• No results found

Microfluidic biochip platforms have proven to be versatile incubation devices for cell cultures and tissue. However, to further improve and profit from the advantages of microfluidic perfusion over the traditional static culturing techniques, the incorporation of sensors to monitor relevant parameters is required. Oxygen is one such parameter, as an essential part of the metabolism

of each cell, but also as a regulatory parameter in both cells and tissue. Both an increased understanding of its role, and a precise control over its concentration in accordance to this, would potentially benefit the viability and functionality of incubated tissue or cells. Considering the ease with which different techniques discussed in this review can be miniaturized, implementing oxygen control into these culturing devices seems like a logical step, and some examples of this have been discussed. Of course, one should consider how these measurements could affect the incubated tissue or cells and their direct environment in order to select the most suitable approach for implementation.

Oxygenation measurements, especially in combination with assessment of expression of hypoxia-related factors (e.g. HIFs), will deliver valuable information for the improvement of tissue perfusion systems and cell culturing devices.

Hopefully, an increased understanding and control over oxygenation in in vitro models will lead to an increased viability and functional in vivo resemblance. This would lead to the widespread acceptance of these systems as valid platforms for the study of organ functionality, pathology, metabolism and toxicology studies of novel drugs, and many more applications in the organ-on-a-chip field.

2.5 References

1 M. Mehling and S. Tay, Curr. Opin. Biotechnol., 2014, 25, 95–102.

2 D. Huh, G. A. Hamilton and D. E. Ingber, Trends Cell Biol., 2011, 21, 745–54.

3 M. D. Brennan, M. L. Rexius, L. J. Elgass and D. T. Eddington, Lab Chip, 2014, 14, 4305–4318.

4 F. Bettelheim, W. Brown, M. Campbell and S. Farrel, Introduction to General, Organic and Biochemistry, Brooks Cole, Boston, MA, 9th edn., 2010.

5 D. F. Wilson, D. K. Harrison and S. A. Vinogradov, J. Appl. Physiol., 2012, 113, 1838–45.

6 M. Erecińska and I. A. Silver, Respir. Physiol., 2001, 128, 263–76.

7 J. M. Vanderkooi, M. Erecińska and I. A. Silver, Am. J. Physiol., 1991, 260, C1131–50.

8 G. L. Semenza, N. Engl. J. Med., 2011, 365, 537–47.

9 Z. Ivanovic, J. Cell. Physiol., 2009, 219, 271–5.

10 A. Mohyeldin, T. Garzón-Muvdi and A. Quiñones-Hinojosa, Cell Stem Cell, 2010, 7, 150–61.

11 C. I. Kobayashi and T. Suda, J. Cell. Physiol., 2012, 227, 421–30.

12 E. Sinkala and D. T. Eddington, Lab Chip, 2010, 10, 3291–5.

13 J. W. Allen and S. N. Bhatia, Biotechnol. Bioeng., 2003, 82, 253–62.

14 A. Dyson and M. Singer, Curr. Opin. Crit. Care, 2011, 17, 281–289.

15 Y. Ha, D. Myung, J. H. Shim, M. H. Kim and Y. Lee, Analyst, 2013, 138, 5258–

16 64.E. S. Kirk and C. R. Honig, Am. J. Physiol., 1964, 207, 661–8.

17 G. Gibson and P. Skett, Introduction to Drug Metabolism, Cengage Learning EMEA, Cheltenham, 3rd edn., 2001.

18 T. Kietzmann and K. Jungermann, Cell Biol. Toxicol., 1997, 13, 243–55.

19 K. Jungermann and T. Kietzmann, Annu. Rev. Nutr., 1996, 16, 179–203.

20 K. Jungermann and T. Kietzmann, Hepatology, 2000, 31, 255–60.

21 A. D. van der Meer and A. van den Berg, Integr. Biol., 2012, 4, 461.

22 A. Williamson, S. Singh, U. Fernekorn and A. Schober, Lab Chip, 2013, 13, 3471-3480.

23 S. N. Bhatia and D. E. Ingber, Nat. Biotechnol., 2014, 32, 760–772.

24 M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D. M. Vignjevic and J.-L.

Viovy, Biomaterials, 2014, 35, 1816–1832.

