• No results found

The role of NAFLD in the development of insulin resistance remains controversial, even when comparing studies in which body weight gain has been ruled out as a confounding factor. In general, we believe that NAFLD cannot be considered to be one of the main drivers of insulin resistance in mice, but there is more likely to be a dangerous liaison between the two. Whether this is also the case in human NAFLD remains to be determined.

As alterations in body weight or fat mass appear to be a driving factor in the intricate relationship between NAFLD and systemic as well hepatic insulin resistance in many studies, this supports the idea that adiposity is more important than NAFLD in the etiology of insulin resistance. On the one hand steatosis, inflammation and insulin resistance may simply be correlated via the common driver of obesity, suggesting that there is no causal relationship in either direction, while, on the other hand, it is possible that NAFLD only causes insulin resistance under certain circumstances. These circumstances are likely to include environmental factors, such as gut microbiota and dietary composition. In addition, the intracellular localization of lipids, fatty acid composition in the liver, and the amount and duration of inflammation may determine if NAFLD causes insulin resistance.

Moreover, it may also depend on whether adipose tissue inflammation is affected.

To further investigate the circumstances under which NAFLD causes insulin resistance, we recommend taking lipid species and their localization into account as markers of steatosis in future studies. We further consider it important to measure inflammatory endpoints (such as cytokines, chemokines, and markers for macrophages

and Kupffer cells) to determine whether modulations in the pathways involved in inflammation actually alter the levels of inflammation. Since inflammation is tightly controlled, the many negative-feedback pathways that regulate it could interfere with the outcome and detailed measurements might lead to surprising results. In this respect, it is also important to measure if inflammation in adipose tissue is affected. Moreover, discrepancies between the various reports offer an opportunity to investigate the underlying differences and to learn more about the role of environmental factors in the disease process. For example, NAFLD is associated with insulin resistance in some models of the disease, but not in all. It would be interesting to investigate what underlies the differences between these NAFLD models. Finally, by studying more liver-specific models and gain-of-function models, greater insight into the role of NAFLD in insulin resistance will be obtained. We are certain that, with the techniques now available, many factors that play a role in the etiology of insulin can be elucidated in the near future.

Acknowledgements

The authors would like to thank Jackie Senior for editing the manuscript.

Financial support: This study was performed within the framework of CTMM, the Dutch Center for Translational Molecular Medicine (www.ctmm.nl), project PREDICCt (grant 104), and it was also supported by the Dutch Heart Foundation (grant 01C-104) the Dutch Kidney Foundation (grant 01C-01C-104) and the Dutch Diabetes Research Foundation (grant 2009.80.016; 2004.00.018). The funders had no role in the study design, the collection, analysis and interpretation of the data, the writing of the manuscript and the decision to submit the article for publication.

7 References

1. B.B. Kahn, Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance, Cell 92 (1998) 593-596.

2. R. Taylor, Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause, Diabetologia 51 (2008) 1781-1789.

3. Y. Kawano, D.E. Cohen, Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease, J. Gastroenterol. 48 (2013) 434-441.

4. J.C. Cohen, J.D. Horton, H.H. Hobbs, Human fatty liver disease: old questions and new insights, Science 332 (2011) 1519-1523.

5. D.Y. Oh, H. Morinaga, S. Talukdar, E.J. Bae, J.M. Olefsky, Increased macrophage migration into adipose tissue in obese mice, Diabetes 61 (2012) 346-354.

6. A.E. Obstfeld, E. Sugaru, M. Thearle, A.M. Francisco, C. Gayet, H.N. Ginsberg, E.V. Ables, A.W. Ferrante Jr, C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis, Diabetes 59 (2010) 916-925.

7. M. Blachier, H. Leleu, M. Peck-Radosavljevic, D.C. Valla, F. Roudot-Thoraval, The burden of liver disease in Europe: a review of available epidemiological data, J. Hepatol. 58 (2013) 593-608.

8. A.M. Johnson, J.M. Olefsky, The origins and drivers of insulin resistance, Cell 152 (2013) 673-684.

9. V.T. Samuel, K.F. Petersen, G.I. Shulman, Lipid-induced insulin resistance: unravelling the mechanism, Lancet 375 (2010) 2267-2277.

