• No results found

QUANTUM HOMOMORPHIC ENCRYPTION

N/A
N/A
Protected

Academic year: 2023

Share "QUANTUM HOMOMORPHIC ENCRYPTION"

Copied!
144
0
0

Hele tekst

(1)

QUANTUM HOMOMORPHIC ENCRYPTION

Christian Schaffner

(joint work with Yfke Dulek and Florian Speelman)

http://arxiv.org/abs/1603.09717

(2)

EXAMPLE: IMAGE TAGGING

(3)

EXAMPLE: IMAGE TAGGING

(4)

EXAMPLE: IMAGE TAGGING

(5)

EXAMPLE: IMAGE TAGGING

SKYLINE JED

(6)

EXAMPLE: IMAGE TAGGING

(7)

EXAMPLE: IMAGE TAGGING

(8)

EXAMPLE: IMAGE TAGGING

(9)

EXAMPLE: IMAGE TAGGING

(10)

EXAMPLE: IMAGE TAGGING

SKYLINE JED

(11)

EXAMPLE: IMAGE TAGGING

(12)

EXAMPLE: IMAGE TAGGING

SKYLINE JED

(13)

1. HOMOMORPHIC ENCRYPTION 2. PREVIOUS RESULTS

3. NEW RESULT

(14)

HOMOMORPHIC ENCRYPTION

(15)

HOMOMORPHIC ENCRYPTION

KEY GENERATION

(16)

HOMOMORPHIC ENCRYPTION

public key

KEY GENERATION

(17)

HOMOMORPHIC ENCRYPTION

public key secret key

KEY GENERATION

(18)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

(19)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION

(20)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION + ↦

(21)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) ↦

(22)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) ↦

(23)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) ↦

(24)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION EVALUATION

(secure) + ↦

(25)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) ↦

(26)

HOMOMORPHIC ENCRYPTION

JED

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION EVALUATION DECRYPTION

+ +

(secure) ↦

(27)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) ↦

(28)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION EVALUATION DECRYPTION

+ + +

(secure) x x

x f(x)

f(x) f(x)

(29)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION +

(secure) | ψ | ψ⟩

(30)

HOMOMORPHIC ENCRYPTION

public key secret key

evaluation key

KEY GENERATION

ENCRYPTION EVALUATION DECRYPTION

+ + +

(secure) | ψ | ψ⟩

| ψ⟩ U | ψ⟩

U |ψ⟩ U |ψ ⟩

(quantum)

(31)

1. HOMOMORPHIC ENCRYPTION 2. PREVIOUS RESULTS

3. NEW RESULT

(32)

PREVIOUS RESULTS: OVERVIEW

C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015 Y. Ouyang, S-H. Tan, J. Fitzsimons. Quantum homomorphic encryp3on from quantum codes. arxiv:1508.00938

(33)

PREVIOUS RESULTS: OVERVIEW

Classical homomorphic encryption: solved! [Gentry 2009]

(34)

PREVIOUS RESULTS: OVERVIEW

Classical homomorphic encryption: solved! [Gentry 2009]

Quantum homomorphic encryption: only partial results Clifford scheme allowing evaluation of {P, H, CNOT}

schemes for {P, H, CNOT} + limited # of T gates

C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015 Y. Ouyang, S-H. Tan, J. Fitzsimons. Quantum homomorphic encryp3on from quantum codes. arxiv:1508.00938

(35)

PREVIOUS RESULTS: OVERVIEW

Classical homomorphic encryption: solved! [Gentry 2009]

Quantum homomorphic encryption: only partial results

Clifford scheme allowing evaluation of {P, H, CNOT}

(36)

SCHEME FOR {P, H, CNOT}

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS’00 [Gentry 09] C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

(37)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

(38)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

encryption:

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS’00 [Gentry 09] C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

(39)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

encryption: pick a,b ∈ R {0,1} a,b

(40)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

| ψ ⟩ a,b

encryption: pick a,b ∈ R {0,1} a,b

| ψ ⟩ ↦ X a Z b | ψ ⟩ =

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS’00 [Gentry 09] C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

