• No results found

Chapter 2: A retrofittable heating module for use in in-situ EBSD tensile experiments

H. Code of Conduct

Page 83

Bibliography

[1] M. Knoll, “AufladePotentiel und Sekundaremission elektronenbestralter Korper,” Zeitschrift für technische Physik, vol. 16, pp. 467-475, 1935.

[2] A. Schwartz, M. Kumar and B. Adams, Electron Backscatter Diffraction in Materials Science, New York: Kluwer Academic Press, 2000.

[3] S. Wright, M. Nowell and D. Field, “A Review of Strain Analysis Using Electron Backscatter Diffraction,” Microscopy and Microanalysis, vol. 17, no. 3, pp. 316-329, 2011.

[4] E. Plancher, J. Petit and C. Maurice, “On the accuracy of elastic strain field measurements by Laue microdiffraction and high resolution EBSD: a cross-validation experiment,” Experimental Mechanics, vol. 56, no. 3, pp. 483-492, 2016.

[5] S. Zaefferer, “On the formation mechanisms, spatial resoltuion and intensity of backscatter Kikuchi patterns,” Ultramicroscopy, vol. 107, pp. 254-266, 2007.

[6] S. Wirght and M. Nowell, “A Review of In Situ EBSD Studies (Chapter 24),” in Electron Backsactter Diffraction in Materials Science, New York, Springer US, 2009, pp. 329-337.

[7] W. Callister and D. Rethwisch, Materials Science and Engineering, Hoboken: John Wiley & Sons, 2011.

[8] “Iter,” [Online]. Available: https://www.iter.org/mach/divertor. [Accessed 5 9 2018].

[9] J. Shackelford and W. Alexander, Materials Science and Engneering Handbook, Boca Raton: CRC Press LLC, 2001.

[10] L. Buzi, G. De Temmerman, A. Huisman, S. Bardin, T. Morgan, M. Rasinski and R. Pitts, “Response of tungsten surfaces to helium and hydrogen plasma exposure under ITER relevant steady state and repetitive trnasient conditions,” Nuclear Fusion, vol. 57, no. 12, 2017.

[11] E. Lassner and W. Schuber, “Tungsten,” in Tungsten, New York, Kluwer Academic / Plenum Publihsers, 1999, pp. 240-244.

[12] D. Jenkins, in Space Shuttle: The History of the National Space Transportation System, Voyageur Press, 2007, pp. 1-524.

[13] M. Bestamnn, S. Piazolo, C. Spiers and D. Prior, “Microstructural evolution during initial stages of static recovery and recrystallization: new insights from in-situ heating experiments combined with electron backscatter diffraction analysis,” Journal of Structural Geology, vol. 27, no. 3, pp.

447-457, 2005.

[14] N. Bozzolo, S. Jacomet and R. Logé, “Fast in-situ annealing stage coupled with EBSD: A suitable tool to observe quick recrystallization mechanisms,” Materials Chaeracterization , vol. 70, pp.

Page 84 28-32, 2012.

[15] S. Tokita, H. Kokawa, S. Yutaka and H. Fujii, “In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel,” Materials Characterization, vol. 131, pp. 31-38, 2017.

[16] H. Mun, S. Lee and Y. Koo, “In-situ Heating EBSD Study of Effects of Cold Reduction Ratio on Recrystallization and Grain Growth Behaviors in 3% Si Electrical Steels,” ISIJ International, vol.

57, no. 7, pp. 1241-1245, 2017.

[17] C. Kerisit, R. J. S. Logé, V. Llorca and N. Bozzolo, “EBSD coupled to SEM in situ annealing for assesing recrystallization and grain growth mechanisms in pure tantalum,” Journal of Microscopy, vol. 250, no. 3, pp. 189-199, 2013.

[18] G. Seward, D. Prior, J. Wheeler, S. Celotto, D. Halliday, R. Paden and M. Tye, “High-Temperature Electron Backscatter Diffraction and Scanning Electron Microscopy Imaging Techniques: In-situ Investigations of Dynamic Processes,” Scanning, vol. 24, no. 5, pp. 232-240, 2002.

