• No results found

SolarFlare Communications

N/A
N/A
Protected

Academic year: 2021

Share "SolarFlare Communications"

Copied!
48
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

10GBASE

10GBASE - - T Tutorial T Tutorial

IEEE 802.3 IEEE 802.3 Kauai, Hawaii Kauai, Hawaii

November 11, 2002 November 11, 2002

SolarFlare Communications

SolarFlare Communications

(2)

SolarFlare

Agenda Agenda

• Introduction, Cabling & Challenges -

George Zimmerman, Ph.D.

CEO & CTO Founder

• Implementation & Performance -

Bill Jones, Ph.D.

Director, Systems Engr.

(3)

10G on UTP Possible or Not?

10G on UTP Possible or Not?

• The Problem

• Characterization vs. Specification

• Cabling & Impairments

• Limitations

• Capacity

– How to pick the right bandwidth?

• Challenges

(4)

SolarFlare

Applications Overview Applications Overview

• 10-Gb/s Ethernet connections </= 100m

• Utilize installed base of structured Cat 5e UTP

• Upgrade from 1000BASE-T

10GBase-T Transceiver

11/4/2002

MAC

10GBase-T

Transceiver

MAC

Cat5e UTP (4 pairs)

up to 90m

Wallplate Patch Panelor

Wallplate Patch Panelor

up to 5m up to 5m

(5)

Ethernet Evolution Ethernet Evolution

Speed

Time

New Model Shannon

AFE+DSP MIMO/Multiuser Channel-Optimized

• 10GBASE-T

1000BASE-T

>>1 bit/s/Hz

“Divide & Conquer”

DSP, Coded Conventional Wisdom

Shannon

1 bit/s/Hz Analog

Linear

• 10BASE-T

Perceived Shannon •100BASE-T

>1 bit/s/Hz Analog & Digital

Non-Linear Perceived Shannon

(6)

SolarFlare

What Makes Shannon Limits?

What Makes Shannon Limits?

• NOT modulation-specific

• Signal Attenuation ( assumed usable bandwidth)

• Assumed irreducible noise sources

– Background – Crosstalk

• Crosstalk from other pairs in our sheath

• Alien crosstalk – coming from other bundled 4-pair sheaths

– Device noise from transceiver

• Change the assumptions & change the limit!

– (to a point…)

(7)

Channel Impairments Channel Impairments

R

H T

Y B R I

R D

T HY

B R I D

R

H T

Y B R I

R D

T HY

B R I D

R

H T

Y B R I

R D

T HY

B R I D

R

H T

Y B R I

R D

T HY

B R I D

NEXT14 NEXT12

NEXT13

FEXT14 FEXT13 FEXT12

Far Echo Near Echo

Alien Crosstalk, EMI

(8)

SolarFlare

Characterization vs. Specification Characterization vs. Specification

• Cat 5/5e cable must be high quality with minor structural variations to meet TIA-568 requirements

• 100 MHz (or 250 MHz) “limit” imposed by TIA qualification requirements

– not the physical limitations of the cable

• Cable properties stable beyond 500 MHz

– depends mainly on transmission line geometry and construction materials

• Minor structural variations and connector

discontinuities affect channel transmission, but not

catastrophically

(9)

Cat 5e Channel: Insertion Loss Cat 5e Channel: Insertion Loss

Measured Cat 5e 100 Meter Channel Insertion Gain at 20 C

0 50 100 150 200 250 300 350 400 450 500

-60 -50 -40 -30 -20 -10 0

Frequency (MHz)

Insertion gain (dB)

Manufacturer A Manufacturer B Manufacturer C Cat 5e limit Extended limit

(10)

SolarFlare

Cat 5e Channel: NEXT Cat 5e Channel: NEXT

0 100 200 300 400 500 600

-80 -70 -60 -50 -40 -30 -20 -10 0

Measured Pair-to-pair NEXT Coupling into Cat 5e Pair 1

Frequency (MHz)

Insertion gain (dB)