25 M. Hamon and J. W. Hong, Mol. Cells, 2013, 36, 485–506.

26 F. Pampaloni, E. G. Reynaud and E. H. K. Stelzer, Nat. Rev. Mol. Cell Biol., 2007, 8, 839–45.

27 B. Harink, S. Le Gac, R. Truckenmüller, C. van Blitterswijk and P. Habibovic,

Lab Chip, 2013, 13, 3512–3528.

28 J. P. Wikswo, F. E. Block, D. E. Cliffel, C. R. Goodwin, C. C. Marasco, D. A.

Markov, D. L. McLean, J. A. McLean, J. R. McKenzie, R. S. Reiserer, P. C.

Samson, D. K. Schaffer, K. T. Seale and S. D. Sherrod, IEEE Trans. Biomed.

Eng., 2013, 60, 682–690.

29 E. Verpoorte, P. E. Oomen, M. D. Skolimowski, P. P. M. F. A. Mulder, P. M. van Midwoud, V. Starokozhko, M. T. Merema, G. Molema and G. M. M. Groothuis, in Transducers 2015: 18th International Conference on Solid-State Sensors, Actuators and Microsystems, Anchorage, Alaska, USA, 2015, pp. 224–227.

30 P. M. van Midwoud, G. M. M. Groothuis, M. T. Merema and E. Verpoorte, Biotechnol. Bioeng., 2010, 105, 184–94.

31 R. Sander, Atmos. Chem. Phys., 2015, 15, 4399–4981.

32 D. Silverthorn, W. Ober, C. Garrison and A. Silverthorn, Human Physiology, Benjamin Cummings, San Fransisco, CA, 4th edn., 2007.

33 K. C. Lowe, Blood Rev., 1999, 13, 171–184.

34 P. Amaral, Biotechnol. Bioeng., 2008, 99, 588–598.

35 B. D. Spiess, J. Appl. Physiol., 2009, 106, 1444–1452.

36 K. C. Lowe, Artif. Cells. Blood Substit. Immobil. Biotechnol., 2000, 28, 25–38.

37 K. Kobayashi, E. Tsuchida and H. Horinouchi, Eds., Artificial Oxygen Carrier:

Its Frontline, Springer-Verlag, Tokyo, 2005, vol. 12.

38 S. Rüdiger, J. Fluor. Chem., 1989, 42, 403–412.

39 M. G. Freire, A. M. A. Dias, M. A. Z. Coelho, J. A. P. Coutinho and I. M.

Marrucho, J. Colloid Interface Sci., 2005, 286, 224–32.

40 M. L. Turgeon, Clinical hematology: Theory and procedures, Lippincott Williams and Wilkins, Philadelphia, PA, 3rd edn., 1999.

41 J. G. Riess, Vox Sang., 1991, 61, 225–39.

42 K. Tremper and B. Cullen, Artif. Organs, 1984, 8, 19–24.

43 L. C. Clark Jr and F. Gollan, Science, 1966, 152, 1755–1756.

44 D. Bezinover, S. Ramamoorthy, T. Uemura, Z. Kadry, P. M. McQuillan, B. Mets, O. Falcucci, S. Rannels, V. Ruiz-Velasco, B. Spiess, J. Liang, H. Mani, X. Lou and P. K. Janicki, J. Surg. Res., 2012, 175, 131–7.

