• No results found

Conclusions and outlook

In document The physics of chromatin (pagina 68-76)

Chromatin is of fundamental importance for a host of biological processes ranging from gene expression to cell division. Consequently there is huge research activity among biologists in this area. For physicists chromatin has also become of interest since there are more and more experiments available that work under quite well-defined conditions. Such experiments typically involve only a few components (DNA, histone proteins, etc) but no active protein

‘machines’. These experiments either focus on elucidating properties of single nucleosomes or of beads-on-a-string complexes (‘chromatin fibres’). They study the behaviour of these systems under changing ionic conditions and/or under an externally applied tension. Also the dynamics of these systems that is solely driven by thermal fluctuations is investigated.

Theoretical treatments and computer simulations that capture the essential features of the chromatin system are now possible and thus allow us to estimate the energy and timescales occurring in chromatin. Other approaches look at simplified model systems and try to identify general physical principles that govern complexes of charged chains and macro-ions. With the better understanding of the mechanical and dynamical properties of nucleosomes and chromatin fibres one hopefully also gains a deeper insight into more complicated questions like the working of chromatin remodelling complexes, the interaction between RNA polymerase and nucleosomes, etc.

To proceed in this direction it is crucial to obtain reliable numbers from experiments. One energy scale that dominates many processes is the adsorption energy of DNA on the octamer that has now been measured quite directly through stretching experiments. Another important feature, especially in 30 nm fibres, is the nucleosome–nucleosome interaction energy. Again detailed experimental studies have been performed and await a detailed theoretical treatment.

Chromatin is a very active and exciting field in biology where tremendous progress has been made in recent years. I hope that at least a few of the ideas gained from the physical models will be of help to biologists to develop a clearer picture of the working of chromatin and to design appropriate experimental setups.

Acknowledgments

The author thanks R Bruinsma, W M Gelbart, I Kuli´c and J Widom for many valuable discussions. Useful conversations with R Everaers, K Kremer, J Langowski, F Livolant, S Mangenot, G Maret and B Mergell are also acknowledged.

Appendix A. Rosette in d dimensions

The heterogeneity found for open loops (cf equation (44)) is reminiscent of a phase coexistence.

To clarify why the loop sizes are so sensitive to small details, especially why there is no ‘phase separation’ for closed chains (cf equation (41); even though d2f/dl2< 0 at larger separations), I will present here some unpublished results in which the free energy is formally recomputed for arbitrary space dimensions d. In order to do so one has to replace the entropy term in equation (38) by(d/2) ln(l/lP). Also in that case one obtains an analytical expression for the partition function, namely (for an open chain)

ZM= with Kν(x) denoting the modified Bessel function of νth order. In the case of large

‘pressure’ P, lPP/kBT  1, it follows from the asymptotic form of Kd/2−1(x) for large x , Kd/2−1(x) 

π/2xe−x, that the leading term of the resulting free energy G(P) is independent of d. Therefore one recovers the 3D case, i.e., equations (43)–(45) for L/M  MlP. For the low ‘pressure’ regime, lPP/kBT  1, I use the asymptotics Kd/2−1(x)  2−1(|d/2 − 1|)(2/x)|d/2−1| for x  1 and d = 2. This leads to the following asymptotic behaviour of the partition function

ZM

It follows then from L= ∂G/∂ P that P is given in leading order by

P

The average leaf size can in principle be calculated, as before, from Z1. Here, however, it turns out to be more convenient to calculatellea f directly:

llea f = Now using the above given power law behaviour of the Bessel function together with equation (A.3) the average leaf size follows:

llea f 

First note that for d < 2 the leaf size is set by the overall length of the chain but does not depend on lP; on the other hand, for d > 4llea f it is solely determined by lP. Speaking in the

picture of interacting particles on a track of length L one can explain these two extreme cases as follows. For d< 2 the increase of the ‘nearest neighbour pair potential’ beyond a distance lP (given by(d/2) ln(l/lP)) is too small to keep the particles together; instead they explore all available space. For higher space dimensions than 4 the prefactor of the log-term is large enough to keep neighbouring particles close to the ideal distance∼lP given by the shallow minimum of f(l), equation (38). The case d = 3, which I have already given in equation (44) (a result recovered in equation (A.5)), is an intermediate case wherellea f reflects the overall chain length L as well as the position∼lP of the shallow minimum. Note further that in the limit L→ ∞ the average size per leaf goes to infinity for d < 4 (but the ‘particles’ will only be spread out over the whole volume, Mllea f ≈ L, for d < 2).