NEXT12 NEXT13 NEXT14 Cat 5e limit Extended limit

(11)

Cat 5e Channel: FEXT Cat 5e Channel: FEXT

0 50 100 150 200 250 300 350 400 450 500

-100 -90 -80 -70 -60 -50 -40

Measured Pair-to-pair FEXT Coupling into Cat 5e Pair 1

Frequency (MHz)

Insertion gain (dB)

FEXT12 FEXT13 FEXT14

(12)

SolarFlare

Alien NEXT Alien NEXT

0 50 100 150 200 250 300 350 400 450 500

-80 -70 -60 -50 -40 -30 -20

Frequency (MHz)

Insertion gain (dB)

Adjacent connector Non-adjacent connector Cat 5e NEXT limit

Extended limit Single (4-pair cable) disturber, 40 meter length unbundled

Cat 5e Power Sum Alien NEXT vs. Patch Panel Position

(13)

EMI EMI - - Emitted Emitted

• >100 MHz on Cat 5e can meet FCC Class A

~12 dBm launch power limitation

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0

W o rst-C a se R a d ia te d E m issio n s a t 3 M e te rs - C a t 5 e U T P

F req u e n c y (M H z )

Electric field (dBuV/m)

-8 0 d B m /H z sig n a l F C C C la ss A lim it F C C C la ss B lim it

(14)

SolarFlare

Overall Environment Overall Environment

• Sources require significant cancellation

– Extensions from 1000BASE-T

– Significantly greater NEXT + FEXT + Equalization challenge

-150 -140 -130 -120 -110 -100 -90 -80 -70

0 100 200 300 400 500 600

Frequency (MHz)

Power Spectral Density (dBm/Hz)

XmtPSD RcvPSD SelfNEXT SelfFEXT Alien NEXT

(15)

Strawman

Strawman Improvements Improvements

• Baseline Requirements:

~40 dB Echo & NEXT Cancellation, ~20 dB FEXT Cancellation Alien NEXT suppression for crowded installations

Received Signal & Residual Noise Terms

-160.00 -150.00 -140.00 -130.00 -120.00 -110.00 -100.00 -90.00 -80.00

0 50 100 150 200 250 300 350 400

Frequency (MHz)

PSD ref to Input (dBm/Hz)

-20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0

SNR (dB)

Rcv Sig Res Echo Res NEXT Res FEXT Res ANEXT Bkgnd SNR

(16)

SolarFlare

Capacity Capacity

• 100m Cat 5e, with cancellers

• 14.4 Gbps on 100m at 10dBm launch, 600 MHz

• 10 Gbps @ 8.9 dB Margin, 430 MHz bandwidth

Bit Capacity

0 2 4 6 8 10 12 14 16 18 20

0 50 100 150 200 250 300 350 400

Frequency (MHz)

Bits/Sec/Hz

BitCap (Bkgd) Bit Cap (all residuals)

(17)

Conclusion:

Conclusion:

It CAN be done, but HOW?

It CAN be done, but HOW?

• Bandwidth required 400-500 MHz

• 40+ dB Echo & NEXT reduction

• 20+ dB FEXT reduction

• 10-12 dBm launch power

• > 8 bits (ENOB) signal processing

– A/D performance, or analog noise performance if analog circuits used

• Shannon limits say “Not Impossible”, just hard!

– It’s up to us engineers!

(18)

SolarFlare

Realizing 10GBASE

Realizing 10GBASE - - T T

• Addressing communication system challenges

• Modern signal processing algorithms

• Low power, high speed digital circuit design

• High linearity, wideband analog circuit

design

(19)

Communication System Challenges Communication System Challenges

• High frequency multiple twisted pair media characterization – Line attenuation, NEXT, FEXT, Alien Xtalk & EMI

– Cat 5e specification out to 100MHz

• Sufficient for 1000BASE-T

– Utilizing frequencies beyond cable’s initial intended objective is not new

– Case in point: xDSL

• Installation designed for 20kHz max

• Measurements converted for use in system evaluation – No assumptions or short cuts taken