(41)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

| ψ ⟩ a,b

encryption: pick a,b ∈ R {0,1} a,b

| ψ ⟩ ↦ X a Z b | ψ ⟩ decryption:

=

(42)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

| ψ ⟩ a,b

encryption: pick a,b ∈ R {0,1} a,b

| ψ ⟩ ↦ X a Z b | ψ ⟩ decryption: X a Z b | ψ ⟩ ↦ | ψ ⟩

=

[AMTW00] A. Ambainis, M. Mosca, A. Tapp, and R. De Wolf. Private quantum channels. FOCS’00 [Gentry 09] C. Gentry: Fully homomorphic encryp3on using ideal laJces. STOC’09

(43)

SCHEME FOR {P, H, CNOT}

Ingredient 1: quantum encryption (one-time pad)

| ψ ⟩ a,b

encryption: pick a,b ∈ R {0,1} a,b

| ψ ⟩ ↦ X a Z b | ψ ⟩ decryption: X a Z b | ψ ⟩ ↦ | ψ

=

(44)

SCHEME FOR {P, H, CNOT}

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(45)

SCHEME FOR {P, H, CNOT}

| ψ⟩

(46)

a,b

SCHEME FOR {P, H, CNOT}

| ψ⟩

a,b

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(47)

a,b

SCHEME FOR {P, H, CNOT}

| ψ⟩

a,b

(48)

a,b

SCHEME FOR {P, H, CNOT}

| ψ⟩

b,a

a,b H

H|ψ⟩

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(49)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

a,b H

(50)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

H | ψ ⟩ b,a

a,b H

H ( | ψ⟩ a,b )

=

HX a Z b | ψ ⟩

=

X b Z a H | ψ ⟩

=

H | ψ ⟩ b,a

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(51)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

a,b H

(52)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

H | ψ ⟩ b,a

a,b

H

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(53)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

a,b

H

(54)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

H | ψ ⟩ b,a

a,b

b,a

UPDATE FUNCTION

(x,y) ↦ (y,x) H

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(55)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

a,b

UPDATE FUNCTION

(x,y) ↦ (y,x) H

(56)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

H | ψ ⟩ b,a

a,b

b,a

UPDATE FUNCTION

(x,y) ↦ (y,x) H

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(57)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

a,b

UPDATE FUNCTION

(x,y) ↦ (y,x) H

(58)

a,b

SCHEME FOR {P, H, CNOT}

|ψ⟩

H | ψ ⟩

a,b

b,a

UPDATE FUNCTION

(x,y) ↦ (y,x) H

Folklore, last formalized by [BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015

(59)

THE CHALLENGE: T GATE

(60)

THE CHALLENGE: T GATE

H

(61)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H

(62)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H | ψ⟩ b,a

H

(63)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H T

(64)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H | ψ⟩ b,a

0,b

| ψ ⟩

H T

(65)

THE CHALLENGE: T GATE

a,b

| ψ ⟩ | ψ ⟩ 0,b

H T

(66)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H | ψ⟩ b,a

0,b

| ψ ⟩

H

T | ψ ⟩ 0,b

1,b

| ψ ⟩

T T

(67)

THE CHALLENGE: T GATE

a,b

| ψ ⟩ | ψ ⟩ 0,b

H

1,b

| ψ ⟩

T T

(68)

THE CHALLENGE: T GATE

a,b

| ψ ⟩

H | ψ⟩ b,a

0,b

| ψ ⟩

H

T | ψ ⟩ 0,b P ( T | ψ 1,b )

1,b

| ψ ⟩

T T

error!

