningful learning. Journal of chemical education, 78(8), 1107-1117.

Brown, A. L. (1980). Metacognitive development and reading. In: R. J. Spiro, B. C. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension (pp. 453-481). Hillsdale: Erlbaum.

Buck, P. & Lenz, A. (1987). Een begripsinhoudelijke analyse van ‘stof’.

Tijdschrift voor Didactiek der β-wetenschappen, 5(1), 60-74.

Bulte, A. M. W., Carelsen, F. J., Davids, W., Morélis, J., Jansen-Ligthelm, C. D., Pilot, A., Velthorst, N. H. & De Vos, W. (2000). Nieuwe scheikunde:

Hoofdlijnennotitie over een voorstel tot een fundamentele herziening van het

scheikundeprogramma voor de bovenbouw van havo en vwo. Retrieved December 14, 2006, from

http://nieuwescheikunde.nl/mediatheek/00013/eenhoorndocument.p df.

Bulte, A. M. W., Carelsen, F. J., Davids, W., Morélis, J., Pilot, A., Velthorst, N.

H., & De Vos, W. (1999). Dilemma’s in de schoolscheikunde. NVOX, 6, 289-291.

Bulte, A.M.W., Klaassen, K., Westbroek, H. B., Stolk, M. J., Prins, G. T., Genseberger, R., De Jong, O., & Pilot, A. (2002). Modules for a new chemistry curriculum, research on a meaningful relation between contexts and concepts.

Paper presented at the International Symposium on Context-Based Science Curricula, Kiel, Germany.

Bulte, A. M. W., Westbroek, H. B., De Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063-1086.

Bruner, J. S. (1966). Toward a theory of instruction. Cambridge: Belkapp Press.

Byrnes, J. P. (1996). Cognitive development and learning in instructional contexts. Boston:

Allyn & Bacon.

Carver, C. S. & Scheier, M. F. (2000). Perspectives on personality, 4th Edition.

Needham Heights: Allyn & Bacon.

Chi, M. T. H., Slotta, J. D., & De Leeuw, N. (1994). From things to processes:

A theory of conceptual change for learning science concepts, Learning and Instruction, 4, 27-43.

Chin, C. & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37(2), 109-138.

Chittleborough, G. D. (2004). The role of teaching models and chemical representations in developing students’ mental models of chemical phenomena. Perth: Curtin University of Technology.

COLO, vereniging kenniscentra beroepsonderwijs bedrijfsleven (2002). Samen werken aan leren – Naar een competentiegerichte kwalificatiestructuur voor het

middelbaar beroepsonderwijs. Retrieved May 24, 2004, from

http://colo.nl/Kwalificatiestructuur/ontwikkelingsproject/Eindadvies/

Kwalificatiestructuur.pdf

COLO, vereniging kenniscentra beroepsonderwijs bedrijfsleven (2006).

Kwalificaties voor competentiegericht beroepsonderwijs: Kwalificaties ontwikkelen in een samenhangende structuur voor het middelbaar beroepsonderwijs. Retrieved May 31, 2006, from

http://colo.nl/publicatie/Kwalificaties%20voor%20competentiegericht

%20beroepsonderwijs.pdf

Commissie Modernisering Leerplan Scheikunde (1977). Leerplan scheikunde voor 3-vwo: Advies aan de minister van onderwijs en wetenschappen. Den Haag:

Staatsuitgeverij.

Commissie Vernieuwing Scheikunde Havo en Vwo (2003). Chemie tussen context en concept: Ontwerpen voor vernieuwing. Enschede: Stichting

Leerplanontwikkeling.

Daft, R. L. (1998). Organization theory and design. Cincinnati: South-Western College Publishing.

De Brabander, C. J. (1990). Stratificatie van kennis: de analyse van opvattingen onder docenten in het voortgezet onderwijs. Leiden: Rijksuniversiteit Leiden.

De Vos (1985). Moleculen tussen leefwereld en wetenschap. Tijdschrift voor Didactiek der β-wetenschappen, 3(3), 195-202.

De Vos, W. (2001). De toestand van de schoolchemie. Utrecht: Universiteit Utrecht.

De Vos, W. & Pilot, A. (2001). Acids and bases in layers: The stratal structure of an ancient topic. Journal of Chemical Education, 78(4), 494-499.