45 R. M. Winslow, Blood Substitutes, Academic Press, London, UK, 1st edn., 2006.

46 “Oxygen Biotherapeutics - Current Clinical Trials – Employing Oxygen, Preserving Life!”, http://www.oxybiomed.com/clinical_trials.html (accessed October 2013)

47 H. Sakai, Y. Masada, S. Takeoka and E. Tsuchida, J. Biochem., 2002, 131, 611–7.

48 H. Sakai, K. Sou and E. Tsuchida, Methods Enzymol., 2009, 465, 363–84.

49 A. Mozzarelli, L. Ronda, S. Faggiano, S. Bettati and S. Bruno, Blood Transfus., 2010, 8 Suppl 3, s59–68.

50 T. M. S. Chang, Artif. Organs, 2004, 28, 789–94.

51 “HbO2 Therapeutics - Oxyglobin U.S.A.”, http://www.hbo2therapeutics.com/

new-page-94/ (accessed June 2016)

52 “HbO2 Therapeutics - Hemopure South Africa”, http://www.hbo2therapeutics.

com/new-page-54/ (accessed June 2016)

53 M. Radisic, M. Euloth, L. Yang, R. Langer, L. E. Freed and G. Vunjak-Novakovic, Biotechnol. Bioeng., 2003, 82, 403–14.

54 B. Wagner, S. Venkataraman and G. Buettner, Free Radic. Biol. Med., 2011, 51, 700–712.

55 Y. Amao, Microchim. Acta, 2003, 143, 1–12.

56 D. Harris, Quantitative Chemical Analysis, W.H. Freeman and Company, New York, NY, 7th edn., 2007.

57 L. C. Clark Jr., Trans. Am. Soc. Artif. Intern. Organs, 1956, 2, 41–48.

58 K. K. Tremper, T. W. Rutter and J. A. Wahr, Curr. Anaesth. Crit. Care, 1993, 4, 213–222.

59 S. M. Mitrovski and R. G. Nuzzo, Lab Chip, 2005, 5, 634–45.

60 R. Ramamoorthy, P. Dutta and S. Akbar, J. Mater. Sci., 2003, 8, 4271–4282.

61 C. Wu, T. Yasukawa, H. Shiku and T. Matsue, Sensors Actuators B Chem., 2005, 110, 342–349.

62 D. G. Buerk, Methods Enzymol., 2004, 381, 665–90.

63 S. Qin, M. van der Zeyden, W. H. Oldenziel, T. I. F. H. Cremers and B. H. C.

Westerink, Sensors, 2008, 8, 6860–6884.

64 D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace College Publishers, Orlando, FL, 1998.

65 C. R. Wilke and P. Chang, AIChE J., 1955, 1, 264–270.

66 “Physical characteristics of water (at the atmospheric pressure)”, http://www.

thermexcel.com/english/tables/eau_atm.htm (accessed June 2016)

67 H. Suzuki, T. Hirakawa, I. Watanabe and Y. Kikuchi, Anal. Chim. Acta, 2001, 431, 249–259.

Heijnen and A. van den Berg, Anal. Chem., 2007, 79, 5567–73.

71 E. E. Krommenhoek, M. van Leeuwen, H. Gardeniers, W. van Gulik, A. van den Berg, X. Li, M. Ottens, L. van der Wielen and J. Heijnen, Biotechnol. Bioeng., 2008, 99, 884–892. der Wielen and W. M. van Gulik, Biotechnol. Prog., 2010, 26, 293–300.

75 S. E. Eklund, D. E. Cliffel, E. Kozlov, A. Prokop, J. Wikswo and F. Baudenbacher, Anal. Chim. Acta, 2003, 496, 93–101.

76 F. Hafner, Biosens. Bioelectron., 2000, 15, 149–58.

77 S. M. Grist, L. Chrostowski and K. C. Cheung, Sensors, 2010, 10, 9286–316.

78 R. I. Dmitriev and D. B. Papkovsky, Cell. Mol. life Sci., 2012, 69, 2025–39.

79 D. B. Papkovsky, Methods Enzymol., 2004, 381, 715–35.

80 P. A. S. Jorge, P. Caldas, C. C. Rosa, A. G. Oliva and J. L. Santos, Sensors Actuators B Chem., 2004, 103, 290–299.

81 A. McEvoy, C. McDonagh and B. MacCraith, Analyst, 1996, 121, 785–788.

82 I. Klimant and O. S. Wolfbeis, Anal. Chem., 1995, 67, 3160–3166.

83 S. B. Pieper, S. P. Mestas, K. L. Lear, Z. Zhong and K. F. Reardon, Appl. Phys.

Lett., 2008, 92, 081915.