– Scaled to worse case specifications (when they exist)

(20)

SolarFlare

Line Code Selection Line Code Selection

• Pulse Amplitude Modulation (PAM)

• Evolution Of 1000BASE-T

– Builds on proven technology

• Lower AFE requirements

– De-stressing an already stressed requirement

• Utilizing an optimal DFE achieves capacity

(21)

PAM PAM - - 10 Coding 10 Coding

• Given the characteristics of the channel/disturbers, capacity is maximized with an analog bandwidth around 400MHz

• 10Gbps is achieved with a baud rate of 833MHz and 12 bits/baud or 3 bits/pair (4 pairs)

– Minimum requirement of PAM8 for uncoded operation

• PAM9 may be sufficient for Ethernet control symbols

• PAM10 needed for both control and Trellis coding

• Extension of 1000BASE-T

– 4D, 8-state Trellis code (one dimension per pair)

– 6 dB coding gain relative to uncoded 10PAM

(22)

SolarFlare

Comparison With 1000BASE

Comparison With 1000BASE - - T T

High-Performance FEXT cancellation

No specified FEXT cancellation

High-Performance NEXT cancellation

Moderate NEXT cancellation

833 Mbaud, ~400 MHz used bandwidth

125 Mbaud, ~80 MHz used bandwidth

Full duplex echo-cancelled transmission

Full duplex echo-cancelled transmission

10-level with Trellis code across pairs

5-level with Trellis code across pairs

Multilevel coded PAM signaling (3- bits/symbol)

Multilevel coded PAM signaling (2- bits/symbol)

Straw Man 10GBASE-T

1000BASE-T

(23)

PCS SER & BER Straw Man Goal PCS SER & BER Straw Man Goal

Slicer Input SNR (dB)

1000BASE-T Reqm’t

19 20 21 22 23 24 25 26 27

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Coded PAM10 simulation SER Coded PAM10 Theory SER Coded PAM10 Theory BER

25.3 dB

(24)

SolarFlare

PMD Performance Straw Man Goal PMD Performance Straw Man Goal

• TSB 67 Channel

10GBASE-T Transceiver

11/7/2002

MAC

10GBASE-T

Transceiver

MAC

Cat 5e UTP (4 pairs)

up to 90m

Wallplate Patch Panelor

Wallplate Patch Panelor

up to 5m up to 5m

• Consider an aggregate slicer SNR of 25.3 dB with

five dominating noise terms requires individually

around 32 dB SNR

(25)

Channel Impairments

Channel Impairments - - ISI ISI

• Pre- & Post-Cursor Interference from limited Bandwidth

• Post-Cursor Dominates (>100 terms)

• Feedforward & Decision Feedback Equalization Solution

FeedForward Equalizer

Decision Feedback Equalizer Slicer

_

+

(26)

SolarFlare

Echo Echo

• Full duplex needed for limited BW

• Compromise hybrid for Tx/Rx isolation

• Impedance mismatches require residual echo cancellation

• > 40 dB rejection

(27)

NEXT NEXT

• High-level interference from transmitters

• Very long response time

• > 40dB NEXT cancellation

wireline Tx Channel 0

Rx Channel 1 (target rcvr)

Next Coupling

wireline

Rx Channel 0 (victim rcvr)

Tx Channel 1 (interfering xmtr)

(28)

SolarFlare

FEXT Impairment FEXT Impairment

• Pre- and post-cursor elements of interference

• Based on an equal-level FEXT (ELFEXT) model

• Uncompensated in 1000BASE-T

• Must be cancelled in 10GBASE-T

• > 20 dB cancellation

wireline Tx Channel 0

Tx Channel 1 (interfering xmtr)

Fext Coupling

wireline

Rx Channel 0 (victim rcvr)

Rx Channel 1 (target rcvr)

chan elf

fext

H H

H = ⋅

(29)

Challenging Implementation Challenging Implementation

• A new approach to problem solving needed to meet SNR requirement (>25.3 dB)

