• No results found

Corresponding Author

*Phone: +971-26075317. E-mail: mkroon@pi.ac.ae

ACKNOWLEDGEMENT

Financial support from Netherlands Organization for Scientific Research (NWO) and the company Paques B.V. is gratefully acknowledged. This work is part of the research program “MES meets DES”, with project number STW-Paques 12999.

REFERENCES

(1) Goldberg, A. H.; Gibaldi, M.; Kanig, J. L. Increasing Dissolution Rates and Gastrointestinal Absorption of Drugs Via Solid Solutions and Eutectic Mixtures I. J. Pharm. Sci. 1965, 54, 1145–1148.

(2) Lorsch, H. G.; Kauffman, K. W.; Denton, J. C. Thermal Energy Storage for Solar Heating and off-Peak Air Conditioning. Energy Convers. 1975, 15, 1–8.

(3) Rathod, M. K.; Banerjee, J. Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems: A Review. Renew. Sustain. Energy Rev. 2013, 18, 246–258.

(4) Diarce, G.; Quant, L.; Campos-Celador, Á.; Sala, J. M.; García-Romero, A. Determination of the Phase Diagram and Main Thermophysical Properties of the Erythritol–Urea Eutectic Mixture for Its Use as a Phase Change Material. Sol. Energy Mater. Sol. Cells 2016, 157, 894–906.

(5) Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L. Understanding Solid/Solid Organic Reactions. J. Am. Chem. Soc. 2001, 123, 8701–8708.

(6) Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, No. 1, 70–71.

(7) Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147.

(8) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep Eutectic Solvents: Syntheses,

(9) Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.; Duarte, A. R. C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–

1071.

(10) Tang, B.; Row, K. H. Recent Developments in Deep Eutectic Solvents in Chemical Sciences. Monatshefte für Chemie - Chem. Mon. 2013, 144, 1427–1454.

(11) Abbott, A. P.; Harris, R. C.; Ryder, K. S. Application of Hole Theory to Define Ionic Liquids by Their Transport Properties †. J. Phys. Chem. B 2007, 111, 4910–4913.

(12) Leron, R. B.; Wong, D. S. H.; Li, M.-H. Densities of a Deep Eutectic Solvent Based on Choline Chloride and Glycerol and Its Aqueous Mixtures at Elevated Pressures. Fluid Phase Equilib. 2012, 335, 32–38.

(13) Leron, R. B.; Li, M.-H. High-Pressure Density Measurements for Choline Chloride: Urea Deep Eutectic Solvent and Its Aqueous Mixtures at T=(298.15 to 323.15)K and up to 50MPa. J. Chem. Thermodyn. 2012, 54, 293–301.

(14) Valderrama, J. O.; Robles, P. A. Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids. Ind. Eng. Chem. Res. 2007, 46, 1338–1344.

(15) Mirza, N. R.; Nicholas, N. J.; Wu, Y.; Kentish, S.; Stevens, G. W. Estimation of Normal Boiling Temperatures, Critical Properties, and Acentric Factors of Deep Eutectic Solvents.

J. Chem. Eng. Data 2015, 60, 1844–1854.

(16) Mjalli, F. S.; Shahbaz, K.; Alnashef, I. M. Modified Rackett Equation for Modelling the Molar Volume of Deep Eutectic Solvents. Thermochim. Acta 2015, 614, 185–190.

Solvents Densities at Different Temperatures. Thermochim. Acta 2011, 515, 67–72.

(18) Shahbaz, K.; Bagh, F. S. G.; Mjalli, F. S.; AlNashef, I. M.; Hashim, M. A. Prediction of Refractive Index and Density of Deep Eutectic Solvents Using Atomic Contributions. Fluid Phase Equilib. 2013, 354, 304–311.

(19) Mjalli, F. S.; Abdel Jabbar, N. M. Acoustic Investigation of Choline Chloride Based Ionic Liquids Analogs. Fluid Phase Equilib. 2014, 381, 71–76.

(20) Shahbaz, K.; Mjalli, F. S.; Hashim, M. A.; AlNashef, I. M. Prediction of the Surface Tension of Deep Eutectic Solvents. Fluid Phase Equilib. 2012, 319, 48–54.

(21) García, G.; Atilhan, M.; Aparicio, S. An Approach for the Rationalization of Melting Temperature for Deep Eutectic Solvents from DFT. Chem. Phys. Lett. 2015, 634, 151–155.

(22) Maginn, E. J. Molecular Simulation of Ionic Liquids: Current Status and Future Opportunities. J. Phys. Condens. Matter 2009, 21, 373101.

(23) Perkins, S. L.; Painter, P.; Colina, C. M. Molecular Dynamic Simulations and Vibrational Analysis of an Ionic Liquid Analogue. J. Phys. Chem. B 2013, 117, 10250–10260.

(24) Perkins, S. L.; Painter, P.; Colina, C. M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652–3662.

(25) Sun, H.; Li, Y.; Wu, X.; Li, G. Theoretical Study on the Structures and Properties of Mixtures of Urea and Choline Chloride. J. Mol. Model. 2013, 19, 2433–2441.

(26) Shah, D.; Mjalli, F. S. Effect of Water on the Thermo-Physical Properties of Reline: An

16, 23900–23907.

(27) Ferreira, E. S. C.; Voroshylova, I. V.; Pereira, C. M.; D. S. Cordeiro, M. N. Improved Force Field Model for the Deep Eutectic Solvent Ethaline: Reliable Physicochemical Properties.