10. V.T. Samuel, G.I. Shulman, Mechanisms for insulin resistance: common threads and missing links, Cell 148 (2012) 852-871.

11. N. Stefan, H.U. Haring, The metabolically benign and malignant fatty liver, Diabetes 60 (2011) 2011-2017.

12. P.J. Klover, R.A. Mooney, Hepatocytes: critical for glucose homeostasis, Int. J. Biochem. Cell Biol. 36 (2004) 753-758.

13. A.C. Konner, J.C. Bruning, Selective insulin and leptin resistance in metabolic disorders, Cell.

Metab. 16 (2012) 144-152.

14. I. Shimomura, M. Matsuda, R.E. Hammer, Y. Bashmakov, M.S. Brown, J.L. Goldstein, Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice, Mol. Cell 6 (2000) 77-86.

15. S.B. Biddinger, A. Hernandez-Ono, C. Rask-Madsen, J.T. Haas, J.O. Aleman, R. Suzuki, E.F.

Scapa, C. Agarwal, M.C. Carey, G. Stephanopoulos, D.E. Cohen, G.L. King, H.N. Ginsberg,

C.R. Kahn, Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis, Cell. Metab. 7 (2008) 125-134.

16. M.S. Brown, J.L. Goldstein, Selective versus total insulin resistance: a pathogenic paradox, Cell. Metab. 7 (2008) 95-96.

17. S. Li, M.S. Brown, J.L. Goldstein, Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis, Proc. Natl.

Acad. Sci. U. S. A. 107 (2010) 3441-3446.

18. X. Wu, K.J. Williams, NOX4 pathway as a source of selective insulin resistance and responsiveness, Arterioscler. Thromb. Vasc. Biol. 32 (2012) 1236-1245.

19. Y.F. Otero, J.M. Stafford, O.P. McGuinness, Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux, J. Biol. Chem. 289 (2014) 20462-20469.

20. L. Hebbard, J. George, Animal models of nonalcoholic fatty liver disease, Nat. Rev.

Gastroenterol. Hepatol. 8 (2011) 35-44.

21. H. Doege, D. Grimm, A. Falcon, B. Tsang, T.A. Storm, H. Xu, A.M. Ortegon, M. Kazantzis, M.A. Kay, A. Stahl, Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia, J. Biol. Chem. 283 (2008) 22186-22192.

22. B. Knebel, J. Haas, S. Hartwig, S. Jacob, C. Kollmer, U. Nitzgen, D. Muller-Wieland, J. Kotzka, Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass, PLoS One 7 (2012) e31812.

23. R. Dentin, F. Benhamed, I. Hainault, V. Fauveau, F. Foufelle, J.R. Dyck, J. Girard, C. Postic, Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice, Diabetes 55 (2006) 2159-2170.

24. J.M. Orellana-Gavalda, L. Herrero, M.I. Malandrino, A. Paneda, M. Sol Rodriguez-Pena, H.

Petry, G. Asins, S. Van Deventer, F.G. Hegardt, D. Serra, Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation, Hepatology 53 (2011) 821-832.

25. N. Pamir, T.S. McMillen, K.J. Kaiyala, M.W. Schwartz, R.C. LeBoeuf, Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status, Endocrinology 150 (2009) 4124-4134.

26. J.M. Schattenberg, P.R. Galle, Animal models of non-alcoholic steatohepatitis: of mice and man, Dig. Dis. 28 (2010) 247-254.

27. D.P. Koonen, R.L. Jacobs, M. Febbraio, M.E. Young, C.L. Soltys, H. Ong, D.E. Vance, J.R. Dyck, Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced

7

obesity, Diabetes 56 (2007) 2863-2871.

28. A. Grefhorst, T.H. van Dijk, A. Hammer, F.H. van der Sluijs, R. Havinga, L.M. Havekes, J.A.

Romijn, P.H. Groot, D.J. Reijngoud, F. Kuipers, Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice, Am. J.

Physiol. Endocrinol. Metab. 289 (2005) E829-38.

29. M. Stefanovic-Racic, G. Perdomo, B.S. Mantell, I.J. Sipula, N.F. Brown, R.M. O’Doherty, A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels, Am. J. Physiol. Endocrinol. Metab. 294 (2008) E969-77.

