• No results found

Time on 26 March 2018

5. Discussion and Conclusions

5.3 Future work

Potential future work in terms of measurements would be to install temperature and heat flux sensors at the 2nd floor (6 m height) of the pilot project to investigate the influence of the higher cavity temperature on the inwards heat flux during the summer period. Also, additional HDR imaging and glare analysis could be conducted with more viewing angles and outdoor weather conditions. In addition, more airflow measurement or smoke visualizations with smoke tubes could potentially be performed during the summer to get a better idea of the whole (complex) airflow behaviour in the cavity. Another possibility would be to conduct a Computational Fluid Dynamics (CFD) study of the Lumiduct DSF to get a better idea of the airflow and temperature distribution within the cavity. Ideally, measurements could also be conducted for an office building with a wider Lumiduct façade and intermediate floors as this might give different results than the stairwell of the pilot project.

In terms of simulations, a more detailed calibration could be done with on-site weather data as well as taking into account the cover factor and hemispherical transmittance of the CPV modules. Also annual parametric simulations could be performed with different geometry models (higher or wider facade) and different design parameters such as improving the control strategy for temperature controlled ventilation. Also the energy savings by pre-heating the HVAC system or the interior directly could be simulated/calculated for different cases.

53

6. References

1. Poirazis, H. (2006). Single Skin Glazed Office Buildings: Energy Use and Indoor Climate Simulations. Lund Insitute of Technology. http://lup.lub.lu.se/record/1026766

2. European Parliament and the Council of the European Union. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union, L 153, 13–35.

doi:10.3000/17252555.L_2010.153.eng

3. European Commission. (2017). Press Release: Commission welcomes agreement on energy

performance of buildings. Brussels. Retrieved from

https://ec.europa.eu/energy/en/news/commission-welcomes-agreement-energy-performance-buildings

4. Attoye, D. E., Aoul, K. A. T., & Hassan, A. (2017). A Review on Building Integrated Photovoltaic Façade Customization Potentials. Sustainability, 9(12), 1–24. doi:10.3390/su9122287

5. Jelle, B. P., Breivik, C., & Drolsum Røkenes, H. (2012). Building integrated photovoltaic products:

A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 100, 69–96. doi:10.1016/j.solmat.2011.12.016

6. Jelle, B. P. (2016). Building integrated photovoltaics: A concise description of the current state of the art and possible research pathways. Energies, 9(1), 1–30. doi:10.3390/en9010021 7. Lai, C. M., & Hokoi, S. (2015). Solar façades: A review. Building and Environment, 91, 152–165.

doi:10.1016/j.buildenv.2015.01.007

8. Probst, M. C. M., Roecker, C., Scognamiglio, A., Farkas, K., Maturi, L., & Zanetti, I. (2012). Solar Energy Systems in Architecture: Integration Criteria and guidelines (No. Report T.41.A.2: IEA SHC Task 41 Solar energy and Architecture).

9. Skandalos, N., & Karamanis, D. (2015). PV glazing technologies. Renewable and Sustainable Energy Reviews, 49, 306–322. doi:10.1016/j.rser.2015.04.145

10. Yang, T., & Athienitis, A. K. (2016). A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renewable and Sustainable Energy Reviews, 66, 886–

912. doi:10.1016/j.rser.2016.07.011

11. Chemisana, D., & Zacharopoulos, A. (2015). Building-Integration of High-Concentration Photovoltaic Systems. In P. Pérez-Higueras & E. F. Fernández (Eds.), High Concentrator Photovoltaics (pp. 353–376). Springer. doi:10.1007/978-3-319-15039-0

12. Chemisana, D. (2011). Building integrated concentrating photovoltaics: A review. Renewable and Sustainable Energy Reviews, 15(1), 603–611. doi:10.1016/j.rser.2010.07.017

13. Dyson, A. H., Stark, P. R., & Jensen, M. K. (2009). Integrated Concentrating (IC) Solar Façade

System, (Ic), 2–3. Retrieved from

http://www1.eere.energy.gov/solar/review_meeting/pdfs/sys_9_dyson_rensselaer.pdf

14. Dyson, A. (2017). Intelligent Facades for High Performance Green Buildings. Rensselaer Polytechnic Institute.

15. Sabry, M., Eames, P. C., Singh, H., & Wu, Y. (2014). Smart windows: Thermal modelling and evaluation. Solar Energy, 103, 200–209. doi:10.1016/j.solener.2014.02.016

16. Sabry, M. (2016). Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes. Energy, 107, 473–481. doi:10.1016/j.energy.2016.04.057 17. Broessel, A. S. (2016). Integrated Concentrated Solar Power (ICSP) Technology. Rawlemon

Laboratories.