J. Phys. Chem. B 2016, 120, 10124–10137.

(28) Kaur, S.; Gupta, A.; Kashyap, H. K. Nanoscale Spatial Heterogeneity in Deep Eutectic Solvents. J. Phys. Chem. B 2016, 120, 6712–6720.

(29) Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–

68.

(30) Dai, Y.; Verpoorte, R.; Choi, Y. H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus Tinctorius). Food Chem. 2014, 159, 116–121.

(31) Francisco, M.; van den Bruinhorst, A.; Kroon, M. C. New Natural and Renewable Low Transition Temperature Mixtures (LTTMs): Screening as Solvents for Lignocellulosic Biomass Processing. Green Chem. 2012, 14, 2153–2157.

(32) Choi, Y. H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I. W. C. E.;

Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705.

(33) Swarcewicz, B.; Sawikowska, A.; Marczak, Ł.; Łuczak, M.; Ciesiołka, D.; Krystkowiak, K.; Kuczyńska, A.; Piślewska-Bednarek, M.; Krajewski, P.; Stobiecki, M. Effect of Drought

Untargeted GC–MS Profiling. Acta Physiol. Plant. 2017, 39, 158.

(34) Hao, L.; Wang, M.; Shan, W.; Deng, C.; Ren, W.; Shi, Z.; Lü, H. L -Proline-Based Deep Eutectic Solvents (DESs) for Deep Catalytic Oxidative Desulfurization (ODS) of Diesel. J.

Hazard. Mater. 2017, 339, 216–222.

(35) Gutiérrez, M. C.; Ferrer, M. L.; Mateo, C. R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515.

(36) Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425.

(37) Griffin, P. J.; Cosby, T.; Holt, A. P.; Benson, R. S.; Sangoro, J. R. Charge Transport and Structural Dynamics in Carboxylic-Acid-Based Deep Eutectic Mixtures. J. Phys. Chem. B 2014, 118, 9378–9385.

(38) Kapitán, J.; Baumruk, V.; Kopecký, V.; Pohl, R.; Bouř, P. Proline Zwitterion Dynamics in Solution, Glass, and Crystalline State. J. Am. Chem. Soc. 2006, 128, 13451–13462.

(39) Yang, G.; Zhou, L.; Chen, Y. Stabilization of Zwitterionic Versus Canonical Proline by Water Molecules. Springerplus 2016, 5, 19.

(40) Dommert, F.; Wendler, K.; Berger, R.; Delle Site, L.; Holm, C. Force Fields for Studying the Structure and Dynamics of Ionic Liquids: A Critical Review of Recent Developments.

ChemPhysChem 2012, 13, 1625–1637.

Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11, 361–373.

(42) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.;

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem.

Soc. 1995, 117, 5179–5197.

(43) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174.

(44) Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145.

(45) Besler, B. H.; Merz, K. M.; Kollman, P. A. Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem. 1990, 11, 431–439.

(46) Theodorou, D. N.; Suter, U. W. Detailed Molecular Structure of a Vinyl Polymer Glass.

Macromolecules 1985, 18, 1467–1478.

(47) Ewald, P. P. Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale. Ann. Phys.

1921, 369, 253–287.

(48) Ediger, M. D.; Angell, C. A.; Nagel, S. R. Supercooled Liquids and Glasses. J. Phys. Chem.

1996, 100, 13200–13212.

(49) Dai, Y.; Witkamp, G. J.; Verpoorte, R.; Choi, Y. H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–

(50) Meng, X.; Ballerat-Busserolles, K.; Husson, P.; Andanson, J.-M. Impact of Water on the Melting Temperature of Urea + Choline Chloride Deep Eutectic Solvent. New J. Chem.

2016, 40, 4492–4499.

(51) van den Bruinhorst, A.; Kollau, L.; Kroon, M. C.; Esteves, C. The Centrifuge Method: A New Method to Construct Eutectic Phase Diagrams. to be Submitt. 2017.

(52) D’Agostino, C.; Harris, R. C.; Abbott, A. P.; Gladden, L. F.; Mantle, M. D. Molecular Motion and Ion Diffusion in Choline Chloride Based Deep Eutectic Solvents Studied by 1H Pulsed Field Gradient NMR Spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 21383–

21391.

(53) D’Agostino, C.; Gladden, L. F.; Mantle, M. D.; Abbott, A. P.; Ahmed, Essa, I.; Al-Murshedi, A. Y. M.; Harris, R. C. Molecular and Ionic Diffusion in Aqueous – Deep Eutectic Solvent Mixtures: Probing Inter-Molecular Interactions Using PFG NMR. Phys.

Chem. Chem. Phys. 2015, 17, 15297–15304.

(54) Abbott, A. P.; D’Agostino, C.; Davis, S. J.; Gladden, L. F.; Mantle, M. D. Do Group 1 Metal Salts Form Deep Eutectic Solvents? Phys. Chem. Chem. Phys. 2016, 18, 25528–25537.

(55) Hammond, O. S.; Bowron, D. T.; Jackson, A. J.; Arnold, T.; Sanchez-Fernandez, A.;

Tsapatsaris, N.; Garcia Sakai, V.; Edler, K. J. Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration. J. Phys. Chem. B 2017, 121, 7473–7483.

TOC Graphic

GERELATEERDE DOCUMENTEN