• Efficient reuse of resources in MIMO modeling

• Utilization of parallel structures

(30)

SolarFlare

Traditional Signal Processing Traditional Signal Processing

SISOSISO SISOSISO

SISOSISO SISOSISO

SISOSISO SISOSISO

SISOSISO SISOSISO

T4 T3

T2 T1

++++ ++++ ++++ ++++ R4

• Echo & NEXT cancellation

• 16 Single Input Single Output (SISO) processing elements (scalar filters)

• With canceller taps on the order of several hundred

10 Tera Operations (TOps)!

(31)

Modern Signal Processing Modern Signal Processing

• Echo & NEXT Cancellation

R4 T4

T3 T2

MIMO

T1

• One Multiple Input Multiple Output (MIMO) processing element (matrix filter)

• Exploits correlation to reduce interference common to all received channels

• Enables massive reuse of computing resources

(32)

SolarFlare

Modern Signal Processing Modern Signal Processing

• Data recovery & Fext cancellation

d1

d2

d3

d4 T1

T2

T3

T4

R1

R2

R3

R4 H1

F21 F31 F41

MIMO CHANNEL

MUD d1

d2

d3

d4

• Multiuser Detector (MUD) of MIMO channel provides

simultaneous data decisions & interference removal

(33)

Parallelizing FIRs Parallelizing FIRs

• One high rate N tap filter

( )

( )

)

(z H0 z2 z 1H1 z2

H = +

x(n)

H(z)

y(n)

H0(z)

H1(z)

H1(z)

H0(z) Z-1

x(n)

Z-1

+

+ +

Z-1

y(n)

2

2

2

2

• Good for clock limited or high speed applications

• Four half rate N/2 tap filters

• Equivalent number of operations per unit time

(34)

SolarFlare

Efficient Parallelization Efficient Parallelization

H0(z)

H0(z)+H1(z)

H0(z) Z-1

x(n)

Z-1

+

+ +

Z-1

y(n)

2

2

2

2

+ _ +

_

• Four filters reduced to three

• 25% improvement in efficiency

•Greater efficiency with greater parallelism

(35)

Digital Circuit Straw Man Goals Digital Circuit Straw Man Goals

• Puts total DSP requirements at 1.5 Tera Operations (TOps)

• Quad 1000BASE-T requires 1.0 TOps

150% increase in possible aggregation with 50%

increase in complexity today!

• CMOS technology

(36)

SolarFlare

Analog Circuit Straw Man Goals Analog Circuit Straw Man Goals

• Transmitter: DAC & Line driver

– >40 dB Linearity

– 450 MHz Bandwidth

• Receiver: Hybrid, LNA & ADC

– >8 bits ENOB – 833 MSPS

• PLL & Clock recovery

– 833 MHz

• CMOS technology

(37)

ISI Impairment

ISI Impairment - - After Equalization After Equalization

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10

8

-70

-60 -50 -40 -30 -20 -10 0 10

Frequency

Spectrum (dB)

Equalized Signal

Residual ISI

• FFE scales to

produce unit variance hard decisions

T x MAG Cat 5e cable MAG R x ENFX EQ

(38)

SolarFlare

ISI Impairment

ISI Impairment - - Symbol Stream Symbol Stream

a)

b)

0 1 2 3 4 5 6 7 8 9 10

x 104 -2

-1 0 1 2

a) Rx Far End Signal b) Slicer Input Vs. time

0 1 2 3 4 5 6 7 8 9 10

x 104 -2

-1 0 1 2

MAG Cat 5e cable MAG R x ENFX EQ

a b

T x

(39)

Echo Impairment

Echo Impairment - - After Cancellation After Cancellation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 108 -100

-80 -60 -40 -20 0 20

Frequency

Spectrum (dB)

Rx Echo

Cancelled Echo

Cat 5e cable

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 10

8

-100

-80 -60 -40 -20 0 20

Frequency

Spectrum (dB)