Concerning the role of dimensionality one also gains some insight by the following simple argument (similar to the famous Onsager–Manning argument for the condensation of counterions on an infinitely long charged rod [111]). Consider a pair of particles at distance l in one dimension that attract each other via f(l) = kBT(d/2) ln(l/lP). Now assume that the particles move further apart from the distance l1to the distance l2 > l1. This leads to an increase in energy byE = kBT(d/2) ln(l2/l1). On the other hand the particles gain entropy since they are now less confined: −kBTS = kBT ln(l1/l2). Hence for d < 2 the particles will ‘lose’ each other since their attraction to the nearest neighbours is overruled by the gain in entropy, as derived rigorously in equation (A.5).

Finally, I mention that the same extension to arbitrary dimensions d can be performed for closed chains. One finds then phase separation for molten rosettes if d> 4. More specifically, loops have a preferred spacing L/N for d < 4 and 4χlP/(d − 4) for d > 4. This is different from the results on open chains, equation (A.5), in the interval 2< d < 4; hence in d = 3 molten rosettes respond strongly to a cutting of the chain.

Appendix B. Formation energy for small intranucleosomal loops

Since the configurations of small loops are essentially planar, it is convenient to describe them in terms of the function r(θ), cf figure 12(b), where r and θ are the polar coordinates of an arbitrary point on the loop (with the origin chosen on the cylinder axis and the X -axis running through the centre of the loop). In these terms the line element ds takes the form ds= dθ with primes and double primes denoting the first and second derivatives, respectively, with respect toθ. Restricting ourselves here to small loops, one can write r(θ) = R0 + u(θ) with u  R0everywhere. Keeping only quadratic terms in u and its derivatives one obtains ds R0dθ(1 + u/R0+ u 2/(2R02)) and

The bending energy of the loop is then Eelastic 1

The variational energy of the loop F = Eelastic− T L, for a given aperture angle θ and subject to the constraint of a fixed loop contour length L = L +L, follows from equations (B.1) and (B.3) to be:

F{u(θ)} = 1 Here T is the Lagrange multiplier that constrains an extra lengthL to be adsorbed as the loop is formed (T can be interpreted as a ‘tension’ pulling in extra length). In equation (B.4) the constant terms as well as the term linear in u have been dropped since solutions to F with and without the linear u term differ just by a constant. The optimal loop shape (with given values ofL and θ) obeys the Euler–Lagrange equationδF/δu = 0:

u +

For vanishing ‘tension’, T = 0, one finds from equation (B.7) that the condition (B.8) is of the form 2 tan(√

) = tan(θ/

2) that has no non-trivial solution. For large T , T  A/R02, one obtains from equations (B.7) and (B.8):

1

The left-hand side of equation (B.9) is small and hence solutions are approximately given by



T R20/Aθ  λ+θ  kπ with k = 1, 2, 3, . . .. In the following I consider only the k = 1 solution which is the solution that leads to the smallest elastic energy.

Using partial integration and equation (B.5) the loop formation energy, equation (60), can be cast into the form

To proceed further one makes use of the explicit solution given below equation (B.7). Assume the large tension case T  A/R02 (the quality of this approximation will be checked a posteriori); thenλ  1. The condition u(θ) = 0 takes then the form C2 −C1cos(λ+θ)

which leads, together withλ+θ  π, to C2 = C1. The loop shape is thus approximately given

Now minimizingU with respect to θ(forL fixed) gives the optimal aperture angle θ

Combining equations (B.12) and (B.13) one arrives at the final expression for the formation energy of a (small) loop of excess lengthL, equation (61).