30. J.W. Wu, S.P. Wang, F. Alvarez, S. Casavant, N. Gauthier, L. Abed, K.G. Soni, G. Yang, G.A.

Mitchell, Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis, Hepatology 54 (2011) 122-132.

31. J. Monsenego, A. Mansouri, M. Akkaoui, V. Lenoir, C. Esnous, V. Fauveau, V. Tavernier, J.

Girard, C. Prip-Buus, Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis, J. Hepatol. 56 (2012) 632-639.

32. J.A. Ibdah, P. Perlegas, Y. Zhao, J. Angdisen, H. Borgerink, M.K. Shadoan, J.D. Wagner, D.

Matern, P. Rinaldo, J.M. Cline, Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic steatosis and insulin resistance, Gastroenterology 128 (2005) 1381-1390.

33. N. Shindo, T. Fujisawa, K. Sugimoto, K. Nojima, A. Oze-Fukai, Y. Yoshikawa, X. Wang, O.

Yasuda, H. Ikegami, H. Rakugi, Involvement of microsomal triglyceride transfer protein in nonalcoholic steatohepatitis in novel spontaneous mouse model, J. Hepatol. 52 (2010) 903-912.

34. A. Falcon, H. Doege, A. Fluitt, B. Tsang, N. Watson, M.A. Kay, A. Stahl, FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase, Am. J. Physiol.

Endocrinol. Metab. 299 (2010) E384-93.

35. R.V. Farese Jr, R. Zechner, C.B. Newgard, T.C. Walther, The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance, Cell. Metab. 15 (2012) 570-573.

36. J.A. Chavez, S.A. Summers, A ceramide-centric view of insulin resistance, Cell. Metab. 15 (2012) 585-594.

37. S. Cases, S.J. Stone, P. Zhou, E. Yen, B. Tow, K.D. Lardizabal, T. Voelker, R.V. Farese Jr, Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members, J. Biol. Chem. 276 (2001) 38870-38876.

38. C.S. Choi, D.B. Savage, A. Kulkarni, X.X. Yu, Z.X. Liu, K. Morino, S. Kim, A. Distefano, V.T.

Samuel, S. Neschen, D. Zhang, A. Wang, X.M. Zhang, M. Kahn, G.W. Cline, S.K. Pandey, J.G.

Geisler, S. Bhanot, B.P. Monia, G.I. Shulman, Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance, J. Biol. Chem. 282 (2007) 22678-22688.

39. S.M. Chan, R.Q. Sun, X.Y. Zeng, Z.H. Choong, H. Wang, M.J. Watt, J.M. Ye, Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress, Diabetes 62 (2013) 2095-2105.

40. M. Monetti, M.C. Levin, M.J. Watt, M.P. Sajan, S. Marmor, B.K. Hubbard, R.D. Stevens, J.R.

Bain, C.B. Newgard, S. Farese RV, A.L. Hevener, R.V. Farese Jr, Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver, Cell. Metab. 6 (2007) 69-78.

41. K. Minehira, S.G. Young, C.J. Villanueva, L. Yetukuri, M. Oresic, M.K. Hellerstein, R.V. Farese Jr, J.D. Horton, F. Preitner, B. Thorens, L. Tappy, Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice, J. Lipid Res. 49 (2008) 2038-2044.

42. J.M. Brown, J.L. Betters, C. Lord, Y. Ma, X. Han, K. Yang, H.M. Alger, J. Melchior, J. Sawyer, R. Shah, M.D. Wilson, X. Liu, M.J. Graham, R. Lee, R. Crooke, G.I. Shulman, B. Xue, H. Shi, L. Yu, CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance, J. Lipid Res. 51 (2010) 3306-3315.

43. J.N. van der Veen, S. Lingrell, D.E. Vance, The membrane lipid phosphatidylcholine is an unexpected source of triacylglycerol in the liver, J. Biol. Chem. 287 (2012) 23418-23426.

44. M. Martinez-Una, M. Varela-Rey, A. Cano, L. Fernandez-Ares, N. Beraza, I. Aurrekoetxea, I. Martinez-Arranz, J.L. Garcia-Rodriguez, X. Buque, D. Mestre, Z. Luka, C. Wagner, C.

