• No results found

Werking van de meetmethode

6 Conclusie en vervolg

In dit rapport is uitgelegd hoe de meetmethode is opgebouwd, wat de beoogde uitkomsten zijn en welke grenzen en beperkingen het kent. Op basis van deze principes wordt het milieukundige en economische model en de meetmethode voor de sociale impact op dit moment verder ontwikkeld. De verschillende case-studies worden gebruikt om beta-versies van de modellen en methoden te testen.

Zowel bij de milieukundige als bij de economische modellen is gebrek aan data of aan betrouwbare data een heikel punt. Om toch te zorgen voor een bruikbaar model is er voor gekozen zoveel mogelijk transparantie te bieden in de opbouw van het model en de gebruikte databronnen. Daarbij wordt ook aangegeven wat de kwaliteit is van de data. Door het model op te bouwen uit processtappen, zijn de berekeningen en de data eenvoudiger te gebruiken bij andere onderzoeken. De eerstvolgende stap is om het ecologische en economische model gereed te maken, zodat het getest kan worden in de case-studies. Hieruit verwachten we verbeteringen te vinden t.b.v. de inhoud en bruikbaarheid van de modellen. Om de sociale impact te meten wordt de methode van perceptiemeting verder ontwikkeld en getest bij de case Java-eiland. Daarnaast wordt gezocht naar andere (meer kwantitatieve) indicatoren die inzicht kunnen geven in de sociale impact.

Literatuurlijst

Referenties hoofdstuk 2, Milieukundige impact

Afval Overleg Orgaan. 2002. “Milieueffectrapport Landelijk Afvalbeheerplan Achtergronddocument A1.” 1–60. Amlinger, Florian, Stefan Peyr, and C. Cuhls Carsten. 2008. “Green House Gas Emissions from Composting and

Mechanical Biological Treatment.” Waste Management and Research 26(1):47–60.

Andersen, J. K., A. Boldrin, T. H. Christensen, and C. Scheutz. 2011. “Mass Balances and Life Cycle Inventory of Home Composting of Organic Waste.” Waste Management 31(9–10):1934–42.

Andersen, Jacob K., Alessio Boldrin, Thomas H. Christensen, and Charlotte Scheutz. 2010. “Mass Balances and Life-Cycle Inventory for a Garden Waste Windrow Composting Plant (Aarhus, Denmark).” Waste Management and Research 28(11):1010–20.

Astrup, Thomas Fruergaard, Davide Tonini, Roberto Turconi, and Alessio Boldrin. 2015. “Life Cycle Assessment of Thermal Waste-to-Energy Technologies: Review and Recommendations.” Waste Management 37:104–15. Batstone, D. J. et al. 2002. “The IWA Anaerobic Digestion Model No 1 (ADM1).” Water Science and Technology : A

Journal of the International Association on Water Pollution Research 45(10):65–73.

Bongochgetsakul, Nattakorn and Tetsuya Ishida. 2008. “A New Analytical Approach to Optimizing the Design of Large-Scale Composting Systems.” Bioresource Technology 99(6):1630–41.

Budzianowski, Wojciech M., Christophe E. Wylock, and Przemysław A. Marciniak. 2017. “Power Requirements of Biogas Upgrading by Water Scrubbing and Biomethane Compression: Comparative Analysis of Various Plant Configurations.” Energy Conversion and Management 141(1):2–19.

Cadena, Erasmo, Joan Colón, Adriana Artola, Antoni Sánchez, and Xavier Font. 2009. “Environmental Impact of Two Aerobic Composting Technologies Using Life Cycle Assessment.” International Journal of Life Cycle Assessment 14(5):401–10.

Chang, James I. and Tin En Hsu. 2008. “Effects of Compositions on Food Waste Composting.” Bioresource Technology 99(17):8068–74.

Treatment of Source-Separated Municipal Solid Wastes.” Energy and Environmental Science 5(2):5731–41. Colón, Joan et al. 2010. “Environmental Assessment of Home Composting.” Resources, Conservation and

Recycling 54(11):893–904.

CREM Waste Management. 2017. “Bepaling Voedselverspilling in Huishoudelijk Afval Nederland 2016 CREM Waste Management.”