18. Broessel, A. S. (2017). Rawlemon Solar Architecture. Retrieved March 11, 2018, from https://rawlemon.com/

19. Kenotomi. (2016). Kenotomi’s Innovention Technology: innovative invention. Retrieved March 11, 2018, from http://kenotomi.com/

20. Hofer, J., Groenewolt, A., Jayathissa, P., Nagy, Z., & Schlueter, A. (2016). Parametric analysis and systems design of dynamic photovoltaic shading modules. Energy Science & Engineering, 4(2), 134–152. doi:10.1002/ese3.115

21. Jayathissa, P., Luzzatto, M., Schmidli, J., Hofer, J., Nagy, Z., & Schlueter, A. (2017). Optimising building net energy demand with dynamic BIPV shading. Applied Energy, 202, 726–735.

doi:10.1016/j.apenergy.2017.05.083

22. Jayathissa, P., Zarb, J., Luzzatto, M., Hofer, J., & Schlueter, A. (2017). Sensitivity of Building Properties and Use Types for the Application of Adaptive Photovoltaic Shading Systems. Energy Procedia, 122, 139–144. doi:10.1016/j.egypro.2017.07.319

23. Nagy, Z., Svetozarevic, B., Jayathissa, P., Begle, M., Hofer, J., Lydon, G., … Schlueter, A.

54 (2016). The Adaptive Solar Facade: From concept to prototypes. Frontiers of Architectural Research, 5(2), 143–156. doi:10.1016/j.foar.2016.03.002

24. Colt International. (2018). Buitenzonwering: Shadovoltaic. Retrieved March 11, 2018, from https://www.coltinfo.nl/shadovoltaic.html

25. Baig, H., Sellami, N., Chemisana, D., Rosell, J., & Mallick, T. K. (2014). Performance analysis of a dielectric based 3D building integrated concentrating photovoltaic system. Solar Energy, 103, 525–540. doi:10.1016/j.solener.2014.03.002

26. Baig, H., Sellami, N., & Mallick, T. K. (2015). Performance modeling and testing of a Building Integrated Concentrating Photovoltaic (BICPV) system. Solar Energy Materials and Solar Cells, 134, 29–44. doi:10.1016/j.solmat.2014.11.019

27. University of Exeter. (2017). Solar Squared. Retrieved March 11, 2018, from https://www.buildsolar.co.uk/

28. Sellami, N., & Mallick, T. K. (2012). Design of nonimaging static solar concentrator for window integrated photovoltaic. In AIP Conference Proceedings (Vol. 1477, pp. 106–109).

doi:10.1063/1.4753845

29. Baig, H., Siviter, J., Li, W., Paul, M. C., Montecucco, A., Rolley, M. H., … Mallick, T. (2018).

Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy. Energy, 147, 547–560. doi:10.1016/j.energy.2017.12.127

30. Zacharopoulos, A., Deb, J., Smyth, M., Hyde, T., & Pugsley, A. (2017). Investigation of the thermal performance of a Concentrating PV / Thermal Glazing Façade Technology.

31. Davidsson, H., Perers, B., & Karlsson, B. (2010). Performance of a multifunctional PV/T hybrid solar window. Solar Energy, 84, 365–372. doi:10.1016/j.solener.2009.11.006

32. Davidsson, H., Perers, B., & Karlsson, B. (2012). System analysis of a multifunctional PV/T hybrid solar window. Solar Energy, 86(3), 903–910. doi:10.1016/j.solener.2011.12.020

33. Chávez, L. M. (2017). Optimization of a Luminescent Solar Concentrator: Simulation and application in PowerWindow design. Delft University of Technology.

34. PHYSEE. (2017). Introducing Smartwindow. Retrieved February 25, 2018, from http://www.physee.eu/

35. Lunt, R. R., & Bulovic, V. (2011). Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied Physics Letters, 98(11).

doi:10.1063/1.3567516

36. Ubiquitous energy. (2018). Clearview Power Technology. Retrieved March 25, 2018, from http://ubiquitous.energy/technology/

37. Solaronix. (2018). Solar Cells. Retrieved March 11, 2018, from https://www.solaronix.com/solarcells/

38. Onyx Solar Energy. (2017). Amorphous silicon photovoltaic glass. Retrieved March 11, 2018, from https://www.onyxsolar.com/product-services/crystalline-pv-glass

39. Ertex solartechnik GmbH. (2017). Semi-transparant photovoltaic modules. Retrieved March 11, 2018, from http://www.ertex-solar.at/en/products/semi-transparent-modules/ technology for sustainable living in the 21(st) century. Proceedings of Ecopole 2008, Vol 2 No 1, 2(1), 141–146.

43. Nakata, J., & Wac, M. (2011). Flat Module Made of Spherical Cells in Higher Latitude Areas (Long-Term Testing Performance). In 26th European Photovoltaic Solar Energy Conference and Exhibition (pp. 3576–3580). doi:10.4229/26thEUPVSEC2011-4AV.2.31

44. Wellsun. (2017). Welcome the Sun. Retrieved May 18, 2018, from https://www.wellsun.nl/

45. Kin, S. (2017). Eindrapportage ZEGO: Building Integrated Concentrator- PV.

46. Poirazis, H. (2004). Double Skin Façades for Office Buildings: Literature Review. Lund Institute of Technology.

47. Stec, W. J. (2006). Symbiosis of double skin facade and indoor climate installation. Delft

University of Technology. Retrieved from

https://repository.tudelft.nl/islandora/object/uuid:360242c8-c1e6-4be5-bdc0-521d9238b1be?collection=research

48. Andelković, A. S., Gvozdenac-Urošević, B., Kljajić, M., & Ignjatović, M. G. (2015). Experimental research of the thermal characteristics of a multi-storey naturally ventilated double skin facade.