References

[1] Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J D 1994 Molecular Biology of the Cell 3rd edn (New York: Garland)

[2] Bloomfield V A 1996 Curr. Opin. Struct. Biol. 6 334

[3] Olson N H, Gingery M, Eiserling F A and Baker T S 2001 Virology 279 385

[4] Cerritelli M E, Cheng N, Rosenberg A H, McPherson C E, Booy F P and Steven A C 1997 Cell 91 271 [5] Kindt J, Tzlil S, Ben-Shaul A and Gelbart W M 2001 Proc. Natl Acad. Sci. USA 98 13671

[6] Kornberg R D 1974 Science 184 868 [7] Kornberg R D and Lorch Y 1999 Cell 98 285

[8] Khrapunov S N, Dragan A I, Sivolob A V and Zagariya A M 1997 Biochim. Biophys. Acta 1351 213 [9] Raspaud E I, Chaparon I, Leforestier A and Livolant F 1999 Biophys. J. 77 1547

[10] Luger K, M¨ader A W, Richmond R K, Sargent D F and Richmond T J 1997 Nature 389 251 [11] Davey C A, Sargent D F, Luger K, Maeder A W and Richmond T J 2002 J. Mol. Biol. 319 1097 [12] Thoma F, Koller Th and Klug A 1979 J. Cell. Biol. 83 403

[13] Widom J 1986 J. Mol. Biol. 190 411

[14] van Holde K E 1989 Chromatin (New York: Springer) [15] Widom J 1989 Annu. Rev. Biophys. Chem. 18 365 [16] van Holde K and Zlatanova J 1995 J. Biol. Chem. 93 8373

[17] van Holde K and Zlatanova J 1996 Proc. Natl Acad. Sci. USA 93 10548 [18] Finch J T and Klug A 1976 Proc. Natl Acad. Sci. USA 73 1897 [19] Widom J and Klug A 1985 Cell 43 207

[20] Woodcock C L, Grigoryev S A, Horowitz R A and Whitaker N 1993 Proc. Natl Acad. Sci. USA 90 9021 [21] Horowitz R A, Agard D A, Sedat J W and Woodcock C L 1994 J. Cell Biol. 131 1365

[22] Leuba S H, Yang G, Robert C, Samori B, van Holde K, Zlatanova J and Bustamante C 1994 Proc. Natl Acad.

Sci. USA 91 11621

[23] Bednar J, Horowitz R A, Grigoryev S A, Carruthers L M, Hansen J C, Koster A J and Woodcock C L 1998 Proc. Natl Acad. Sci. USA 95 14173

[24] Schiessel H, Gelbart W M and Bruinsma R 2001 Biophys. J. 80 1940 [25] Workman J L and Kingston R E 1998 Annu. Rev. Biochem. 67 545 [26] Widom J 1998 Annu. Rev. Biophys. Struct. 27 285

[27] Polach K J and Widom J 1995 J. Mol. Biol. 254 130 [28] Polach K J and Widom J 1996 J. Mol. Biol. 258 800

[29] Pennings S, Meersseman G and Bradbury E M 1991 J. Mol. Biol. 220 101 [30] Meersseman G, Pennings S and Bradbury E M 1992 EMBO J. 11 2951

[31] Pennings S, Meersseman G and Bradbury E M 1994 Proc. Natl Acad. Sci. 91 10275 [32] Varga-Weisz P D and Becker P B 1998 Curr. Opin. Cell Biol. 10 346

[33] Guschin D and Wolffe A P 1999 Curr. Biol. 9 R742 [34] Peterson C L 2000 FEBS Lett. 476 68

[35] Flaus A and Owen-Hughes T 2001 Curr. Opin. Genet. Dev. 11 148 [36] Studitsky V M, Clark D J and Felsenfeld G 1994 Cell 76 371 [37] Studitsky V M, Clark D J and Felsenfeld G 1995 Cell 83 19

[38] Felsenfeld G, Boyes J, Chung J, Clark D and Studitsky V 1996 Proc. Natl Acad. Sci. USA 93 9384 [39] Studitsky V M, Kassavetis G A, Geiduschek E P and Felsenfeld G 1997 Science 278 1960 [40] Felsenfeld G, Clark D and Studitsky V 2000 Biophys. Chem. 86 231

[41] Luger K and Richmond T J 1998 Curr. Opin. Genet. Dev. 8 140

[42] Grosberg A Yu, Nguyen T T and Shklovskii B I 2002 Rev. Mod. Phys. 74 329 [43] Park S Y, Bruinsma R F and Gelbart W M 1999 Europhys. Lett. 46 454 [44] Mateescu E M, Jeppesen C and Pincus P 1999 Europhys. Lett. 46 493 [45] Gurovitch E and Sens P 1999 Phys. Rev. Lett. 82 339