(69)

THE CHALLENGE: T GATE

a,b

| ψ ⟩ | ψ ⟩ 0,b

H

1,b

| ψ ⟩

T T

(70)

PREVIOUS RESULTS: OVERVIEW

(comparison based on Stacey Jeffery’s slides)

[BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015 [OTF15] Y. Ouyang, S-H. Tan, J. Fitzsimons. Quantum homomorphic encryp3on from quantum codes. arxiv:1508.00938

(71)

PREVIOUS RESULTS: OVERVIEW

homomorphic for compactness security

Not encrypting Quantum circuits yes no

append evaluation

description Quantum circuits Complexity of Dec 


prop to (# gates) yes

Quantum OTP no yes inf theoretic

Clifford Scheme Clifford circuits yes computational

(72)

PREVIOUS RESULTS: OVERVIEW

homomorphic for compactness security

Not encrypting Quantum circuits yes no

append evaluation

description Quantum circuits Complexity of Dec 


prop to (# gates) yes

Quantum OTP no yes inf theoretic

Clifford Scheme Clifford circuits yes computational

[BJ15]: AUX QCircuits with

constant T-depth yes computational

[BJ15]: EPR Quantum circuits Comp of Dec is prop

to (#T-gates)^2 computational [OTF15] QCircuits with

constant #T-gates yes inf theoretic

(comparison based on Stacey Jeffery’s slides)

[BJ15] A. Broadbent, S. Jeffery. Quantum Homomorphic Encryp3on for Circuits of Low T-gate Complexity. CRYPTO 2015 [OTF15] Y. Ouyang, S-H. Tan, J. Fitzsimons. Quantum homomorphic encryp3on from quantum codes. arxiv:1508.00938

(73)

PREVIOUS RESULTS: OVERVIEW

homomorphic for compactness security

Not encrypting Quantum circuits yes no

append evaluation

description Quantum circuits Complexity of Dec 


prop to (# gates) yes

Quantum OTP no yes inf theoretic

Clifford Scheme Clifford circuits yes computational

[BJ15]: AUX QCircuits with

constant T-depth yes computational

[BJ15]: EPR Quantum circuits Comp of Dec is prop

to (#T-gates)^2 computational

(74)

1. HOMOMORPHIC ENCRYPTION 2. PREVIOUS RESULTS

3. NEW RESULT

(75)

ERROR-CORRECTION “GADGET”

(76)

A quantum state that:

can be efficiently constructed and used

ERROR-CORRECTION “GADGET”

GADGET

(77)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1)

ERROR-CORRECTION “GADGET”

GADGET

(78)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1)

ERROR-CORRECTION “GADGET”

P ( T | ψ 1,b )

GADGET

(79)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1)

ERROR-CORRECTION “GADGET”

GADGET

(80)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1)

ERROR-CORRECTION “GADGET”

T | ψ ⟩ 0,b

GADGET

(81)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1)

ERROR-CORRECTION “GADGET”

GADGET

(82)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1) is destroyed after a single use

ERROR-CORRECTION “GADGET”

GADGET

(83)

A quantum state that:

can be efficiently constructed and used

applies correction iff error was present (iff a = 1) is destroyed after a single use

ERROR-CORRECTION “GADGET”

(84)

EXCURSION

Theoretical Computer Science

(85)

PERMUTATION BRANCHING PROGRAM

(86)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y)

(87)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y)

list of instructions:

(88)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

x k 0: π’’

0: π

1: σ’

1: σ’’

(89)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

0: π

1: σ’

(90)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

x k 0: π’’

0: π

1: σ’

1: σ’’

permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

(91)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

output: … ° σ ’’ ° σ ’ ° π 0: π

1: σ’

permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S

(92)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

x k 0: π’’

output: … ° σ ’’ ° σ ’ ° π id

0: π

1: σ’

1: σ’’

permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

(93)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

output: … ° σ ’’ ° σ ’ ° π id

(fixed) cycle 0: π

1: σ’

permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S

(94)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

x k 0: π’’

output: … ° σ ’’ ° σ ’ ° π id

(fixed) cycle 0: π

1: σ’

1: σ’’

f(x,y) = 0 permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

(95)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

output: … ° σ ’’ ° σ ’ ° π id

(fixed) cycle 0: π

1: σ’

f(x,y) = 0 f(x,y) = 1 permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S

(96)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

x k 0: π’’

output: … ° σ ’’ ° σ ’ ° π id

(fixed) cycle 0: π

1: σ’