De Vos, W., Van Berkel, B., & Verdonk, A. H. (1991). A structure in school chemistry. Utrecht: Universiteit Utrecht.

De Vos, W. & Verdonk, A. H. (1990). Een vakstructuur van het schoolvak scheikunde. Tijdschrift voor Didactiek der β-wetenschappen, 8(1), 19-35.

De Vries, R. R. M. (2003). Procesgericht biologie-onderwijs: samen actief op weg naar constructief studeren. Eindhoven: Technische Universiteit Eindhoven.

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105-225.

Donahoe, J. W. & Palmer, D. C. (1994). Learning and complex behavior. Boston:

Allyn and Bacon.

Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.

Duda J. L., & Nicholls J. G. (1992) Dimensions of achievement motivation in schoolwork and sport. Journal of Educational Psychology, 84, 290-299.

Duit, R. & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671-688.

Dweck, C. (1989). Motivation. In: A. Lesgold & R. Glaser (Eds.), Foundations for a psychology of education (pp. 87-136). Hillsdale: Erlbaum.

Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95, 256-273.

Ebenezer, J. V. (1992). Making chemistry learning more meaningful. Journal of Chemical Education, 69, 464-509.

Edmundson, K. M. & Novak, J. D. (1993). The interplay of scientific epistemological views, learning strategies, and attitudes of college students. Journal of Research in Science Teaching, 30, 547-559.

Elby, A. (2001) Helping physics students learn about learning. American Journal of Physics (Physics Education Research Supplement), 69(7SUPP1).

Elby, A. & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554-567.

Entwistle, N. (1998) Improving teaching through research on student learning. In J. Forest (Ed.), University Teaching International Perspectives. New York: Garland Publishing.

Entwistle, N. J. & Ramsden, P. (1983). Understanding Student Learning. London:

Croom Helm.

Erduran, S. & Scerri, E. (2002). The nature of chemical knowledge and

chemical education. In: J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust,

& J. H. Van Driel. (Eds.), Chemical education: Towards research-based practice.

(pp. 7-27). Dordrecht: Kluwer Academic Publishers.

Ernest, P. (1999). Social constructivism as a philosophy of mathematics: radical constructivism rehabilitated? Retrieved December 21, 2006, from http://www.ex.ac.uk/~PErnest/soccon.htm.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading: Addison-Wesley.

Flavell, J. (1976). Metacognitive aspects of problem solving. In L. Resnick (Ed.), The Nature of Intelligence (pp. 231-236). Hillsdale: Erlbaum.

Francisco, J. S., Nakhleh, M. B., Nurrenbern, S. C., & Miller, M. L. (2002).

Assessing student understanding of general chemistry with concept mapping. Journal of Chemical Education, 79(2), 248-257.

Franken, P. W., Kabel-Van den Brand, M. A. W., Korver, & E. J. Reiding (2000). Chemie overal: scheikunde voor de derde klas havo/vwo 3 HV. Houten:

Educatieve Partners Nederland.

Frymier, A. B. & Shulman, G. M. (1994). Development and testing of the learner empowerment instrument in a communication based model. Paper presented at the annual meeting of the Speech Communication Association, New Orleans, 1994).

Gabel, D.L. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76, 548-554.

Gilbert, J. K. (2006). On the nature of “context” in chemical education.

International Journal of Science Education, 28(9), 957-976.

Goedhart, M. J. & Verdonk, A. H. (1991). The development of statistical concepts in a design-oriented laboratory course in scientific measuring.

Journal of Chemical Education, 68, 1005-1009.

Halloun, I. & Hestenes, D. (1998). Interpreting VASS Dimensions and Profiles.

Science & Education, 7(5), 553-577.

Hammer, D. & Elby, A. (2002). On the form of a personal epistemology. In:

B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Hillsdale: Erlbaum.

Hazen, R. M. & Trefil, J. S. (1991). Achieving chemical literacy. Journal of Chemical Education, 68, 392-394.

Herron, J. D. (1975). Piaget for Chemists. Journal of Chemical Education, 52, 146-150.

Herron, J. D. (1977). Piaget applied: Suggestions for inaction. Paper presented at the national meeting of the American Chemical Society, New Orleans, Lousiana.

Herron, J. D. (1978). Piaget in the Classroom. Journal of Chemical Education, 55, 165-170.

Herron, J. D. (1996). The chemistry classroom: Formulas for successful teaching.

