• No results found

Cover Page The handle http://hdl.handle.net/1887/48877

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle http://hdl.handle.net/1887/48877"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/48877 holds various files of this Leiden University dissertation

Author: Li, Y.

Title: A new method to reconstruct the structure from crystal images Issue Date: 2017-05-03

(2)

References

[1] D. Sadava, D. M. Hiils, H. C. Heller, and M. R. Berenbaum, Life: the Science of Biology. W. H. Freeman, 9th ed., 2009. 2

[2] R. B. Russell and D. S. Eggleston, “New roles for structure in biology and drug discovery,” Nature Structural Biology, vol. 7, pp. 928–930, nov 2000. 2

[3] S. Subramaniam and J. L. S. Milne, “THREE-DIMENSIONAL ELEC- TRON MICROSCOPY AT MOLECULAR RESOLUTION*,” Annual Review of Biophysics and Biomolecular Structure, vol. 33, pp. 141–155, May 2004. 5

[4] D. B. Williams and C. B. Carter, Transmission Electron Microscopy.

Boston, MA: Springer US, 2009. 5

[5] M. Adrian, J. Dubochet, J. Lepault, and A. W. McDowall, “Cryo- electron microscopy of viruses,” Nature, vol. 308, no. 5954, pp. 32–36, 1984. 5

[6] J. Ruprecht and J. Nield, “Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction,” Progress in Biophysics and Molecular Biology, vol. 75, no. 3, pp. 121–164, 2001. 5

[7] R. Henderson, “Realizing the potential of electron cryo-microscopy,”

Quarterly Reviews of Biophysics, vol. 37, pp. 3–13, Feb. 2004. 7

(3)

[8] A. R. Faruqi and G. McMullan, “Electronic detectors for electron mi- croscopy,” Quarterly Reviews of Biophysics, vol. 44, pp. 357–390, apr 2011. 7

[9] X. Li, P. Mooney, S. Zheng, C. R. Booth, M. B. Braunfeld, S. Gubbens, D. A. Agard, and Y. Cheng, “Electron counting and beam-induced mo- tion correction enable near-atomic-resolution single-particle cryo-EM.,”

Nature methods, vol. 10, pp. 584–590, may 2013. 7

[10] G. McMullan, A. Faruqi, D. Clare, and R. Henderson, “Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy,” Ultramicroscopy, vol. 147, pp. 156–163, 2014. 7

[11] M. Liao, E. Cao, D. Julius, and Y. Cheng, “Structure of the TRPV1 ion channel determined by electron cryo-microscopy.,” Nature, vol. 504, pp. 107–12, dec 2013. 7

[12] Y. Mao, L. Wang, C. Gu, A. Herschhorn, A. D´esormeaux, A. Finzi, S.-H. Xiang, and J. G. Sodroski, “Molecular architecture of the un- cleaved HIV-1 envelope glycoprotein trimer.,” Proceedings of the Na- tional Academy of Sciences of the United States of America, vol. 110, pp. 12438–43, jul 2013. 7

[13] R. Henderson and P. N. T. Unwin, “Three-dimensional model of purple membrane obtained by electron microscopy,” Nature, vol. 257, no. 5521, pp. 28–32, 1975. 7,40,51

[14] T. Gonen, Y. Cheng, P. Sliz, Y. Hiroaki, Y. Fujiyoshi, S. C. Harri- son, and T. Walz, “Lipid-protein interactions in double-layered two- dimensional AQP0 crystals.,” Nature, vol. 438, pp. 633–8, Dec. 2005. 8, 9,40

[15] J. L. S. Milne, M. J. Borgnia, A. Bartesaghi, E. E. H. Tran, L. A. Earl, D. M. Schauder, J. Lengyel, J. Pierson, A. Patwardhan, and S. Subrama- niam, “Cryo-electron microscopy - A primer for the non-microscopist,”

FEBS Journal, vol. 280, pp. 28–45, Jan. 2013. 8

(4)

[16] P. N. T. Unwin and R. Henderson, “Molecular structure determination by electron microscopy of unstained crystalline specimens,” Journal of Molecular Biology, vol. 94, pp. 425–440, May 1975. 8,17

[17] G. Wisedchaisri, S. L. Reichow, and T. Gonen, “Advances in structural and functional analysis of membrane proteins by electron crystallogra- phy,” Structure, vol. 19, no. 10, pp. 1381–1393, 2011. 9

[18] R. M. Glaeser, “Limitations to significant information in biological elec- tron microscopy as a result of radiation damage,” Journal of Ultrastruc- ture Research, vol. 36, pp. 466–482, Aug. 1971. 9

[19] A. D. Schenk, D. Casta˜no D´ıez, B. Gipson, M. Arheit, X. Zeng, and H. Stahlberg, “Chapter Four - 3D Reconstruction from 2D Crystal Image and Diffraction Data,” in Cryo-EM, Part B: 3-D Reconstruction (G. J.