1: σ’’

f(x,y) = 0 f(x,y) = 1 length: # of instructions

permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

∈ S k

(97)

PERMUTATION BRANCHING PROGRAM

computes some Boolean function f(x,y) list of instructions:

x i

1: σ y j 0: π’

output: … ° σ ’’ ° σ ’ ° π id

(fixed) cycle 0: π

1: σ’

f(x,y) = 0 f(x,y) = 1 permutations of {1,2, …, k}

∈ S k

∈ S k

∈ S k

∈ S

(98)

EXAMPLE PBP (OR)

length 4, width 5:

(99)

EXAMPLE PBP (OR)

x 1

y 1

x 1

1: id

0: (12453) 0: (54321) 0: (12345)

1: id 1: id

length 4, width 5:

(100)

EXAMPLE PBP (OR)

x 1

y 1

x 1

y 1

OR(0,0)

output: id

0 1: id

0: (12453) 0: (54321) 0: (12345)

1: id 1: id

0: (15243)

1: (14235)

length 4, width 5:

(101)

EXAMPLE PBP (OR)

x 1

y 1

x 1

OR(0,0) OR(0,1) 1: id

0: (12453) 0: (54321) 0: (12345)

1: id 1: id

length 4, width 5:

(102)

EXAMPLE PBP (OR)

x 1

y 1

x 1

y 1

OR(0,0) OR(0,1) OR(1,0) OR(1,1)

output: id

0

(14235) 1

(14235) 1

1: id

0: (12453) 0: (54321) 0: (12345)

1: id 1: id

0: (15243)

1: (14235)

length 4, width 5:

(103)

EXAMPLE PBP (OR)

x 1

y 1

x 1

OR(0,0) OR(0,1) OR(1,0) OR(1,1) 1: id

0: (12453) 0: (54321) 0: (12345)

1: id 1: id

length 4, width 5:

(104)

BARRINGTON’S THEOREM

Theorem (variation): if f : {0,1} n x {0,1} m → {0,1} is in NC 1 ,

then there exists a permutation branching program for f with:

[Barrington 89] Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC1, J. Comput. Syst. Sci. 38 (1): 150–164, 1989 [BV11] Z. Brakerski, V. Vaikuntanathan. Efficient fully homomorphic encryp3on from (standard) LWE. FOCS 2011

(105)

BARRINGTON’S THEOREM

Theorem (variation): if f : {0,1} n x {0,1} m → {0,1} is in NC 1 ,

then there exists a permutation branching program for f with:

width 5

(106)

BARRINGTON’S THEOREM

Theorem (variation): if f : {0,1} n x {0,1} m → {0,1} is in NC 1 ,

then there exists a permutation branching program for f with:

width 5

length polynomial in (n+m)

[Barrington 89] Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC1, J. Comput. Syst. Sci. 38 (1): 150–164, 1989 [BV11] Z. Brakerski, V. Vaikuntanathan. Efficient fully homomorphic encryp3on from (standard) LWE. FOCS 2011

(107)

BARRINGTON’S THEOREM

Theorem (variation): if f : {0,1} n x {0,1} m → {0,1} is in NC 1 ,

then there exists a permutation branching program for f with:

width 5

length polynomial in (n+m)

P

NC 1 L

NP no proof that

NP≠NC 1

(108)

BARRINGTON’S THEOREM

Theorem (variation): if f : {0,1} n x {0,1} m → {0,1} is in NC 1 ,

then there exists a permutation branching program for f with:

width 5

length polynomial in (n+m)

Classical homomorphic decryption functions happen to be in NC 1 … [BV11]

[Barrington 89] Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC1, J. Comput. Syst. Sci. 38 (1): 150–164, 1989 [BV11] Z. Brakerski, V. Vaikuntanathan. Efficient fully homomorphic encryp3on from (standard) LWE. FOCS 2011

P

NC 1 L

NP no proof that

NP≠NC 1

(109)