Washington: American Chemical Society.

Hinton, M. E. & Nakhleh, M. B. (1999). Students’ Microscopic, Macroscopic, and Symbolic Representations of Chemical Reactions. The Chemical Educator, 4(5), 158-204.

Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378-405.

Hofer, B. K. (2006). Domain specificity of personal epistemology: Resolved questions, persistent issues, new models. International Journal of Educational Research, 45(1-2), 85-95.

Hofer, B. K. & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88-140.

Hogan, K. (1999). Relating students’ personal frameworks for science learning to their cognition in collaborative contexts. Science Education, 83(1), 1-32.

Hondebrink, J. G. (1980). Voorzichtig met elementen. Faraday, 50(2), 88-90.

Hooykaas, R. (1981). De wet van elementenbehoud. Faraday, 50(5), 189-195.

Johnstone (1991). Thinking about thinking. International Newsletter on Chemical Education, 6, 7-11.

Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701-705.

Johnstone, A. H. (2000). Teaching of chemistry – logical or psychological?.

Chemistry education: research and practice in Europe, 1(1), 9-15.

Justi, R. & Gilbert, J. K. (2002). Models and modeling in chemical education.

In: J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, & J. H. Van Driel.

(Eds.), Chemical education: Towards research-based practice. (pp. 47-68).

Dordrecht: Kluwer Academic Publishers.

Kaper, W. H. & Ten Voorde, H. H. (1991). Problemen in de

begripsontwikkeling in relatie tot de aanpak van docent en studieboek-schrijver. Tijdschrift voor Didactiek der β-wetenschappen, 9, 3-28.

Kelly, G. A. (1955). The psychology of personal constructs. New York: Norton.

Kessels, J.W.M. (1996). Het corporate curriculum. Leiden: Rijksuniversiteit Leiden.

Klarus, R. (1998). Competenties erkennen. Een studie naar modellen en procedures voor leerwegonafhankelijke beoordeling en

beroepscompetenties. ’s Hertogenbosch: CINOP.

Kozma, R. B. & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena.

Journal of Research in Science Teaching, 34(9), 949-968.

Limón, M. (2006). The domain generality-specificity of epistemological beliefs: A theoretical problem, a methodological problem or both?

International Journal of Educational Research, 45(1-2), 7-27.

Literature Review (n.d.). Retrieved October 10, 2005, from

http://library.uws.edu.au/adt-NUWS/uploads/approved/adt-NUWS20050721.160759/public/02Chapter1.pdf.

Livingston, J. A. (1997). Metacognition: An overview. Retrieved July 13, 2004, from http://www.gse.buffalo.edu/fas/shuell/cep564/Metacog.htm.

Lijnse, P. L. & Klaassen, C. W. J. M. (2004). Didactical structures as an

outcome of reseach on teaching-learning sequences. International Journal of Science Education, 26, 537-554.

Lüchauer, D. L. & Shulman, G. M. (1993). Teaching organizational communication: An empowerment based approach. Paper presented at the joint meeting of the Southern States Communication Association and the Central States Communication Association, Lexington, 1993.

Marshall, H. H. (1988). Work or learning: Implications of classroom metaphors. Educational Researcher, 17(9), 9-16.

Marton, F., Dall’Alba, G., & Beaty, E. (1993). Concepts of learning. International Journal of Educational Research, 19, 277-300.

Marton, F. & Säljö, R. (1976). On qualitative differences in learning I:

Outcome and process. British journal of educational psychology, 46, 4-11.

McVee, M., Dunsmore, K. L., Gavelek, J. (2005). Revisiting schema theory.

Review of Educational Research, 75(4), 531-566.

Millar, R. (1989). Constructive criticisms. International Journal os Science Education - special edition, 11(5), 587-596.

Miller, G. A. (1978). The magical number seven, plus or minus two. Some limits on our capacity to process information. Psychological Review, 63, 81-87.

Nakhleh, M. B. (2001). Theories or fragments? The debate over learners’

naive ideas about science. Journal of Chemical Education, 78(8), 1107-1115.

Nakhleh, M. B. & Samarapungavan, A.(1999). Elementary school children’s beliefs about matter. Journal of Research in Science Teaching, 365(7), 777-805.

National Research Council (2000). How people learn: Brain, mind, experience and

National Research Council (2000). How people learn: Brain, mind, experience and