J. B. T. M. in Enzymology, ed.), vol. Volume 482, pp. 101–129, Academic Press, 2010. 10,11

[20] H. Stahlberg, N. Biyani, and A. Engel, “3D reconstruction of two- dimensional crystals.,” Archives of biochemistry and biophysics, vol. 581, pp. 68–77, sep 2015. 10,11

[21] J. Jansen, D. Tang, H. W. Zandbergen, and H. Schenk, “MSLS, a Least- Squares Procedure for Accurate Crystal Structure Refinement from Dy- namical Electron Diffraction Patterns,” Acta Crystallographica Section A Foundations of Crystallography, vol. 54, pp. 91–101, Jan. 1998. 11,40 [22] U. Kolb, T. Gorelik, C. K¨ubel, M. T. Otten, and D. Hubert, “Towards automated diffraction tomography: part I–data acquisition.,” Ultrami- croscopy, vol. 107, pp. 507–13, Jan. 2007. 12,40,116

[23] U. Kolb, T. Gorelik, and M. T. Otten, “Towards automated diffraction tomography. Part II–Cell parameter determination.,” Ultramicroscopy, vol. 108, pp. 763–72, July 2008. 12,116

[24] U. Kolb, E. Mugnaioli, and T. E. Gorelik, “Automated electron diffrac- tion tomography a new tool for nano crystal structure analysis,” Crystal Research and Technology, vol. 46, no. 6, pp. 542–554, 2011. 12,116

(5)

[25] S. HOVM ¨OLLER, “Electron rotation camera,” 2008. 12,116

[26] S. H. Zhang, Daliang, Peter Oleynikov and . X. Zou, “Collecting 3D electron diffraction data by the rotation method,” 2010. 12,116

[27] W. Wan, J. Sun, J. Su, S. Hovm¨oller, and X. Zou, “Three-dimensional rotation electron diffraction: software RED for automated data collec- tion and data processing.,” Journal of applied crystallography, vol. 46, pp. 1863–1873, dec 2013. 12,81,116

[28] I. Nederlof, E. van Genderen, Y.-W. Li, and J. P. Abrahams, “A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals.,” Acta crystal- lographica. Section D, Biological crystallography, vol. 69, pp. 1223–30, July 2013. 12,34,60,79,112

[29] D. Shi, B. L. Nannenga, M. G. Iadanza, and T. Gonen, “Three- dimensional electron crystallography of protein microcrystals.,” eLife, vol. 2, p. e01345, Jan. 2013. 12,34,78,79,112,113,115,122,126 [30] B. L. Nannenga, D. Shi, J. Hattne, F. E. Reyes, T. Gonen, P. Adams,

P. Afonine, G. Bunkoczi, V. Chen, I. Davis, N. Echols, J. Headd, L. Hung, G. Kapral, R. Grosse-Kunstleve, A. McCoy, N. Moriarty, R. Oeffner, R. Read, D. Richardson, J. Richardson, T. Terwilliger, P. Zwart, L. Baker, E. Smith, S. Bueler, J. Rubinstein, T. Battye, L. Kontogiannis, O. Johnson, H. Powell, A. Leslie, E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. Lea, G. Bricogne, V. Chen, W. A. III, J. Headd, D. Keedy, R. Immormino, G. Kapral, L. Murray, J. Richard- son, D. Richardson, K. Cowtan, D. Dorset, D. Parsons, D. Dorset, D. Parsons, P. Emsley, B. Lohkamp, W. Scott, K. Cowtan, P. Evans, P. Evans, P. Evans, G. Murshudov, I. Fita, M. Rossmann, L. Foroughi, Y. Kang, A. Matzger, R. Glaeser, L. Tong, S. Kim, T. Gonen, H. Kirk- man, G. Gaetani, T. Ko, J. Day, A. Malkin, A. McPherson, A. Leslie, H. Powell, W. Longley, V. Matricardi, R. Moretz, D. Parsons, G. Mur- shudov, A. Vagin, E. Dodson, B. Nannenga, D. Shi, A. Leslie, T. Gonen, E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, T. Ferrin, N. Purwar, J. McGarry, J. Kostera, A. Pacheco, M. Schmidt,

(6)

D. Shi, B. Nannenga, M. Iadanza, T. Gonen, J. Sumner, A. Dounce, T. Terwilliger, P. Adams, N. Moriarty, J. Cohn, T. Terwilliger, H. Klei, P. Adams, N. Moriarty, J. Cohn, P. Unwin, P. Unwin, R. Henderson, A. Vagin, and A. Teplyakov, “Structure of catalase determined by Mi- croED.,” eLife, vol. 3, p. e03600, oct 2014. 12,34

[31] K. Yonekura, K. Kato, M. Ogasawara, M. Tomita, and C. Toyoshima,

“Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, pp. 3368–73, Mar. 2015. 12,34 [32] B. L. Nannenga, D. Shi, A. G. W. Leslie, and T. Gonen, “High-resolution

structure determination by continuous-rotation data collection in Mi- croED,” Nature Methods, vol. 11, pp. 927–930, aug 2014. 12,113 [33] P. Pawel A., “Chapter One - Fundamentals of Three-Dimensional Re-

construction from Projections,” in Cryo-EM, Part B: 3-D Reconstruc- tion (G. J. J. B. T. M. in Enzymology, ed.), vol. Volume 482, pp. 1–33, Academic Press, 2010. 13