Energy and Buildings, 86, 766–781. doi:10.1016/j.enbuild.2014.11.007

55 49. Peng, J., Lu, L., & Yang, H. (2013). An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong. Solar Energy, 97, 293–304.

doi:10.1016/j.solener.2013.08.031

50. Peng, J., Lu, L., Yang, H., & Ma, T. (2015). Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes.

Applied Energy, 138, 572–583. doi:10.1016/j.apenergy.2014.10.003 51. Wellsun. (2017). Lumiduct TM product specifications.

52. Morgan Solar Inc. (2017). How it works. Retrieved May 22, 2018, from http://morgansolar.com/how-it-works/

53. Bunthof, L. A. A., Kreuwel, F. P. M., Kaldenhoven, A., Kin, S., Corbeek, W. H. M., Bauhuis, G.

J., … Schermer, J. J. (2016). Impact of shading on a flat CPV system for façade integration.

Solar Energy, 140, 162–170. doi:10.1016/j.solener.2016.11.001

54. Zhang, X. (2014). Building Perormance Evaluation of Integrated Transparent Photovoltaic Blind System by a Virtual Testbed. Eindhoven University of Technology.

55. Nikolaos, K. (2016). Daylight Performance Simulation of an Innovative Multifunctional Transparent Building-Integrated CPV Solar Façade System. Eindhoven University of Technology.

56. Velds, M., & Christoffersen, J. (2011). Monitoring Procedures for the Assessment of Daylighting Performance of Buildings. In A Report of IEA SHC TASK 21 / ECBCS ANNEX 29.

57. Kalyanova, O., & Heiselberg, P. K. (2008). Experimental Set-up and Full-scale measurements in the “Cube.” Aalborg University.

58. Navvab, M., & Altland, G. (1997). Application of CIE glare index for daylighting evaluation.

Journal of the Illuminating Engineering Society, 26(2), 115–128.

doi:10.1080/00994480.1997.10748196

59. Wienold, J., & Christoffersen, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757. doi:10.1016/j.enbuild.2006.03.017

60. Jakubiec, A., & Reinhart, C. (2010). The use of glare metrics in the design of daylit spaces:

recommendations for practice. In 9th international Radiance workshop.

61. Corgnati, S. P., Perino, M., & Serra, V. (2007). Experimental assessment of the performance of an active transparent façade during actual operating conditions. Solar Energy, 81(8), 993–1013.

doi:10.1016/j.solener.2006.12.004

62. Favoino, F. (2015). Assessing the performance of an advanced integrated facade by means of simulation: The ACTRESS facade case study. Journal of Facade Design and Engineering, 3(2), 105–127. doi:10.3233/FDE-150038

63. DiMaio, F., & van Paassen, H. C. (2001). Modelling the air infiltrations in the second skin facade.

In Proceedings of IAQVEC Conference (pp. 873–880).

64. Favoino, F., Goia, F., Perino, M., & Serra, V. (2016). Experimental analysis of the energy performance of an ACTive, RESponsive and Solar (ACTRESS) façade module. Solar Energy, 133(2016), 226–248. doi:10.1016/j.solener.2016.03.044

65. Perez, R. R., Ineichen, P., Maxwell, E. L., Seals, R. D., & Zelenka, A. (1992). Dynamic global-to-direct irradiance conversion models. In ASHRAE Transactions (Vol. 98, pp. 354–369).

http://archive-ouverte.unige.ch/unige:38583

66. TRANSSOLAR Energietechnik GmbH. (2017). Multizone Building modeling with Type56 and TRNBuild. In Manual TRNSYS 18: a TRaNsient SYstem Simulation program (Vol. 5).

67. Orme, M., Liddament, M. W., & Wilson, A. (1998). Numerical Data for Air Infiltration & Natural Ventilation Calculations. Coventry.

68. American Society of Heating Refrigerating and Air Conditioning Engineers. (1993). ASHRAE Handbook Fundamentals. Atlanta. doi:10.1039/c1cs15219j

69. Joe, J., Choi, W., Kwon, H., & Huh, J. H. (2013). Load characteristics and operation strategies of building integrated with multi-story double skin facade. Energy and Buildings, 60, 185–198.

doi:10.1016/j.enbuild.2013.01.015

70. Ancrossed D Signelković, A. S., Mujan, I., & Dakić, S. (2016). Experimental validation of a EnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings, 118, 27–36. doi:10.1016/j.enbuild.2016.02.045

71. Subramaniam, S. (2017). Daylighting Simulations with Radiance using Matrix-based Methods.

Retrieved from https://radiance-online.org/learning/tutorials/matrix-based-methods

72. Serra, V., Zanghirella, F., & Perino, M. (2010). Experimental evaluation of a climate façade:

Energy efficiency and thermal comfort performance. Energy and Buildings, 42(1), 50–62.

doi:10.1016/j.enbuild.2009.07.010

56