84 T. Yeh, C. Chu and Y. Lo, Sensors Actuators B Chem., 2006, 119, 701–707.

85 B. J. Basu, Sensors Actuators B Chem., 2007, 123, 568–577.

86 Y. Amao, T. Miyashita and I. Okura, Analyst, 2000, 125, 871–875.

87 S. K. Lee and I. Okura, Analyst, 1997, 122, 81–84.

88 Y. Amao, React. Funct. Polym., 2001, 47, 49–54.

89 Y. Amao, T. Miyashita and I. Okura, J. Fluor. Chem., 2001, 107, 101–106.

90 E. Schmälzlin, J. T. van Dongen, I. Klimant, B. Marmodée, M. Steup, J. Fisahn, P. Geigenberger and H.-G. Löhmannsröben, Biophys. J., 2005, 89, 1339–45.

91 E. J. Park, K. R. Reid, W. Tang, R. T. Kennedy and R. Kopelman, J. Mater.

Chem., 2005, 15, 2913-2919.

92 Hynes JN and Papkovsky DB. WO Pat 2012/052068 A1, 2012.

93 T. Itoh, K. Yaegashi, T. Kosaka, T. Kinoshita and T. Morimoto, Am. J. Physiol. - Hear. Circ. Physiol., 2068-78, 267, 1994.

94 A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher and C. F. Kaminski, Opt. Express, 2006, 14, 5456–67.

95 G. Holst, O. Kohls, I. Klimant and B. König, Sensors Actuators B Chem., 1998, 51, 163–170.

96 K. Kellner, G. Liebsch, I. Klimant, O. S. Wolfbeis, T. Blunk, M. B. Schulz and A.

Göpferich, Biotechnol. Bioeng., 2002, 80, 73–83.

97 D. B. Papkovsky, A. N. Ovchinnikov, V. I. Ogurtsov, G. V Ponomarev and T.

Korpela, Sensors Actuators B Chem., 1998, 51, 137–145.

98 C. McDonagh, C. S. Burke and B. D. MacCraith, Chem. Rev., 2008, 108, 400–22.

99 D. García-Fresnadillo, M. D. Marazuela, M. C. Moreno-Bondi and G. Orellana, Langmuir, 1999, 15, 6451–6459.

100 G. Holst, R. Glud, M. Kühl and I. Klimant, Sensors Actuators B Chem., 1997, 38-39, 122-129.

101 J. M. Vanderkooi, G. Maniara, T. J. Green and D. F. Wilson, J. Biol. Chem., 1987, 262, 5476–82.

102 S. I. A. Bodmer, G. M. Balestra, F. A. Harms, T. Johannes, N. J. H. Raat, R. J.

Stolker and E. G. Mik, J. Biophotonics,2012, 5, 140–51.

103 A. Fercher, S. M. Borisov, A. V Zhdanov, I. Klimant and D. B. Papkovsky, ACS Nano, 2011, 5, 5499–508.

104 G. Podgorski, I. Longmuir, J. Knopp and D. Benson, J. Cell. Physiol., 1981, 3, 329–34.

105 R. I. Dmitriev, A. V Zhdanov, G. Jasionek and D. B. Papkovsky, Anal. Chem., 2012, 84, 2930–8.

106 D. Sud and M.-A. Mycek, J. Biomed. Opt., 2013, 14, 020506.

107 F. Su, R. Alam, Q. Mei, Y. Tian, C. Youngbull, R. H. Johnson and D. R. Meldrum, PLoS One, 2012, 7, e33390.

108 H. Martin and J. Sarsat, Cell Biol. Toxicol., 2002, 18, 73–85.

109 M. A. Orman, M. G. Ierapetritou, I. P. Androulakis and F. Berthiaume, Biotechnol. Bioeng., 2011, 108, 2947–57.

110 S. G. Charati and S. A. Stern, Macromolecules, 1998, 31, 5529–5535.

111 T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman and I. Pinnau, J. Polym. Sci.

Part B Polym. Phys., 2000, 38, 415–434.