[34] W. Hoppe, J. Gassmann, N. Hunsmann, H. J. Schramm, and M. Sturm,

“Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron micro- scope.,” Hoppe-Seyler’s Zeitschrift f¨ur physiologische Chemie, vol. 355, pp. 1483–7, Nov. 1974. 13

[35] V. Knauer, R. Hegerl, W. Hoppe, and H. Oettl, “Three-dimensional reconstruction and averaging of 30 S ribosomal subunits of Escherichia coli from electron micrographs,” Journal of Molecular Biology, vol. 163, pp. 409–430, Jan. 1983. 13

[36] K. Dierksen, D. Typke, R. Hegerl, A. J. Koster, and W. Baumeister,

“Towards automatic electron tomography,” Ultramicroscopy, vol. 40, no. 1, pp. 71–87, 1992. 13

[37] M. Radermacher, T. Wagenknecht, A. Verschoor, and J. Frank, “Three- dimensional structure of the large ribosomal subunit from Escherichia coli.,” The EMBO journal, vol. 6, pp. 1107–14, Apr. 1987. 14

(7)

[38] M. Schatz, E. Orlova, P. Dube, H. Stark, F. Zemlin, and M. Van Heel,

“Angular reconstitution in three-dimensional electron microscopy: prac- tical and technical aspects,” Scanning Microscopy, vol. 11, pp. 179–193, 1997. 14,98

[39] M. Van Heel, E. Orlova, G. Harauz, H. Stark, P. Dube, F. Zemlin, and M. Schatz, “Angular reconstitution in three-dimensional electron microscopy: historical and theoretical aspects,” Scanning Microscopy, vol. 11, pp. 195–210, 1997. 14,25

[40] M. Van Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, and A. Patwardhan, “Single- particle electron cryo-microscopy: Towards atomic resolution,” Quar- terly Reviews of Biophysics, vol. 33, no. 4, pp. 307–369, 2000. 14,39 [41] G. Harauz and F. Ottensmeyer, “Direct three-dimensional reconstruc-

tion for macromolecular complexes from electron micrographs,” Ultra- microscopy, vol. 12, pp. 309–319, Jan. 1983. 14

[42] T. S. Baker and R. Cheng, “A Model-Based Approach for Determin- ing Orientations of Biological Macromolecules Imaged by Cryoelectron Microscopy,” Journal of Structural Biology, vol. 116, pp. 120–130, Jan.

1996. 14

[43] J. Frank, J. Zhu, P. Penczek, Y. Li, S. Srivastava, A. Verschoor, M. Ra- dermacher, R. Grassucci, R. K. Lata, and R. K. Agrawal, “A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome.,” Nature, vol. 376, pp. 441–4, Aug. 1995. 14

[44] M. G. Campbell, D. Veesler, A. Cheng, C. S. Potter, and B. Carragher,

“2.8 ?? Resolution Reconstruction of the Thermoplasma Acidophilum 20 S Proteasome Using Cryo-Electron Microscopy,” eLife, vol. 2015, pp. 1–22, jan 2015. 14

[45] R. A. CROWTHER, L. A. Amos, J. T. FINCH, D. J. De Rosier, and A. KLUG, “Three Dimensional Reconstructions of Spherical Viruses by Fourier Synthesis from Electron Micrographs,” Nature, vol. 226, pp. 421–

425, May 1970. 15

(8)

[46] D. J. DeRosier and P. B. Moore, “Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry,”

Journal of Molecular Biology, vol. 52, pp. 355–369, Sept. 1970. 15 [47] Y. Cheng, N. Grigorieff, P. A. Penczek, and T. Walz, “A Primer to

Single-Particle Cryo-Electron Microscopy,” Cell, vol. 161, pp. 438–449, apr 2015. 17

[48] C. W. Akey and S. J. Edelstein, “Equivalence of the projected structure of thin catalase crystals preserved for electron microscopy by negative stain, glucose or embedding in the presence of tannic acid,” Journal of Molecular Biology, vol. 163, pp. 575–612, Feb. 1983. 17

[49] J. Dubochet, J. Lepault, R. Freeman, J. A. Berriman, and J.-C. Homo,

“Electron microscopy of frozen water and aqueous solutions,” Journal of Microscopy, vol. 128, pp. 219–237, Dec. 1982. 17

[50] J. Lepault, F. P. Booy, and J. Dubochet, “Electron microscopy of frozen biological suspensions,” Journal of Microscopy, vol. 129, pp. 89–102, Jan. 1983. 17

[51] A. W. McDowall, J.-J. Chang, R. Freeman, J. Lepault, C. A. Walter, and J. Dubochet, “Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples,” Journal of Microscopy, vol. 131, pp. 1–9, July 1983. 17