[19] V. Borthwick, “Post-deformation annealing at the subgrain scale: Temperature dependent behaviour revealed by in-situ heating experiments on deformed single crystal halite`,” Journal of Structural Geology, vol. 32, no. 7, pp. 982-996, 2010.

[20] F. Brisset, A. Helbert and T. Baudin, “In Situ Electron Backscatter Diffraction Investigation of Recrystallization in a Copper Wire,” Microscopy and Microanalysis, vol. 19, no. 4, pp. 1-9, 2013.

[21] M. Wakita and S. Suzuki, “In-situ Observation of Microstructure Change in Steel by EBSD,”

Nippon Steel & Sumitomo Metal technical report, no. 404, pp. 31-36, 2017.

[22] K. Ju-Heon, K. Dong-Ik, J. Seok, C. Shi-Hoon, Y. Kyung-Woo and O. Kyu Hwan, “Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels,” Applied Microscopy, vol. 43, no. 2, pp. 88-97, 2013.

[23] G. Zijlstra, M. v. Daalen, D. Vainchtein and J. De Hosson, “Interphase boundary motion

elucidated through in-situ high temperature elecetron back-scatter diffraction,” Materials and Deisgn, vol. 132, pp. 138-147, 2017.

[24] H. Ubhi, J. Parsons, N. C. S. Othen, R. Poole and A. Gholinia, “In-situ EBSD Phase Transformation and Recrystallisation,” Journal of Physics: Conference Series, vol. 522, no. conference 1, 2014.

[25] G. Seward, S. Celotto, D. Prior, J. Wheeler and R. Pond, “In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium,” Acta Materialia, vol. 52, no. 4, pp. 821-832, 2004.

[26] H. Nakamichi, F. Humprheys and I. Brough, “Recrystallization phenomena in an IF steel observed by in situ EBSD experiments,” Journal of Microscpoy , vol. 230, no. 3, pp. 464-471, 2008.

Page 85 [27] S. Piazolo, W. Jessell, D. Prior and P. Bons, “The integration of experimental in-situ EBSD

observations and numerical simulations: a novel technique of microstructural process analysis,”

Journal of Microscopy, vol. 213, no. 3, pp. 273-284, 2004.

[28] G. Gregori, H. Kleebe, F. Siegelin and G. Ziegler, “In situ SEM imaging at temperatures as high as 1450 degrees Celsius,” Journal of Electron Microscopy, vol. 51, no. 6, pp. 347-352, 2002.

[29] M. Pluska, A. Czerwinksi, J. Ratajczak, J. Katcki, L. Oskwarek and R. Rak, “Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM),”

Micron, vol. 40, no. 1, pp. 46-50, 2009.

[30] M. Brown and C. Arnold, “Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification,” Laser Precision Microfabrication, pp. 91-120, 2010.

[31] A. Shayan and H. Bogac, “https://wmich.edu/mfe/mrc/,” 2008. [Online]. [Accessed 18 12 2018].

[32] B. Zohuri and N. Fathi, “Forced Convection Heat Transfer,” in Thermal Hydraulic Analysis of Nuclear Reactors, Spnringer, 2015, pp. 267-285.

[33] R. Stevens, Zirconia and zirconia ceramics, Manchester: Magnesium Elketron Ltd., 1986.

[34] N. Rosielle, Dictaat Constructieprincipes, Eindhoven: Technische Universiteit Eindhoven, 2011.

[35] C. Boehlert and S. Longanbach, “The evolution of grain-boundary cracking evaluated through in situ tensile-creep testing of Udimet alloy 188,” Journal of Materials Research, vol. 23, no. 2, pp.

500-506, 2008.

[36] Y. Huany, F. Humphreys and N. Ridley, “In situ observations of microstructural evolution during deformation of Supral 100,” Materials Science Forum, Vols. 447-448, pp. 381-386, 2003.

[37] J. Holman, Heat Transfer, New York: McGraw-Hill, 2010.