[46] Netz R R and Joanny J-F 1999 Macromolecules 32 9026 [47] Kunze K-K and Netz R R 2000 Phys. Rev. Lett. 85 4389 [48] Nguyen T T and Shklovskii B I 2001 Physica A 293 324 [49] Nguyen T T and Shklovskii B I 2001 J. Chem. Phys. 114 5905 [50] Nguyen T T and Shklovskii B I 2001 J. Chem. Phys. 115 7298

[51] Schiessel H, Bruinsma R F and Gelbart W M 2001 J. Chem. Phys. 115 7245

[52] Nguyen T T, Grosberg A Yu and Shklovskii B I 2001 Electrostatic Effects in Soft Matter and Biophysics ed C Holm, P K´ekicheff and R Podgornik (Dordrecht: Kluwer) p 469

[53] Gelbart W M 2001 Electrostatic Effects in Soft Matter and Biophysics ed C Holm, P K´ekicheff and R Podgornik (Dordrecht: Kluwer) p 53

[54] Kunze K-K and Netz R R 2002 Phys. Rev. E 66 011918 [55] Schiessel H 2003 Macromolecules at press

[56] Odijk T 1980 Macromolecules 13 1542

[57] Pincus P A, Sandroff C J and Witten T A 1984 J. Physique 45 725 [58] von Goeler F and Muthukumar M 1994 J. Chem. Phys. 100 7796 [59] Wallin T and Linse P 1996 Langmuir 12 305

[60] Wallin T and Linse P 1996 J. Phys. Chem. 100 17873 [61] Wallin T and Linse P 1997 J. Phys. Chem. B 101 5506 [62] Wallin T and Linse P 1998 J. Chem. Phys. 109 5089

[63] Haronska P, Vilgis T A, Grottenm¨uller R and Schmidt M 1998 Macromol. Theory Simul. 7 241 [64] Jonsson M and Linse P 2001 J. Chem. Phys. 115 3406

[65] Chodanowski P and Stoll S 2001 Macromolecules 34 2320

[66] Sakaue T, Yoshikawa K, Yoshimura S H and Takeyasu K 2001 Phys. Rev. Lett. 87 078105 [67] Messina R, Holm C and Kremer K 2002 Phys. Rev. E 65 041805

[68] Messina R, Holm C and Kremer K 2002 J. Chem. Phys. 117 2947 [69] Jonsson M and Linse P 2001 J. Chem. Phys. 115 10975 [70] Akinchina A and Linse P 2002 Macromolecules 35 5183

[71] Dzubiella J, Moreira A G and Pincus P A 2003 Macromolecules 36 1741 [72] Yager T D, McMurray C T and van Holde K E 1989 Biochemistry 28 2271 [73] Marky N L and Manning G S 1991 Biopolymers 31 1543

[74] Schiessel H, Rudnick J, Bruinsma R and Gelbart W M 2000 Europhys. Lett. 51 237 [75] Schiessel H, Widom J, Bruinsma R F and Gelbart W M 2001 Phys. Rev. Lett. 86 4414

Schiessel H, Widom J, Bruinsma R F and Gelbart W M 2002 Phys. Rev. Lett. 88 129902 [76] Kuli´c I and Schiessel H 2003 Biophys. J. at press

[77] Kuli´c I and Schiessel H 2003 Phys. Rev. Lett. submitted [78] de Gennes P G 1971 J. Chem. Phys. 55 572

[79] de Gennes P-G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press) [80] Doi M and Edwards S F 1986 The Theory of Polymer Dynamcis (Oxford: Clarendon)

[81] Cui Y and Bustamante C 2000 Proc. Natl Acad. Sci. USA 97 127

[82] Bennink M L, Leuba S H, Leno G H, Zlatanova J, de Grooth B G and Greve J 2001 Nat. Struct. Biol. 8 606 [83] Brower-Toland B D, Smith C L, Yeh R C, Lis J T, Peterson C L and Wang M D 2002 Proc. Natl Acad. Sci.