[52] K. A. Taylor and R. M. Glaeser, “Electron microscopy of frozen hy- drated biological specimens.,” Journal of ultrastructure research, vol. 55, pp. 448–56, June 1976. 17

[53] M. Adrian, J. Dubochet, S. D. Fuller, and J. R. Harris, “Cryo-negative staining,” Micron, vol. 29, pp. 145–160, apr 1998. 17

[54] J. Frank, Three-dimensional electron microscopy of macromolecular as- semblies: visualization of biological molecules in their native state. Ox- ford: Oxford University Press, 2006. 17,18,19,22,23

[55] H. Rose, “Information transfer in transmission electron microscopy,”

Ultramicroscopy, vol. 15, pp. 173–191, Jan. 1984. 17

(9)

[56] I. Angert, E. Majorovits, and R. R. Schr¨oder, “Zero-loss image forma- tion and modified contrast transfer theory in EFTEM,” Ultramicroscopy, vol. 81, pp. 203–222, Apr. 2000. 19

[57] I. Kazuo, “Contrast transfer of crystal images in TEM,” Ultrami- croscopy, vol. 5, no. 1-3, pp. 55–65, 1980. 19

[58] E. J. Mancini and S. D. Fuller, “Supplanting crystallography or supple- menting microscopy? A combined approach to the study of an enveloped virus,” Acta Crystallographica Section D, vol. 56, pp. 1278–1287, Oct.

2000. 19

[59] A. Philippsen, A. D. Schenk, G. A. Signorell, V. Mariani, S. Berneche, and A. Engel, “Collaborative EM image processing with the IPLT image processing library and toolbox,” Journal of Structural Biology, vol. 157, pp. 28–37, Jan. 2007. 19

[60] B. Sander, M. M. Golas, and H. Stark, “Automatic CTF correction for single particles based upon multivariate statistical analysis of individual power spectra,” Journal of Structural Biology, vol. 142, pp. 392–401, June 2003. 19

[61] J. Zhu, P. A. Penczek, R. Schr¨oder, and J. Frank, “Three-Dimensional Reconstruction with Contrast Transfer Function Correction from Energy-Filtered Cryoelectron Micrographs: Procedure and Application to the 70SEscherichia coliRibosome,” Journal of Structural Biology, vol. 118, pp. 197–219, Apr. 1997. 19

[62] M. van Heel and W. Keegstra, “IMAGIC: A fast, flexible and friendly image analysis software system,” Ultramicroscopy, vol. 7, no. 2, pp. 113–

129, 1981. 19

[63] M. van Heel, G. Harauz, E. V. Orlova, R. Schmidt, and M. Schatz, “A New Generation of the IMAGIC Image Processing System,” Journal of Structural Biology, vol. 116, pp. 17–24, Jan. 1996. 19,26,39,82

[64] J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, and A. Leith, “SPIDER and WEB: processing and visualization of images in

(10)

3D electron microscopy and related fields.,” Journal of structural biology, vol. 116, pp. 190–9, Jan. 1996. 19

[65] J. Frank, B. Shimkin, and H. Dowse, “SPIDERA modular software system for electron image processing,” Ultramicroscopy, vol. 6, no. 1, pp. 343–357, 1981. 19

[66] S. J. Ludtke, P. R. Baldwin, and W. Chiu, “EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions,” Journal of Structural Biology, vol. 128, pp. 82–97, Dec. 1999. 19

[67] G. Tang, L. Peng, P. R. Baldwin, D. S. Mann, W. Jiang, I. Rees, and S. J. Ludtke, “EMAN2: An extensible image processing suite for electron microscopy,” Journal of Structural Biology, vol. 157, pp. 38–46, Jan.

2007. 19,39,81

[68] J. Frank and M. van Heel, “Correspondence analysis of aligned images of biological particles,” Journal of Molecular Biology, vol. 161, pp. 134–

137, Oct. 1982. 19,21

[69] J. Frank and T. Wagenknecht, “Automatic selection of molecular images from electron micrographs,” Ultramicroscopy, vol. 12, pp. 169–175, Jan.

1983. 20

[70] M. van Heel, “Phase contrast in biological specimens,” Ultramicroscopy, vol. 15, no. 4, pp. 377 –, 1984. 21

[71] M. van Heel and J. Frank, “Use of multivariates statistics in analysing the images of biological macromolecules,” Ultramicroscopy, vol. 6, no. 1, pp. 187–194, 1981. 21

[72] J. Goodman, Introduction to Fourier optics. San Fransisco: McGraw- Hill, 1968. 23

[73] M. van Heel, M. Schatz, and E. Orlova, “Correlation functions revisited,”

Ultramicroscopy, vol. 46, pp. 307–316, Oct. 1992. 23

[74] M. B. Sherman, T. Soejima, W. Chiu, and M. van Heel, “Multivariate analysis of single unit cells in electron crystallography,” Ultramicroscopy, vol. 74, pp. 179–199, Sept. 1998. 24,56