Hao, Xiying and Mônica B. Benke. 2008. “Nitrogen Transformation and Losses during Composting and Mitigation Strategies.” Dynamic Soil, Dynamic Plant 2(1):10–18.

Hensema, A., Ligterink, N. & Geilenkirchen, G. (2013). VERSIT+ Emissiefactoren voor Standaard rekenmethode 1 en 2.

Hu, Chao, Bo Yan, Kai Jun Wang, and Xian Min Xiao. 2018. “Modeling the Performance of Anaerobic Digestion Reactor by the Anaerobic Digestion System Model (ADSM).” Journal of Environmental Chemical

Engineering 6(2):2095–2104.

Jensen, Morten Bang, Jacob Møller, and Charlotte Scheutz. 2017. “Assessment of a Combined Dry Anaerobic Digestion and Post-Composting Treatment Facility for Source-Separated Organic Household Waste, Using Material and Substance Flow Analysis and Life Cycle Inventory.” Waste Management 66:23–35.

Johnke, Bernt. 2003. “Emissions From Waste Incineration.” Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories 455–68.

Khuriati, Ainie, Muhammad Nur, and Istadi Istadi. 2015. “Modeling the Heating Value of Municipal Solid Waste Based on Ultimate Analysis Using Stepwise Multiple Linear Regression.” Journal of Engineering and Applied Science 12(9):1–8.

Lausselet, Carine, Francesco Cherubini, Gonzalo del Alamo Serrano, Michael Becidan, and Anders Hammer Strømman. 2016. “Life-Cycle Assessment of a Waste-to-Energy Plant in Central Norway: Current Situation and Effects of Changes in Waste Fraction Composition.” Waste Management 58:191–201.

Lesteur, M. et al. 2010. “Alternative Methods for Determining Anaerobic Biodegradability: A Review.” Process Biochemistry 45(4):431–40.

Margallo, M. et al. 2014. “Life Cycle Assessment Modelling of Waste-to-Energy Incineration in Spain and Portugal.” Waste Management and Research 32(6):492–99.

Martínez-Blanco, Julia et al. 2010. “The Use of Life Cycle Assessment for the Comparison of Biowaste Composting at Home and Full Scale.” Waste Management 30(6):983–94.

Mata-Alvarez, J., S. Macé, and P. Llabrés. 2000. “Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives.” Bioresource Technology 74(1):3–16.

Nielfa, A., R. Cano, and M. Fdz-Polanco. 2015. “Theoretical Methane Production Generated by the Co-Digestion of Organic Fraction Municipal Solid Waste and Biological Sludge.” Biotechnology Reports 5(1):14–21. Petric, Ivan and Nesib Mustafić. 2015. “Dynamic Modeling the Composting Process of the Mixture of Poultry

Manure and Wheat Straw.” Journal of Environmental Management 161:392–401.

Ploos van Amstel, W., Balm, S., Warmerdam, J., Boerema, M., Altenburg, M., Rieck, F. & Peters, T. (2018). Stadslogistiek: licht en elektrisch. LEVV-LOGIC: onderzoek naar lichte elektrische vrachtvoertuigen. Opgehaald van: http://www.hva.nl/binaries/content/assets/subsites/kc-techniek/publicaties/2018_levv-logic-eindpublicatie_28aug2018.pdf

Ripa, M., G. Fiorentino, V. Vacca, and S. Ulgiati. 2017. “The Relevance of Site-Specific Data in Life Cycle

Assessment (LCA). The Case of the Municipal Solid Waste Management in the Metropolitan City of Naples (Italy).” Journal of Cleaner Production 142:445–60.

Saer, Alex, Stephanie Lansing, Nadine H. Davitt, and Robert E. Graves. 2013. “Life Cycle Assessment of a Food Waste Composting System: Environmental Impact Hotspots.” Journal of Cleaner Production 52:234–44. Sole-Mauri, Francina, Josep Illa, Albert Magrí, Francesc X. Prenafeta-Boldú, and Xavier Flotats. 2007. “An

Integrated Biochemical and Physical Model for the Composting Process.” Bioresource Technology 98(17):3278–93.

Sonesson, Ulf. 1996. “Modelling of the Compost and Transport Process in the ORWARE Simulation Model. Report 214.” 35.