USA 99 1960

[84] Ben-Ha¨ım E, Lesne A and Victor J-M 2001 Phys. Rev. E 64 0519219 [85] Victor J-M, Ben-Ha¨ım E and Lesne A 2002 Phys. Rev. E 66 060901(R) [86] Katritch V, Bustamante C and Olson W K 2000 J. Mol. Biol. 295 29

[87] Wedemann G and Langowski J 2002 Biophys. J. 82 2847

[88] Mangenot S, Leforestier A, Vachette P, Durand D and Livolant F 2002 Biophys. J. 82 345 [89] Mangenot S, Raspaud E, Tribet C, Belloni L and Livolant F 2002 Eur. Phys. J. E 7 221 [90] Marko J F and Siggia E D 1997 Biophys. J. 73 2

[91] Schiessel H 2002 Europhys. Lett. 58 140

[92] Houchmandzadeh B, Marko J F, Chatenay D and Libchaber A 1997 J. Cell. Biol. 139 1 [93] Poirier M, Eroglu S, Chatenay D and Marko J F 2000 Mol. Biol. Cell 11 269

[94] Poirier M G, Nemani A, Gupta P, Eroglu S and Marko J F 2001 Phys. Rev. Lett. 86 360 [95] Poirier M G, Monhait T and Marko J F 2002 J. Cell. Biochem. 85 422

[96] Marko J F and Siggia E D 1997 Mol. Biol. Cell 8 2217

[97] Arents G, Burlingame R W, Wang B-C, Love W E and Moudrianakis E N 1991 Proc. Natl Acad. Sci. USA 88 10148

[98] Anderson J D and Widom J 2000 J. Mol. Biol. 296 979 [99] Hagerman P J 1988 Annu. Rev. Biophys. Biophys. Chem. 17 265 [100] Harries R A and Hearst J E 1966 J. Chem. Phys. 44 2595 [101] Strauss J K and Maher L J 1994 Science 266 1829

[102] Braunlin W H, Strick T J and Record M T 1982 Biopolymers 21 1301 [103] Mascotti D P and Lohmann T M 1990 Proc. Natl Acad. Sci. USA 87 3142 [104] R¨adler J O, Koltover I, Salditt T and Safinya C R 1999 Science 275 810 [105] Koltover I, Salditt T and Safinya C R 1999 Biophys. J. 77 915

[106] Record M T, Anderson C F and Lohmann T M 1978 Q. Rev. Biophys. 11 103 [107] Bruinsma R 1998 Eur. Phys. J. B 4 75

[108] Harries D, May S, Gelbart W M and Ben-Shaul A 1998 Biophys. J. 75 159 [109] Sens P and Joanny J-F 2000 Phys. Rev. Lett. 84 4862

[110] Oosawa F 1971 Polyelectrolytes (New York: Dekker) [111] Manning G S 1978 Q. Rev. Biophys. 11 179

[112] Rouzina I and Bloomfield V A 1996 J. Phys. Chem. 100 4292

[113] Alexander S, Chaikin P M, Grant P, Morales G J, Pincus P and Hone D 1984 J. Chem. Phys. 80 5776 [114] Golestanian R 1999 Phys. Rev. Lett. 83 2473

Sens P 1999 Phys. Rev. Lett. 83 2474

[115] Netz R R and Joanny J-F 1999 Macromolecules 32 9013 [116] Schiessel H and Aranda-Espinoza H 2001 Eur. Phys. J. E 5 499

[117] Nguyen T T, Grosberg A Yu and Shklovskii B I 2000 J. Chem. Phys. 113 1110 [118] Ganachaud F, Ela¨ıssari A, Pichot F, Laayoun A and Cros P 1997 Langmuir 13 701

[119] Sukhorukov G B, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov Vi I and M¨ohwald H 1998 Polym. Adv.

Technol. 9 759

[120] Kabanov A V, Sergeyev V G, Pyshkina O A, Zinchenko A A, Zezin A B, Joosten J G H, Brackman J and Yoshikawa K 2000 Macromolecules 33 9587

[121] McQuigg D W, Kaplan J I and Dubin P L 1992 J. Phys. Chem. 96 1973 and references therein [122] Frank-Kamentskii M D 1997 Phys. Rep. 288 13

[123] Schlick T 1995 Curr. Opin. Struct. Biol. 5 245

[124] Love A E 1944 A Treatise of the Mathematical Theory of Elasticity 4th edn (New York: Dover) ch 18 and 19 [125] Nizette M and Goriely A 1999 J. Math. Phys. 40 2830