(11)

[75] D. J. DE ROSIER and A. KLUG, “Reconstruction of three dimensional structures from electron micrographs,” Nature, vol. 217, pp. 130–134, Jan. 1968. 24

[76] M. Van Heel, “Similarity measures between images,” Ultramicroscopy, vol. 21, no. 1, pp. 95–100, 1987. 24,25

[77] M. van Heel and G. Harauz, “Exact filters for general geometry three dimensional reconstruction,” Optik, vol. 73, pp. 146–156, 1986. 26, 83, 90

[78] M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,”

Journal of Structural Biology, vol. 151, no. 3, pp. 250–262, 2005. 26,27 [79] W. O. Saxton and W. Baumeister, “The correlation averaging of a reg- ularly arranged bacterial cell envelope protein,” Journal of Microscopy, vol. 127, pp. 127–138, Aug. 1982. 26

[80] E. V. Orlova, P. Dube, J. Harris, E. Beckman, F. Zemlin, J. Markl, and M. van Heel, “Structure of keyhole limpet hemocyanin type 1 (KLH1) at 15 ˚Aresolution by electron cryomicroscopy and angular reconstitution,”

Journal of Molecular Biology, vol. 271, no. 3, pp. 417–437, 1997. 27 [81] S. H. W. Scheres and S. Chen, “Prevention of overfitting in cryo-EM

structure determination.,” Nature methods, vol. 9, pp. 853–4, Sept. 2012.

27

[82] R. Henderson, A. Sali, M. L. Baker, B. Carragher, B. Devkota, K. H.

Downing, E. H. Egelman, Z. Feng, J. Frank, N. Grigorieff, W. Jiang, S. J. Ludtke, O. Medalia, P. A. Penczek, P. B. Rosenthal, M. G. Ross- mann, M. F. Schmid, G. F. Schr¨oder, A. C. Steven, D. L. Stokes, J. D.

Westbrook, W. Wriggers, H. Yang, J. Young, H. M. Berman, W. Chiu, G. J. Kleywegt, and C. L. Lawson, “Outcome of the first electron mi- croscopy validation task force meeting.,” Structure (London, England : 1993), vol. 20, pp. 205–14, Feb. 2012. 27

[83] Terese M. Bergfors, Protein Crystallization. International University Line, second edi ed., 2009. 28

(12)

[84] R. Gieg´e, A. Dock, D. Kern, B. Lorber, J. Thierry, and D. Moras, “The role of purification in the crystallization of proteins and nucleic acids,”

Journal of Crystal Growth, vol. 76, pp. 554–561, Aug. 1986. 28

[85] M. W. Bowler, M. Guijarro, S. Petitdemange, I. Baker, O. Svensson, M. Burghammer, C. Mueller-Dieckmann, E. J. Gordon, D. Flot, S. M.

McSweeney, and G. A. Leonard, “Diffraction cartography: applying mi- crobeams to macromolecular crystallography sample evaluation and data collection.,” Acta crystallographica. Section D, Biological crystallogra- phy, vol. 66, pp. 855–64, Aug. 2010. 28

[86] V. Cherezov, D. M. Rosenbaum, M. A. Hanson, S. r. G. F. Rasmussen, F. S. Thian, T. S. Kobilka, H.-J. Choi, P. Kuhn, W. I. Weis, B. K.

Kobilka, and R. C. Stevens, “High-resolution crystal structure of an en- gineered human beta2-adrenergic G protein-coupled receptor.,” Science (New York, N.Y.), vol. 318, pp. 1258–65, Nov. 2007. 28

[87] R. Moukhametzianov, M. Burghammer, P. C. Edwards, S. Petitde- mange, D. Popov, M. Fransen, G. McMullan, G. F. X. Schertler, and C. Riekel, “Protein crystallography with a micrometre-sized synchrotron-radiation beam.,” Acta crystallographica. Section D, Bio- logical crystallography, vol. 64, pp. 158–66, Feb. 2008. 28

[88] E. Pebay-Peyroula, “X-ray Structure of Bacteriorhodopsin at 2.5Angstroms from Microcrystals Grown in Lipidic Cubic Phases,” Sci- ence, vol. 277, pp. 1676–1681, Sept. 1997. 28

[89] S. r. G. F. Rasmussen, H.-J. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian, P. C. Edwards, M. Burghammer, V. R. P. Ratnala, R. San- ishvili, R. F. Fischetti, G. F. X. Schertler, W. I. Weis, and B. K. Kobilka,

“Crystal structure of the human beta2 adrenergic G-protein-coupled re- ceptor.,” Nature, vol. 450, pp. 383–7, Nov. 2007. 28

[90] X. Zou, Y. Sukharev, and S. Hovm¨oller, “ELD a computer program system for extracting intensities from electron diffraction patterns,” Ul- tramicroscopy, vol. 49, no. 1-4, pp. 147–158, 1993. 28

(13)

[91] J. A. Darbyshire and E. R. Cooper, “Diffraction of Electrons by Metal Crystals and by Mica,” Proceedings of the Royal Society A: Mathemati- cal, Physical and Engineering Sciences, vol. 152, pp. 104–123, Oct. 1935.