Alonso, R.H. Finnell, S.C. Lu, M.L. Martinez-Chantar, P. Aspichueta, J.M. Mato, Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis, Hepatology 58 (2013) 1296-1305.

45. R.S. Rector, E.M. Morris, S. Ridenhour, G.M. Meers, F.F. Hsu, J. Turk, J.A. Ibdah, Selective hepatic insulin resistance in a murine model heterozygous for a mitochondrial trifunctional protein defect, Hepatology 57 (2013) 2213-2223.

46. F. Benhamed, P.D. Denechaud, M. Lemoine, C. Robichon, M. Moldes, J. Bertrand-Michel, V. Ratziu, L. Serfaty, C. Housset, J. Capeau, J. Girard, H. Guillou, C. Postic, The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans, J. Clin. Invest. 122 (2012) 2176-2194.

47. F.R. Jornayvaz, A.L. Birkenfeld, M.J. Jurczak, S. Kanda, B.A. Guigni, D.C. Jiang, D. Zhang, H.Y.

Lee, V.T. Samuel, G.I. Shulman, Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 5748-5752.

7

48. S.M. Turpin, A.J. Hoy, R.D. Brown, C.G. Rudaz, J. Honeyman, M. Matzaris, M.J. Watt, Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice, Diabetologia 54 (2011) 146-156.

49. H. Haring, D. Kirsch, B. Obermaier, B. Ermel, F. Machicao, Tumor-promoting phorbol esters increase the Km of the ATP-binding site of the insulin receptor kinase from rat adipocytes, J.

Biol. Chem. 261 (1986) 3869-3875.

50. A. Karasik, P.L. Rothenberg, K. Yamada, M.F. White, C.R. Kahn, Increased protein kinase C activity is linked to reduced insulin receptor autophosphorylation in liver of starved rats, J.

Biol. Chem. 265 (1990) 10226-10231.

51. S. Jacobs, N.E. Sahyoun, A.R. Saltiel, P. Cuatrecasas, Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C, Proc. Natl. Acad. Sci. U. S. A.

80 (1983) 6211-6213.

52. J.A. Chavez, T.A. Knotts, L.P. Wang, G. Li, R.T. Dobrowsky, G.L. Florant, S.A. Summers, A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids, J. Biol. Chem. 278 (2003) 10297-10303.

53. M. Pagadala, T. Kasumov, A.J. McCullough, N.N. Zein, J.P. Kirwan, Role of ceramides in nonalcoholic fatty liver disease, Trends Endocrinol. Metab. 23 (2012) 365-371.

54. C.C. Chen, Y.T. Sun, J.J. Chen, Y.J. Chang, Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and IkappaB kinase 1/2 in human alveolar epithelial cells, Mol.

Pharmacol. 59 (2001) 493-500.

55. D.D. Li, L.L. Wang, R. Deng, J. Tang, Y. Shen, J.F. Guo, Y. Wang, L.P. Xia, G.K. Feng, Q.Q.

Liu, W.L. Huang, Y.X. Zeng, X.F. Zhu, The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells, Oncogene 28 (2009) 886-898.

56. J.A. Chavez, M.M. Siddique, S.T. Wang, J. Ching, J.A. Shayman, S.A. Summers, Ceramides and glucosylceramides are independent antagonists of insulin signaling, J. Biol. Chem. 289 (2014) 723-734.

57. R. Jennemann, U. Rothermel, S. Wang, R. Sandhoff, S. Kaden, R. Out, T.J. van Berkel, J.M.

Aerts, K. Ghauharali, C. Sticht, H.J. Grone, Hepatic glycosphingolipid deficiency and liver function in mice, Hepatology 51 (2010) 1799-1809.

58. L.T. Boni, R.R. Rando, The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols, J. Biol. Chem. 260 (1985) 10819-10825.

59. F.R. Jornayvaz, G.I. Shulman, Diacylglycerol activation of protein kinase Cepsilon and hepatic

insulin resistance, Cell. Metab. 15 (2012) 574-584.