112 G. Mehta, K. Mehta, D. Sud, J. W. Song, T. Bersano-Begey, N. Futai, Y. S. Heo, M.-A. Mycek, J. J. Linderman and S. Takayama, Biomed. Microdevices, 2007, 9, 123–34.

113 S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg and R. M. T. Fleming, Biosens.

Bioelectron., 2015, 63, 218–231.

114 A. Mata, A. J. Fleischman and S. Roy, Biomed. Microdevices, 2005, 7, 281–93.

115 M. Skolimowski, M. Weiss Nielsen, F. Abeille, P. Skafte-Pedersen, D. Sabourin, A. Fercher, D. Papkovsky, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, O.

Geschke and J. Emnéus, Biomicrofluidics, 2012, 6, 34109.

116 M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva and O. Geschke, Lab Chip, 2010, 10, 2162–9.

117 D. A. Markov, E. M. Lillie, S. P. Garbett and L. J. McCawley, Biomed.

Murphy, L. A. Schuler, E. T. Alarid and D. J. Beebe, Lab Chip, 2009, 9, 2132–9.

121 J. N. Lee, X. Jiang, D. Ryan and G. M. Whitesides, Langmuir, 2004, 20, 11684–

122 91.M.-H. Wu, S.-B. Huang and G.-B. Lee, Lab Chip, 2010, 10, 939–56.

123 P. M. van Midwoud, A. Janse, M. T. Merema, G. M. M. Groothuis and E.

Verpoorte, Anal. Chem., 2012, 84, 3938–44.

124 N. T. Evans and T. H. Quinton, Respir. Physiol., 1978, 35, 89–99.

125 W. H. Grover, M. G. von Muhlen and S. R. Manalis, Lab Chip, 2008, 8, 913–8.

126 M. K. Yang, R. H. French and E. W. Tokarsky, J. Micro/Nanolithography, MEMS MOEMS, 2008, 7, 033010.

127 R. H. French, J. M. Rodriguez-Parada, M. K. Yang, R. a. Derryberry, M. F.

Lemon, M. J. Brown, C. R. Haeger, S. L. Samuels, E. C. Romano and R. E.

Richardson, Photovolt. Spec. Conf. (PVSC), 2009 34th IEEE, 2009, 394–399.

128 S. H. Cho, J. Godin and Y.-H. Lo, IEEE Photonics Technol. Lett., 2009, 21, 1057–

1059.

129 H. Zhang and S. Weber, Top. Curr. Chem., 2012, 307–337.

130 W. Groh and A. Zimmermann, Macromolecules, 1991, 6660–6663.

131 S. Planchon, B. Gaillard-Martinie, E. Dordet-Frisoni, M. N. Bellon-Fontaine, S.

Leroy, J. Labadie, M. Hébraud and R. Talon, Int. J. Food Microbiol., 2006, 109, 88–96.

132 A. Katzer, H. Marquardt and J. Westendorf, Biomaterials, 2002, 23, 1749–59.

133 K. B. Sagomonyants, M. L. Jarman-Smith, J. N. Devine, M. S. Aronow and G. A.

Gronowicz, Biomaterials, 2008, 29, 1563–72.

134 A. P. Harsha and U. S. Tewari, J. Reinf. Plast. Compos., 2003, 22, 751–767.

135 W. Hwang, H. Mühlberger, W. Hoffmann, A. E. Guber and V. Saile, Microsyst.

Technol., 2008, 14, 1699–1700.