28

[92] W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei R¨ontgenstrahlen,” Annalen der Physik, vol. 346, no. 10, pp. 971–988, 1913. 29

[93] W. L. Bragg, “The Diffraction of Short Electromagnetic Waves by a Crystal,” Proceedings of the Cambridge Philosophical Society, vol. 17, pp. 43–57, 1913. 30

[94] P. P. Ewald, “Introduction to the dynamical theory of X-ray diffraction,”

Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoret- ical and General Crystallography, vol. 25, pp. 103–108, Jan. 1969. 31 [95] G. Rhodes, Crystallography Made Crystal Clear. Elsevier, 2006. 33 [96] E. J. Dodson, “Using electron-microscopy images as a model for molec-

ular replacement,” Acta Crystallographica Section D Biological Crystal- lography, vol. 57, pp. 1405–1409, Sept. 2001. 33,40

[97] Y. Xiong, IUCr, O. N. H., F. S. D., N. . Collaborative Computational Project, D. E. J., H. M. Van, G. B., M. R., O. E. V., F. R., P. T., C. D., S. H., S. R., S. M., P. A., H. J. B., C. M., B. D. M., J. S., L. M., M. T., B. N., K. G. J., J. T. A., K. S. J., P. P. A., S. J. K., K. A., T. S., L. M., N. H. F., L. I. B., X. Y., S. T. A., M. R., P. A., G. B., O. E. V., P. T., C. M., M. F., B. R., v. H. M., N. J., N. P., H. J., B. N., M. P.

B., S. T. A., R. U. B., Z. A. V., S. J., V. M., G. R. A., L. J., V. B., E. M., F. J., R. R. J., R. M. G., M. M. C., L. P. G., Z. W., S. M., D. C.

M., M. F. V. I, V, W. A., P. S., K. A. C., W. J. R., R. V., V. A., and T. A., “From electron microscopy to X-ray crystallography: molecular- replacement case studies,” Acta Crystallographica Section D Biological Crystallography, vol. 64, pp. 76–82, jan 2008. 33

[98] I. Nederlof, Y.-W. Li, M. van Heel, and J. P. Abrahams, “Imaging protein three-dimensional nanocrystals with cryo-EM.,” Acta crystallo-

(14)

graphica. Section D, Biological crystallography, vol. 69, pp. 852–9, May 2013. 34,40,61,67,69,74,78,80

[99] R. N. Jackson, A. J. McCoy, T. C. Terwilliger, R. J. Read, and B. Wiedenheft, “X-ray structure determination using low-resolution electron microscopy maps for molecular replacement,” Nature Protocols, vol. 10, pp. 1275–1284, jul 2015. 34,118,121

[100] B. Rupp, Protein Crystallization Strategies for Structural Genomics. La Jolla:International University Line, 2004. 39,112

[101] S. Quevillon-Cheruel, D. Liger, N. Leulliot, M. Graille, A. Poupon, I. Li de La Sierra-Gallay, C.-Z. Zhou, B. Collinet, J. Janin, and H. Van Tilbeurgh, “The Paris-Sud yeast structural genomics pilot-project: from structure to function.,” Biochimie, vol. 86, no. 9-10, pp. 617–23, 2004.

39,112

[102] S. Cusack, H. Belrhali, A. Bram, M. Burghammer, A. Perrakis, and C. Riekel, “Small is beautiful: protein micro-crystallography,” Nature Structural Biology, no. 5, pp. 634 – 637, 1998. 39

[103] E. Eikenberry, C. Br¨onnimann, G. H¨ulsen, H. Toyokawa, R. Horis- berger, B. Schmitt, C. Schulze-Briese, and T. Tomizaki, “PILATUS:

a two-dimensional X-ray detector for macromolecular crystallography,”

Nuclear Instruments and Methods in Physics Research Section A: Accel- erators, Spectrometers, Detectors and Associated Equipment, vol. 501, pp. 260–266, Mar. 2003. 39

[104] H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau,

(15)

K.-U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.-D.

Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirse- mann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, “Fem- tosecond X-ray protein nanocrystallography,” Nature, vol. 470, pp. 73–

77, Feb. 2011. 39,78

[105] R. Henderson, “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Quarterly Reviews of Biophysics, vol. 28, pp. 171–193, May 1995. 39,78,79

[106] K. A. Taylor and R. M. Glaeser, “Electron Diffraction of Frozen, Hy- drated Protein Crystals,” Science, vol. 186, pp. 1036–1037, Dec. 1974.