60. T. Galbo, R.J. Perry, M.J. Jurczak, J.P. Camporez, T.C. Alves, M. Kahn, B.A. Guigni, J. Serr, D.

Zhang, S. Bhanot, V.T. Samuel, G.I. Shulman, Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo, Proc. Natl.

Acad. Sci. U. S. A. 110 (2013) 12780-12785.

61. V.T. Samuel, Z.X. Liu, A. Wang, S.A. Beddow, J.G. Geisler, M. Kahn, X.M. Zhang, B.P. Monia, S.

Bhanot, G.I. Shulman, Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease, J. Clin. Invest. 117 (2007) 739-745.

62. H. Shi, M.V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, J.S. Flier, TLR4 links innate immunity and fatty acid-induced insulin resistance, J. Clin. Invest. 116 (2006) 3015-3025.

63. P. Puri, R.A. Baillie, M.M. Wiest, F. Mirshahi, J. Choudhury, O. Cheung, C. Sargeant, M.J.

Contos, A.J. Sanyal, A lipidomic analysis of nonalcoholic fatty liver disease, Hepatology 46 (2007) 1081-1090.

64. J.L. Cantley, T. Yoshimura, J.P. Camporez, D. Zhang, F.R. Jornayvaz, N. Kumashiro, F. Guebre-Egziabher, M.J. Jurczak, M. Kahn, B.A. Guigni, J. Serr, J. Hankin, R.C. Murphy, G.W. Cline, S. Bhanot, V.P. Manchem, J.M. Brown, V.T. Samuel, G.I. Shulman, CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 1869-1874.

65. W. Liang, J.H. Lindeman, A.L. Menke, D.P. Koonen, M. Morrison, L.M. Havekes, A.M. van den Hoek, R. Kleemann, Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1beta-induced chronic inflammation, Lab. Invest. 94 (2014) 491-502.

66. S.E. Shoelson, J. Lee, M. Yuan, Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance, Int. J. Obes. Relat. Metab. Disord. 27 Suppl 3 (2003) S49-52.

67. P.P. Tak, G.S. Firestein, NF-kappaB: a key role in inflammatory diseases, J. Clin. Invest. 107 (2001) 7-11.

68. D. Cai, M. Yuan, D.F. Frantz, P.A. Melendez, L. Hansen, J. Lee, S.E. Shoelson, Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB, Nat.

Med. 11 (2005) 183-190.

69. M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G.

Poli, J. Olefsky, M. Karin, IKK-beta links inflammation to obesity-induced insulin resistance, Nat. Med. 11 (2005) 191-198.

70. D. Hultmark, Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family, Biochem. Biophys. Res. Commun. 199 (1994) 144-146.

7

71. K. Miura, Y. Kodama, S. Inokuchi, B. Schnabl, T. Aoyama, H. Ohnishi, J.M. Olefsky, D.A.

Brenner, E. Seki, Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice, Gastroenterology 139 (2010) 323-34.e7.

72. L.H. Kuo, P.J. Tsai, M.J. Jiang, Y.L. Chuang, L. Yu, K.T. Lai, Y.S. Tsai, Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse, Diabetologia 54 (2011) 168-179.

73. T. Hosoi, S. Yokoyama, S. Matsuo, S. Akira, K. Ozawa, Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice, PLoS One 5 (2010) 10.1371/journal.

pone.0012537.

74. Z. Gao, D. Hwang, F. Bataille, M. Lefevre, D. York, M.J. Quon, J. Ye, Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex, J. Biol. Chem. 277 (2002) 48115-48121.

75. Z. Gao, A. Zuberi, M.J. Quon, Z. Dong, J. Ye, Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases, J. Biol. Chem. 278 (2003) 24944-24950.

76. K. De Fea, R.A. Roth, Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612, Biochemistry 36 (1997) 12939-12947.

77. V. Aguirre, E.D. Werner, J. Giraud, Y.H. Lee, S.E. Shoelson, M.F. White, Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action, J. Biol. Chem. 277 (2002) 1531-1537.

78. Y. Tamura, T. Ogihara, T. Uchida, F. Ikeda, N. Kumashiro, T. Nomiyama, F. Sato, T. Hirose, Y.

Tanaka, H. Mochizuki, R. Kawamori, H. Watada, Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice, Diabetologia 50 (2007) 131-141.