Weiland, Peter. 2010. “Biogas Production: Current State and Perspectives.” Applied Microbiology and Biotechnology 85(4):849–60.

Zambra, C. E., N. O. Moraga, and M. Escudey. 2011. “Heat and Mass Transfer in Unsaturated Porous Media: Moisture Effects in Compost Piles Self-Heating.” International Journal of Heat and Mass Transfer 54(13–

14):2801–10.

Referenties hoofdstuk 3, Economische impact

Bierer, A. et al (2015). Integrating life cycle costing and life cycle assessment using extended material flow cost accounting, Journal of Cleaner Production 108 (2015) 1289-1301

Ciroth, A. (2008). Cost data quality considerations for eco-efficiency measures. Ecological Economics 68 (2009) 1583-1590

De Menna, F. et al (2018) Life cycle costing of food waste: A review of methodological approaches. Waste Management 73 (2018) 1–13

Hokannen, J., Salminem, P. (1997). Choosing a solid waste management system using multicriteria decision analysis. European Journal of Operational Research 98 (1997) 19-36

Hunkeler, D., Lichtenvort, K., Rebitzer, G., 2008. Environmental Life Cycle Costing. CRC Press.

Martinez-Sanchez, V. et al, 2014, Life cycle costing of waste management systems: Overview, calculation principles and case studies. Waste Management 36 (2015) 343–355

Massarutto, A. et al (2011). Material and energy recovery in integrated waste management systems: A life-cycle costing approach. Elsevier, Waste Management 31 (2011) 2102–2111

Morrissey, A.J., Browne J. (2003), Waste management models and their application to sustainable waste management, 2003, Waste Management 24 (2004) 297–308

Mouter, N. (2013) De donkere kanten van het gebruik van onderzoek, modellen en de MKBA in de besluitvorming, Bijdrage aan het Colloquium Vervoersplanologisch Speurwerk 2013

Schmidt, W.P. (2003) Life cycle costing as part of design-for-environment, The International Journal of Life Cycle Assessment, September 2003, Volume 8, Issue 5, pp 253–256

Swarr, T.E. et al (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess (2011) 16:389– 391

Valenzuela-venegas, G., Salgado, J. C., & Díaz-alvarado, F. A. (2016). Sustainability indicators for the assessment of eco-industrial parks : classification and criteria for selection. Journal of Cleaner Production, 133, 99– 116. https://doi.org/10.1016/j.jclepro.2016.05.113

Referenties hoofdstuk 4, Sociale impact

Montaño, D. E. (2016). Health Behavior and Health Education: Theory, Research, and Practice, (January 2008). Ginkel, R. Van. (n.d.). Bouwen aan bindingen : Sociale cohesie in Zoetermeer.

Van, S. (2014). DRAFT : please do not cite or redistribute without permission from author, 1–80. Berger-schmitt, R. (2019). Social Indicators Research, 58(1), 403–428.

Valenzuela-venegas, G., Salgado, J. C., & Díaz-alvarado, F. A. (2016). Sustainability indicators for the assessment of eco-industrial parks : classification and criteria for selection. Journal of Cleaner Production, 133, 99–116. https://doi.org/10.1016/j.jclepro.2016.05.113

Murphy, K. (2012). The social pillar of sustainable development : a literature review and framework for policy analysis The social pillar of sustainable development : a literature review and framework for policy analysis, 7733. https://doi.org/10.1080/15487733.2012.11908081

Kühnen & Hahn (2017). Indicators in Social Life Cycle Assessment A Review of Frameworks , Theories , and Empirical Experience, 21(6), 1547–1565. https://doi.org/10.1111/jiec.12663

Gallego, D., & Mack, A. (2010). Sustainability assessment of energy technologies via social indicators : Results of a survey among European energy experts. Energy Policy, 38(2), 1030–1039.

https://doi.org/10.1016/j.enpol.2009.10.055

Dempsey, N., Bramley, G., Power, S., & Brown, C. (2009). The Social Dimension of Sustainable Development : Defining Urban Social Sustainability.

Esteves, A. M., Franks, D., & Vanclay, F. (2012). Social impact assessment : the state of the art, 5517. https://doi.org/10.1080/14615517.2012.660356