39

[107] A. KLUG, “Image analysis and reconstruction in the electron microscopy of biological macromolecules,” Chemica Scripta, no. 14, pp. 245–56, 1979. 39

[108] E. Knapek and J. Dubochet, “Beam damage to organic material is con- siderably reduced in cryo-electron microscopy,” Journal of Molecular Biology, vol. 141, pp. 147–161, Aug. 1980. 39

[109] Z. Hong and Zhou, “Towards atomic resolution structural determina- tion by single-particle cryo-electron microscopy,” Current Opinion in Structural Biology, vol. 18, no. 2, pp. 218–228, 2008. 39

[110] B. Carragher, N. Kisseberth, D. Kriegman, R. A. Milligan, C. S. Pot- ter, J. Pulokas, and A. Reilein, “Leginon: an automated system for ac- quisition of images from vitreous ice specimens.,” Journal of structural biology, vol. 132, pp. 33–45, Oct. 2000. 39

(16)

[111] X. Llopart, M. Campbell, R. Dinapoli, D. San Segundo, and E. Pernig- otti, “Medipix2: A 64-k pixel readout chip with 55-µm square elements working in single photon counting mode,” IEEE Transactions on Nu- clear Science, vol. 49, pp. 2279–2283, Oct. 2002. 39

[112] J. C. H. Spence and J. M. Zuo, Electron Microdiffraction. New York:

Plenum, 1992. 40

[113] R. Vincent and P. Midgley, “Double conical beam-rocking system for measurement of integrated electron diffraction intensities,” Ultrami- croscopy, vol. 53, pp. 271–282, Mar. 1994. 40

[114] P. Oleynikov, S. Hovm¨oller, and X. D. Zou, “Precession electron diffrac- tion: observed and calculated intensities.,” Ultramicroscopy, vol. 107, pp. 523–33, Jan. 2007. 40

[115] E. Mugnaioli, T. Gorelik, and U. Kolb, “”Ab initio” structure solu- tion from electron diffraction data obtained by a combination of au- tomated diffraction tomography and precession technique.,” Ultrami- croscopy, vol. 109, pp. 758–65, May 2009. 40

[116] X. Zhang, L. Jin, Q. Fang, W. H. Hui, and Z. H. Zhou, “3.3 ˚ACryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry,” Cell, vol. 141, no. 3, pp. 472–482, 2010. 40

[117] R. Henderson and P. N. T. Unwin, “Three-dimensional model of purple membrane obtained by electron microscopy,” Nature, vol. 257, pp. 28–

32, Sept. 1975. 40

[118] T. E. Weirich, X. Zou, R. Ramlau, A. Simon, G. L. Cascarano, C. Gi- acovazzo, and S. Hovm¨oller, “Structures of nanometre-size crystals de- termined from selected-area electron diffraction data,” Acta Crystallo- graphica Section A Foundations of Crystallography, vol. 56, pp. 29–35, Jan. 2000. 40

[119] K. Tsuda and M. Tanaka, “Refinement of crystal structure parameters using convergent-beam electron diffraction: the low-temperature phase of SrTiO 3,” Acta Crystallographica Section A Foundations of Crystal- lography, vol. 51, pp. 7–19, Jan. 1995. 40

(17)

[120] J. Zuo and J. Spence, “Automated structure factor refinement from convergent-beam patterns,” Ultramicroscopy, vol. 35, pp. 185–196, June 1991. 40

[121] J. Navaza, “Combining X-ray and electron-microscopy data to solve crystal structures.,” Acta crystallographica. Section D, Biological crys- tallography, vol. 64, pp. 70–5, Jan. 2008. 40

[122] P. M. Frederik and D. H. W. Hubert, “Cryoelectron microscopy of li- posomes.,” Methods in enzymology, vol. 391, pp. 431–448, Jan. 2005.

41

[123] M. Abramoff, P. J. Magalh˜aes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics international, vol. 11, no. 7, pp. 36–42, 2004. 46 [124] M. Wolf, D. J. DeRosier, and N. Grigorieff, “Ewald sphere correction for single-particle electron microscopy.,” Ultramicroscopy, vol. 106, pp. 376–

82, Mar. 2006. 50

[125] A. Philippsen, H.-A. Engel, and A. Engel, “The contrast-imaging func- tion for tilted specimens,” Ultramicroscopy, vol. 107, pp. 202–212, Feb.

2007. 50

[126] M. Hohenstein, “Single sideband imaging in high-resolution electron mi- croscopy,” Applied Physics A Solids and Surfaces, vol. 54, pp. 485–492, June 1992. 50

[127] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam- bridge University Press, 2007. 52,63

[128] M. Van Heel, R. Portugal, A. Rohou, C. Linnemayr, C. Bebeacua, R. Schmidt, M. Schatz, and T. Grant, “Four-Dimensional Cryo Elec- tron Microscopy at Quasi Atomic Resolution: ”IMAGIC 4D,” in In- ternational Tables for Crystallography Volume F:Crystallography of bi- ological macromolecules (Second Edition) (E. Arnold, D. Himmel, and M. Rossmann, eds.), pp. 624–628, 2012. 52

(18)

[129] M. Van Heel, “Classification of very large electron microscopical data sets,” Optik, no. 82, pp. 114–126, 1989. 52