[126] Benham C J 1977 Proc. Natl Acad. Sci. USA 74 2397 [127] Benham C J 1979 Biopolymers 18 609

[128] Le Bret M 1979 Biopolymers 18 1709 [129] Le Bret M 1984 Biopolymers 23 1835

[130] Shi Y M and Hearst J E 1994 J. Chem. Phys. 101 5186 [131] Fain B and Rudnick J 1997 Phys. Rev. E 55 7364

[132] Swigdon D, Coleman B D and Tobias I 1998 Biophys. J. 74 2515 [133] Fain B and Rudnick J 1999 Phys. Rev. E 60 7239

[134] Coleman B D, Swigdon D and Tobias I 2000 Phys. Rev. E 61 747 [135] Zandi R and Rudnick J 2001 Phys. Rev. E 64 051918

[136] Yamakawa H and Stockmayer W 1972 J. Chem. Phys. 57 2843 [137] Beard P 1978 Cell 15 955

[138] Spadafora C, Oudet P and Chambon P 1979 Eur. J. Biochem. 100 225 [139] Watkins J F and Smerdon M J 1985 Biochemistry 24 7279

[140] Simpson R T and Stafford D W 1983 Proc. Natl Acad. Sci. USA 50 51

[141] Wu H-M and Crothers D M 1984 Nature 308 509

[142] Loomans D, Schiessel H and Blumen A 1997 J. Chem. Phys. 107 2636 [143] Schiessel H, Sokolov I M and Blumen A 1997 Phys. Rev. E 56 R2390 [144] Schwinefus J J and Bloomfield V A 2000 Biopolymers 54 572 [145] Ura K, Nightingale K and Wolffe A P 1996 EMBO J. 15 4959

[146] Ura K, Kurumizaka H, Dimitrov S, Almouzni G and Wolffe A P 1997 EMBO J. 16 2096 [147] Flaus A, Luger K, Tan S and Richmond T J 1996 Proc. Natl Acad. Sci. USA 93 1370 [148] Flaus A and Richmond T J 1998 J. Mol. Biol. 275 427

[149] Hamiche A, Kang J-G, Dennis C, Xiao H and Wu C 2001 Proc. Natl Acad. Sci. USA 98 14316

[150] van Holde K E and Yager T D 1985 Structure and Function of the Genetic Apparatus (NATO ASI series A) vol 98, ed C Nicolini and P O P Ts’o p 35

[151] Sukhishvili S A, Chen Y, M¨uller J D, Gratton E, Schweizer K S and Granick S 2000 Nature 406 146 [152] Sukhishvili S A, Chen Y, M¨uller J D, Gratton E, Schweizer K S and Granick S 2002 Macromolecules 35 1776 [153] Abramowitz M and Stegun I 1972 Handbook of Mathematical Functions (New York: Dover)

[154] Bouchaud J P and Georges A 1990 Phys. Rep. 195 127

[155] Klafter J, Shlesinger M F and Zumofen G 1993 Chem. Phys. 177 821 [156] Sokolov I M, Mai J and Blumen A 1997 Phys. Rev. Lett. 79 857

[157] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco, CA: Freeman) [158] de Cloizeaux J and Jannick G 1990 Polymers in Solution (Oxford: Clarendon) [159] Frenkel J and Kontorova T 1938 Zh. Eksp. Teor. Fiz. 8 1340

Frenkel J and Kontorova T 1939 J. Physique (Moscow) 1 137 [160] Floria L M and Mazo J J 1996 Adv. Phys. 45 505

[161] Braun O M, Dauxois T, Paliy M V and Peyrard M 1997 Phys. Rev. Lett. 78 1295 [162] Strunz T and Elmer F-J 1998 Phys. Rev. E 58 1601

[163] Pietronero L, Schneider W R and Str¨assler S 1981 Phys. Rev. B 24 2187 [164] Aubry S 1983 J. Phys. 44 147

[165] Watanabe S, van der Zant H S J, Strogatz S H and Orlando T P 1996 Physica D 97 429 [166] Uhler W and Schilling R 1988 Phys. Rev. B 37 5787

[167] Schiessel H, Oshanin G, Cazabat A M and Moreau M 2002 Phys. Rev. E 66 056130 [168] Marko J F 1998 Phys. Rev. E 57 2134