79. K. Verhelst, I. Carpentier, R. Beyaert, Regulation of TNF-induced NF-kappaB activation by different cytoplasmic ubiquitination events, Cytokine Growth Factor Rev. 22 (2011) 277-286.

80. T. Romanatto, E.A. Roman, A.P. Arruda, R.G. Denis, C. Solon, M. Milanski, J.C. Moraes, M.L. Bonfleur, G.R. Degasperi, P.K. Picardi, S. Hirabara, A.C. Boschero, R. Curi, L.A. Velloso, Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis, J. Biol. Chem. 284 (2009) 36213-36222.

81. K.T. Uysal, S.M. Wiesbrock, M.W. Marino, G.S. Hotamisligil, Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function, Nature 389 (1997) 610-614.

82. S.A. Schreyer, S.C. Chua Jr, R.C. LeBoeuf, Obesity and diabetes in TNF-alpha receptor- deficient mice, J. Clin. Invest. 102 (1998) 402-411.

83. K. Toda, Y. Hayashi, T. Saibara, Deletion of tumor necrosis factor-alpha receptor type 1

exacerbates insulin resistance and hepatic steatosis in aromatase knockout mice, Biochim.

Biophys. Acta 1801 (2010) 655-664.

84. M. Aparicio-Vergara, P.P. Hommelberg, M. Schreurs, N. Gruben, R. Stienstra, R. Shiri-Sverdlov, N.J. Kloosterhuis, A. de Bruin, B. van de Sluis, D.P. Koonen, M.H. Hofker, Tumor necrosis factor receptor 1 gain-of-function mutation aggravates nonalcoholic fatty liver disease but does not cause insulin resistance in a murine model, Hepatology 57 (2013) 566-576.

85. Z. Chen, L. Sheng, H. Shen, Y. Zhao, S. Wang, R. Brink, L. Rui, Hepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses, Diabetes 61 (2012) 566-573.

86. L. Yin, L. Wu, H. Wesche, C.D. Arthur, J.M. White, D.V. Goeddel, R.D. Schreiber, Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice, Science 291 (2001) 2162-2165.

87. L. Sheng, Y. Zhou, Z. Chen, D. Ren, K.W. Cho, L. Jiang, H. Shen, Y. Sasaki, L. Rui, NF-kappaB-inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action, Nat. Med. 18 (2012) 943-949.

88. D.M. Anderson, E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function, Nature 390 (1997) 175-179.

89. S. Kiechl, J. Wittmann, A. Giaccari, M. Knoflach, P. Willeit, A. Bozec, A.R. Moschen, G.

Muscogiuri, G.P. Sorice, T. Kireva, M. Summerer, S. Wirtz, J. Luther, D. Mielenz, U. Billmeier, G. Egger, A. Mayr, F. Oberhollenzer, F. Kronenberg, M. Orthofer, J.M. Penninger, J.B. Meigs, E.

Bonora, H. Tilg, J. Willeit, G. Schett, Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus, Nat. Med. 19 (2013) 358-363.

90. E. Seki, D.A. Brenner, M. Karin, A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches, Gastroenterology 143 (2012) 307-320.

91. Y. Nakatani, H. Kaneto, D. Kawamori, M. Hatazaki, T. Miyatsuka, T.A. Matsuoka, Y. Kajimoto, M. Matsuhisa, Y. Yamasaki, M. Hori, Modulation of the JNK pathway in liver affects insulin resistance status, J. Biol. Chem. 279 (2004) 45803-45809.

92. R. Yang, D.M. Wilcox, D.L. Haasch, P.M. Jung, P.T. Nguyen, M.J. Voorbach, S. Doktor, S.

Brodjian, E.N. Bush, E. Lin, P.B. Jacobson, C.A. Collins, K.T. Landschulz, J.M. Trevillyan, C.M.

Rondinone, T.K. Surowy, Liver-specific knockdown of JNK1 up-regulates proliferator-activated receptor gamma coactivator 1 beta and increases plasma triglyceride despite reduced glucose and insulin levels in diet-induced obese mice, J. Biol. Chem. 282 (2007) 22765-22774.