Rx far end signal

Rx echo

(a) (b)

a b

T x MAG MAG R x ENFX EQ

(40)

SolarFlare

Echo Impairment

Echo Impairment - - SNR @ Detector SNR @ Detector

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10

8

-70

-60 -50 -40 -30 -20 -10 0 10

Frequency

Spectrum (dB)

Equalized Signal

Residual Echo

• FFE scales to

produce unit variance hard decisions

T x MAG Cat 5e cable MAG R x ENFX EQ

(41)

NEXT Impairment

NEXT Impairment - - After Cancellation After Cancellation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 108 -140

-120 -100 -80 -60 -40 -20 0 20

Frequency

Spectrum (dB)

Rx Next(3)

Cancelled Next(3)

4.5

8

(b)

T x MAG Cat 5e cable MAG R x ENFX EQ

a b

0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 -140

-120 -100 -80 -60 -40 -20 0 20

Frequency

Spectrum (dB)

Rx far end signal

Rx Next(3)

(a)

(42)

SolarFlare

NEXT Impairment

NEXT Impairment - - SNR @ Detector SNR @ Detector

T x MAG MAG R x ENFX EQ

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10

8

-70

-60 -50 -40 -30 -20 -10 0 10

Frequency

Spectrum (dB)

Equalized Signal

Residual Next(3) Cat 5e cable

• FFE scales to

produce unit variance

hard decisions

(43)

FEXT Impairment

FEXT Impairment - - After Cancellation After Cancellation

Cat 5e cable

(a) (b)

a b

T x MAG MAG R x ENFX EQ

(44)

SolarFlare

FEXT Impairment

FEXT Impairment - - SNR @ Detector SNR @ Detector

• FFE scales to

produce unit variance hard decisions

T x MAG Cat 5e cable MAG R x ENFX EQ

(45)

Total

Total Slicer Slicer SNR SNR

T x MAG Cat 5e cable MAG R x ENX EQ

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10

8

-60

-50 -40 -30 -20 -10 0 10

Frequency

Spectrum (dB)

Equalized Signal

Total Noise

Total Noise Power Goal (-25.3) • FFE scales to

produce unit variance

hard decisions

(46)

SolarFlare

Eye Diagram Eye Diagram

Slicer input, including all noise sources vs. time

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(47)

Sequenced Startup Sequenced Startup

N E , P F D O N E

D O N E F

E , T N

S L A V E M A S T E R

N = E C H O /N E X T C anceller C o nverge nce T = Tim in g A cq uisition P = P h ase A d justm en t F = FE X T C anceller C o nverge nce

E = E qu alize r C o nverge nce

(48)

SolarFlare

Summary: Realizing 10GBASE

Summary: Realizing 10GBASE - - T T

• Careful attention to media characterization beyond 100MHz

• Evolution of 1000BASE-T

• Modern signal processing methods

• Feasible CMOS realizations of digital & analog circuits

• Q&A

Referenties

GERELATEERDE DOCUMENTEN

Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi.. Morbi ac orci et nisl

Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl

This paper describes a fully differential 60 GHz LNA (Fig. 1) in bulk CMOS employing transformer feedback resulting in a flat and broadband response.. Section

We present an analytical solution of the delocalization transition that is mduced by an imagmary vector potential m a disoidered cham [N Hatano and D R Nelson, Phys Rev

The original results of this work are that, when the interband radiation coupling exceeds a critical threshold, the bright condensate (BC) becomes sharply suppressed in the ground

A large photo-to- dark contrast and UV-to-visible rejection ratio suggests the enhancement in the PD performance which is attributed to the existence of a surface plasmon effect at

40 FORUM SŁUŻBY WIĘZIENNEJ CZERWIEC 2021 W  latach 1933-1939 przez Szkołę Straży Więziennej przewinęło się około dwóch tysięcy funkcjonariuszy niższych i 

In this paper, we consider the combination of channel coding with NO-STBC and propose an iterative receiver which takes benefit from the channel decoding in order to improve