[169] Marko J F 1997 Europhys. Lett. 38 183

[170] Kamien R D, Lubensky T V, Nelson P and O’Hern C S 1997 Europhys. Lett. 38 237 [171] Levinthal C and Crane H 1956 Proc. Natl Acad. Sci. USA 42 436

[172] Nelson P Proc. Natl Acad. Sci. USA 96 14342

[173] van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland) [174] Mattei S, Sampaolese B, De Santis P and Savino M 2002 Biophys. Chem. 97 173

[175] Anselmi C, Bocchinfuso G, De Santis P, Savino M and Scipioni A 2000 Biophys. J. 79 601 [176] Lorch Y, Zhang M and Kornberg R D 1999 Cell 96 389

[177] Bazett-Jones D P, Cˆot´e J, Landel C C, Peterson C L and Workman J L 1999 Mol. Cell. Biol. 19 1470 [178] L¨angst G and Becker P B 2001 Mol. Cell 8 1085

[179] Rees A R, Keller R W, Vesenka J P, Yang G and Bustamante C 1993 Science 260 1646 [180] Schulz A, Mucke N, Langowski J and Rippe K 1998 J. Mol. Biol. 283 821

[181] Rivetti C, Guthold M and Bustamante C 1999 EMBO J. 18 4464 [182] Kuli´c I 2002 private communication

[183] Woodcock C L and Dimitrov S 2001 Curr. Opin. Genet. Dev. 11 130 [184] Zlatanova J, Leuba S H and van Holde K 1998 Biophys. J. 74 2554 [185] Maret G 1976 PhD thesis Konstanz University

[186] Maret G, v. Schickfus M, Mayer A and Dransfeld K 1975 Phys. Rev. Lett. 35 397 [187] Maret G and Weill G 1983 Biopolymers 22 2727

[188] Martino J A, Katritch V and Olson W K 1999 Struct. Fold. Des. 7 1009 [189] Widom J 1992 Proc. Natl Acad. Sci. USA 89 1095

[190] Plewa J S and Witten T A 2000 J. Chem. Phys. 112 10042 [191] Stryer L 1995 Biochemistry 4th edn (New York: Freeman) p 420 [192] Mergell B, Schiessel H and Everaers R in preparation

[193] Daban J-R 2000 Biochemistry 39 3861

[194] Janninck G, Duplantier B and Sikorav J L 1996 Biophys. J. 71 451

[195] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D and Caron F 1996 Science 271 792 [196] Smith S B, Cui Y and Bustamante C 1996 Science 271 795

[197] Mergell B, Ejtehadi M J and Everaers R 2002 Phys. Rev. E 66 011903

[198] Nyrkova I A, Semenov A N, Joanny J-F and Khokhlov A R 1996 J. Physique II 6 1411 [199] Livolant F and Leforestier A 2000 Biophys. J. 78 2716

[200] Fraden S and Kamien R D 2000 Biophys. J. 78 2189

[201] Ehrlich L, M¨unkel C, Chirico G and Langowski J 1997 CABIOS 13 271 [202] Beard D A and Schlick T 2001 Structure 9 105

[203] M¨unkel C and Langowski J 1998 Phys. Rev. E 57 5888

[204] Ladoux B, Quivy J-P, Doyle P, du Roure O, Almouzni G and Viovy J-L 2000 Proc. Natl Acad. Sci. USA 97 14251

[205] Bennink M L, Pope L H, Leuba S H, de Grooth B G and Greve J 2001 Single Mol. 2 91 [206] Rief M, Gautel M, Oesterhelt F, Fernandez J and Gaub H 1997 Science 276 1109

[207] Oberhauser A, Hansma P, Carrion-Vazquez M and Fernandez J 2001 Proc. Natl Acad. Sci. USA 98 468 [208] Kuli´c I and Schiessel H Preprint

[209] Barrat J-L and Joanny J-F 1996 Adv. Chem. Phys. 94 1 [210] T ´oth K, Brun N and Langowski J 2001 Biochemistry 40 6921 [211] Grunstein M 1997 Nature 389 349

[212] Hansen J C, Tse C and Wolffe A P 1998 Biochemistry 37 17637 [213] Strahl B D and Allis D 2000 Nature 403 41

In document The physics of chromatin (pagina 68-76)

GERELATEERDE DOCUMENTEN