[38] S. Wright and M. Nowell, “EBSD Image Quality Mapping,” Microscopy and Microanalysis, vol. 12, no. 1, pp. 72-84, 2006.

[39] J. Clémnt, T. Vitse and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” Journal of Vacuum Science & Technology A , vol. 28, pp. 1421-1422, 2010.

[40] A. Bohdan, A. Bercha, P. Adamiec, F. Dybala and Trzeciakowski, “A Fiber Feedthrough for a Semiconductor Laser Located in a High Hydrostatic Pressure Cell,” Instruments and Experimental Techniques, vol. 47, no. 3, pp. 422-424, 2004.

[41] J. Weiss and J. Stoever, “Vacuum feedthrough for optical fiber cables,” Applied Optics, vol. 24, no. 17, pp. 2755-2756, 1985.

[42] J. Butterworth, C. Brome, P. Huffman, C. Mattoni, D. McKinsey and J. Doyle, “A demountable cryogenic feedthrough for plastic optical fibers,” Review of Scientific Instruments, vol. 69, no. 10,

Page 86 pp. 3697-3698, 1998.

[43] E. Abraham and E. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Applied Optics, vol. 37, no. 10, pp. 1762-1763, 1998.

[44] T. Reinsch, C. Cunow, J. Schrötter and R. Giese, “Simple fee-through for coupling optical fibres into high pressure and temperatures systems,” Measurement Science and Technology, vol. 24, no. 3, 2013.

[45] K. Kirilov, D. Denkova, G. Tsutsumanova and S. Russey, “Simple vacuum feedthrough for optical fiber with subminiature version A connectors at both ends,” Reveiw of Scientific Instruments, vol. 85, 2014.

[46] W. Mackie and G. Magera, “Overview of Electron Sources and Stability Improvements on Vogel Mounted Thermal Sources,” Microscopy and Microanalysis, vol. 16, no. 2, pp. 40-41, 2010.

[47] “Applied Physics Technology,” 2015. [Online]. Available: http://www.a-p-tech.com/mini-vogel-mount.html. [Accessed 14 6 2018].

[48] D. Kirch, A. Ziemons, T. Burlet, I. Lischewski, D. Molodov and G. Gottstein, “Laser poewered heating stage in a scanning electron microscope for microstructural investigations at elevated temperatures,” Review of Scientific Instruments, vol. 79, 2008.

[49] I. Lichewski and G. Gottstein, “Nucleation and variant selection during the a–c–a phase transformation in microalloyed steel,” Acta Materialia, vol. 59, pp. 1530-1541, 2011.

[50] “Kyocera Group Global Site,” Kyocera, [Online]. Available:

https://global.kyocera.com/prdct/fc/list/material/alumina/alumina.html. [Accessed 7 3 2019].

[51] I. Savchenko and S. Stankus, “Thermal conductivity and thermal diffusivity of tantalum in the temperature range from 293 to 1800K,” Thermophysics and Aeromechanics, vol. 15, no. 4, pp.

679-682, 2008.

[52] T. Rodgers, “Soft Matter Systems Engineering Group,” 2013. [Online]. Available:

https://personalpages.manchester.ac.uk/staff/tom.rodgers/documents/HT_Notes.pdf.

[Accessed 7 3 2019].

[53] “Tungsten,” Plansee, [Online]. Available: https://www.plansee.com/en/materials/tungsten.html.

[Accessed 15 April 2019].

[54] R. Stevens, An introduction to zirconia, Twickenham: Magnesium Elektron Ltd., 1986.

[55] O. Sergeev, A. Shashkov and A. Umanskii, “Thermophysical properties of quartz glass,” Journal of Engineering Physics, vol. 43, no. 6, pp. 1375-1383, 1982.

[56] M. W. R. Nowell and B. True, “EBSD sample Preparation: Techniques, Tips, and Tricks,”

Page 87 Microscopy and Microanalysis, vol. 13, no. 4, pp. 44-49, 2005.

[57] “NTNU,” [Online]. Available:

http://www.material.ntnu.no/ebsd/EBSD/specimenpreparation.pdf. [Accessed 20 02 2019].