136 H. Mühlberger, W. Hwang, A. E. Guber, V. Saile and W. Hoffmann, IEEE Sens.

J., 2008, 8, 572–579.

137 E. W. K. Young, E. Berthier, D. J. Guckenberger, E. Sackmann, C. Lamers, I.

Meyvantsson, A. Huttenlocher and D. J. Beebe, Anal. Chem., 2011, 83, 1408–17.

138 T. S. Hansen, D. Selmeczi and N. B. Larsen, J. Micromechanics Microengineering, 2009, 20, 15–20.

139 M. Stangegaard, S. Petronis, A. M. Jørgensen, C. B. V Christensen and M. Dufva, Lab Chip, 2006, 6, 1045–51.

140 L. Brown, T. Koerner, J. H. Horton and R. D. Oleschuk, Lab Chip, 2006, 6, 66–

141 73.D. L. N. Kallepalli, N. R. Desai and V. R. Soma, Appl. Opt., 2010, 49, 2475.

142 D. Ogończyk, J. Wegrzyn, P. Jankowski, B. Dabrowski and P. Garstecki, Lab Chip, 2010, 10, 1324–7.

143 S. C. Oppegard, A. J. Blake, J. C. Williams and D. T. Eddington, Lab Chip, 2010, 10, 2366–73.

144 A. Zanzotto, N. Szita, P. Boccazzi, P. Lessard, A. J. Sinskey and K. F. Jensen, Biotechnol. Bioeng., 2004, 87, 243–54.

145 Z. Zhang, N. Szita, P. Boccazzi, A. J. Sinskey and K. F. Jensen, Biotechnol.

Bioeng., 2006, 93, 286–96.

146 E. Leclerc, Y. Sakai and T. Fujii, Biotechnol. Prog., 2004, 20, 750–5.

147 K. Domansky, W. Inman, J. Serdy, A. Dash, M. H. M. Lim and L. G. Griffith, Lab Chip, 2010, 10, 51–8.

148 J. Malda, J. Rouwkema, D. E. Martens, E. P. Le Comte, F. K. Kooy, J. Tramper, C. A. van Blitterswijk and J. Riesle, Biotechnol. Bioeng., 2004, 86, 9–18.

149 A. A. Jaeger, C. K. Das, N. Y. Morgan, R. H. Pursley, P. G. McQueen, M. D. Hall, T. J. Pohida and M. M. Gottesman, Biomaterials, 2013, 34, 8301–8313.

150 J. F. Lo, E. Sinkala and D. T. Eddington, Lab Chip, 2010, 10, 2394–401.

151 R. H. W. Lam, M.-C. Kim and T. Thorsen, Anal. Chem., 2009, 81, 5918–24.

152 P. C. Thomas, S. R. Raghavan and S. P. Forry, Anal. Chem., 2011, 83, 8821–4.

153 M. M. Maharbiz, W. J. Holtz, S. Sharifzadeh, J. D. Keasling and R. T. Howe, J.

Microelectromechanical Syst., 2003, 12, 590–599.

154 F. Weise, U. Fernekorn, J. Hampl, M. Klett and A. Schober, Biotechnol. Bioeng., 2013, 110, 2504–12.

155 B. Harink, S. Le Gac, D. Barata, C. van Blitterswijk and P. Habibovic, Lab Chip, 2014, 14, 1816–20.

156 K. Takemoto, R. M. Ottenbrite and M. Kamachi, Functional Monomers and Polymers, Taylor & Francis, Abingdon, 2nd edition, 1997.

157 J. C. Salamone, Concise Polymeric Materials Encyclopedia, Taylor & Francis, Abingdon, 1998.

158 R. Pasternak, M. Christensen and J. Heller, Macromolecules, 1970, 3, 366–371.

159 “Polyetheretherketone (PEEK) Material Information”, http://www.goodfellow.

com/E/Polyetheretherketone.html (accessed June 2016).