ERROR CORRECTION GADGET

(110)

ERROR CORRECTION GADGET

GADGET

(111)

ERROR CORRECTION GADGET

(112)

ERROR CORRECTION GADGET

GADGET PBP for

decrypt( , ) a {

(113)

ERROR CORRECTION GADGET

P -1 P -1 P -1 P -1

PBP for

decrypt( , ) a {

P -1 iff permutation ≠ id {

(114)

ERROR CORRECTION GADGET

GADGET

P -1 P -1 P -1 P -1

PBP for

decrypt( , ) a {

P -1 iff permutation ≠ id {

reverse PBP for

decrypt( , ) a {

(115)

ERROR CORRECTION GADGET

P -1 P -1 P -1 P -1

PBP for

decrypt( , ) a {

P -1 iff permutation ≠ id {

{

(116)

ERROR CORRECTION GADGET

(117)

ERROR CORRECTION GADGET

(118)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

1: σ’’’

0: π’’’

a l

(119)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

(120)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

1: σ’’’

0: π’’’

a l

(121)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

(122)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

1: σ’’’

0: π’’’

a l

EPR pairs

EPR pairs

(123)

ERROR CORRECTION GADGET

1: σ 0: π

i

1: σ’’

0: π’’

k

1: σ’

0: π’

a j

EPR pairs

EPR pairs Bell

measurements

(124)

ERROR CORRECTION GADGET

GADGET

P -1 P -1 P -1 P -1

PBP for

decrypt( , ) a {

P -1 iff permutation ≠ id {

reverse PBP for

decrypt( , ) a {

(125)

ERROR CORRECTION GADGET

P -1 P -1 P -1 P -1

PBP for

decrypt( , ) a {

P -1 iff permutation ≠ id {

{

(126)

NEW SCHEME: OVERVIEW

(127)

NEW SCHEME: OVERVIEW

KEY GENERATION

(128)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys

(129)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys

gadgets

(130)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

| ψ ⟩

(131)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

a,b

| ψ ⟩ a,b

(132)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

(133)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

(134)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

after / / : classically update keys H P CNOT

(135)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

(136)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

after / / : classically update keys after : use

DECRYPTION

c,d

U | ψ⟩ c,d

H P CNOT

T

(137)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

(138)

NEW SCHEME: OVERVIEW

KEY GENERATION

classical keys gadgets

ENCRYPTION

apply quantum one-time pad

classically encrypt pad keys | ψ a,b a,b

EVALUATION

after / / : classically update keys after : use

DECRYPTION

classically decrypt pad keys

remove quantum one-time pad U | ψ⟩

c,d

H P CNOT

T

(139)

FUTURE WORK

(140)

FUTURE WORK

non-leveled QFHE?

(141)

FUTURE WORK

non-leveled QFHE?

verifiable delegated quantum computation

(142)

FUTURE WORK

non-leveled QFHE?

verifiable delegated quantum computation

quantum obfuscation?

(143)

FUTURE WORK

non-leveled QFHE?

verifiable delegated quantum computation quantum obfuscation?

(144)

THANK YOU!

is hiring two principle investigators:

http://tinyurl.com/qusoft-job

Application deadline: 1 September 2016

Referenties

GERELATEERDE DOCUMENTEN

Materiaal afmetingen in millimeters tenzij anders

De Inspectie van het Onderwijs heeft op 12 april 2012 een bureau onderzoek uitgevoerd voor het Nuborgh College Oostenlicht, afdeling vmbo bb, om een oordeel te kunnen uitspreken

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Based on this warehouse we create different settings by varying the fraction of singles in each order, the number of orders, the sorting speed of non-clean compartments, the number

During the last session, Haideh Moghissi, Saeed Rahnema, and Mark Goodman presented their findings of a large study among Muslims in Canada while Kamran Rastegar discussed

//ENCRYPTION FUNCTION 'Enc' takes as input a N-dimensional column vector pi, which is the plaintext, the NxN matrix, which is the public key and NxN matrix, being the basis for