93. G. Solinas, W. Naugler, F. Galimi, M.S. Lee, M. Karin, Saturated fatty acids inhibit induction

7

of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 16454-16459.

94. G. Sabio, J. Cavanagh-Kyros, H.J. Ko, D.Y. Jung, S. Gray, J.Y. Jun, T. Barrett, A. Mora, J.K. Kim, R.J. Davis, Prevention of steatosis by hepatic JNK1, Cell. Metab. 10 (2009) 491-498.

95. G. Baffy, Kupffer cells in non-alcoholic fatty liver disease: the emerging view, J. Hepatol. 51 (2009) 212-223.

96. W. Huang, A. Metlakunta, N. Dedousis, P. Zhang, I. Sipula, J.J. Dube, D.K. Scott, R.M.

O’Doherty, Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance, Diabetes 59 (2010) 347-357.

97. N. Lanthier, O. Molendi-Coste, Y. Horsmans, N. van Rooijen, P.D. Cani, I.A. Leclercq, Kupffer cell activation is a causal factor for hepatic insulin resistance, Am. J. Physiol. Gastrointest. Liver Physiol. 298 (2010) G107-16.

98. A.M. Neyrinck, P.D. Cani, E.M. Dewulf, F. De Backer, L.B. Bindels, N.M. Delzenne, Critical role of Kupffer cells in the management of diet-induced diabetes and obesity, Biochem. Biophys.

Res. Commun. 385 (2009) 351-356.

99. J. Henkel, D. Gartner, C. Dorn, C. Hellerbrand, N. Schanze, S.R. Elz, G.P. Puschel, Oncostatin M produced in Kupffer cells in response to PGE2: possible contributor to hepatic insulin resistance and steatosis, Lab. Invest. 91 (2011) 1107-1117.

100. Z. Papackova, E. Palenickova, H. Dankova, J. Zdychova, V. Skop, L. Kazdova, M. Cahova, Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages, Nutr.

Metab. (Lond) 9 (2012) 22-7075-9-22.

101. A.H. Clementi, A.M. Gaudy, N. van Rooijen, R.H. Pierce, R.A. Mooney, Loss of Kupffer cells in diet-induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling, Biochim. Biophys. Acta 1792 (2009) 1062-1072.

102. N. Lanthier, O. Molendi-Coste, P.D. Cani, N. van Rooijen, Y. Horsmans, I.A. Leclercq, Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet, FASEB J. 25 (2011) 4301-4311.

103. J.I. Odegaard, R.R. Ricardo-Gonzalez, A. Red Eagle, D. Vats, C.R. Morel, M.H. Goforth, V.

Subramanian, L. Mukundan, A.W. Ferrante, A. Chawla, Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance, Cell. Metab. 7 (2008) 496-507.

104. F.T. Wunderlich, P. Strohle, A.C. Konner, S. Gruber, S. Tovar, H.S. Bronneke, L. Juntti-Berggren, L.S. Li, N. van Rooijen, C. Libert, P.O. Berggren, J.C. Bruning, Interleukin-6 signaling in

liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action, Cell.

Metab. 12 (2010) 237-249.

105. S. Tateya, N.O. Rizzo, P. Handa, A.M. Cheng, V. Morgan-Stevenson, G. Daum, A.W. Clowes, G.J. Morton, M.W. Schwartz, F. Kim, Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding, Diabetes 60 (2011) 2792-2801.

106. [A. Funke, M. Schreurs, M. Aparicio-Vergara, F. Sheedfar, N. Gruben, N.J. Kloosterhuis, R.

Shiri-Sverdlov, A.K. Groen, B. van de Sluis, M.H. Hofker, D.P. Koonen, Cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male LDL receptor knockout mice, Atherosclerosis 232 (2014) 390-396.

107. K. Wouters, P.J. van Gorp, V. Bieghs, M.J. Gijbels, H. Duimel, D. Lutjohann, A. Kerksiek, R.

van Kruchten, N. Maeda, B. Staels, M. van Bilsen, R. Shiri-Sverdlov, M.H. Hofker, Dietary

van Kruchten, N. Maeda, B. Staels, M. van Bilsen, R. Shiri-Sverdlov, M.H. Hofker, Dietary

GERELATEERDE DOCUMENTEN