[130] P. J. B. Koeck, P. Purhonen, R. Alvang, B. Grundberg, and H. Hebert,

“Single particle refinement in electron crystallography: a pilot study.,”

Journal of structural biology, vol. 160, pp. 344–52, Dec. 2007. 56 [131] X. Zeng, H. Stahlberg, and N. Grigorieff, “A maximum likelihood

approach to two-dimensional crystals.,” Journal of structural biology, vol. 160, pp. 362–74, Dec. 2007. 56

[132] R. Henderson, J. M. Baldwin, T. A. Ceska, F. Zemlin, E. Beckmann, and K. H. Downing, “Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy,” Journal of Molecular Biology, vol. 213, no. 4, pp. 899–929, 1990. 61

[133] D. Gil, J. M. Carazo, and R. Marabini, “On the nature of 2D crystal unbending.,” Journal of structural biology, vol. 156, pp. 546–55, Dec.

2006. 61

[134] W. K¨uhlbrandt and D. N. Wang, “Three-dimensional structure of plant light-harvesting complex determined by electron crystallography.,” Na- ture, vol. 350, pp. 130–4, Mar. 1991. 61

[135] X. Zeng, Y.-W. Chen, O. Hughes, and H. Stahlberg, “Iterative Trans- form Algorithms for 3D Reconstruction of 2D Crystals,” JNIT: Journal of Next Generation Information Technology, vol. 3, no. 1, pp. 28–35, 2012. 61

[136] H. Stahlberg, D. Fotiadis, S. Scheuring, H. R´emigy, T. Braun, K. Mit- suoka, Y. Fujiyoshi, and A. Engel, “Two-dimensional crystals: a pow- erful approach to assess structure, function and dynamics of membrane proteins,” FEBS Letters, vol. 504, pp. 166–172, Aug. 2001. 61

[137] S. Scherer, M. Arheit, J. Kowal, X. Zeng, and H. Stahlberg, “Single particle 3D reconstruction for 2D crystal images of membrane proteins.,”

Journal of structural biology, vol. 185, pp. 267–77, Mar. 2014. 61

(19)

[138] S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila, R. B.

Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J.

Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bo- gan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Jo- hansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Re- decke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. H. Spence, H. N. Chapman, and I. Schlichting, “High-resolution protein structure determination by se- rial femtosecond crystallography.,” Science (New York, N.Y.), vol. 337, pp. 362–4, July 2012. 78,112

[139] I. Sikharulidze, R. van Gastel, S. Schramm, J. Abrahams, B. Poelsema, R. Tromp, and S. van der Molen, “Low energy electron microscopy imaging using Medipix2 detector,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 633, pp. S239–S242, may 2011. 78 [140] B. L. Nannenga and T. Gonen, “Protein structure determination by

MicroED.,” Current opinion in structural biology, vol. 27C, pp. 24–31, Apr. 2014. 79

[141] E. van Genderen, M. T. B. Clabbers, P. P. Das, A. Stewart, I. Nederlof, K. C. Barentsen, Q. Portillo, N. S. Pannu, S. Nicolopoulos, T. Gruene, and J. P. Abrahams, “Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector.,”

Acta crystallographica. Section A, Foundations and advances, vol. 72, pp. 236–42, mar 2016. 79,122,126

[142] E. van Genderen, Y. W. Li, I. Nederlof, and J. P. Abrahams, “Lattice filter for processing image data of three-dimensional protein nanocrys- tals.,” Acta crystallographica. Section D, Structural biology, vol. 72, pp. 34–9, jan 2016. 80

(20)

[143] W. Kabsch, IUCr, D. K., K. P. A., D. K., M. S., R. R. B. G., E. P., F. S., W. K., K. W., K. W., K. W., K. W., K. P., and W. M. S., “XDS,” Acta Crystallographica Section D Biological Crystallography, vol. 66, pp. 125–

132, feb 2010. 81

[144] D. Y. D.A. Case, J.T. Berryman, R.M. Betz, D.S. Cerutti, T.E.

Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W.

Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, A. Kovalenko, T.S.

Lee, S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K.M. Merz and P. Kollman, “AMBER 2015,” 2015. 81

[145] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Pro- cessing. San Diego, California: California Technical Publishing, sec- ond ed., 1999. 86

[146] J. J. W. Wiltzius, M. Landau, R. Nelson, M. R. Sawaya, M. I. Apostol, L. Goldschmidt, A. B. Soriaga, D. Cascio, K. Rajashankar, and D. Eisen- berg, “Molecular mechanisms for protein-encoded inheritance.,” Nature structural & molecular biology, vol. 16, pp. 973–8, sep 2009. 87

[147] T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W.

Leslie, IUCr, E. P., E. P. R., J. D. H., L. J., B. H. D., S. E. H., M. B. W., B. G. E. O., L. A. G. W., N. C., O. Z., M. W., P. J. W., P. H. R., R. M.

G., R. M. G., L. A. G. W., A.-M. S. S., T. T., S. I., B. R., R. M. G., W. F. K., S. C. E., H. S. C., and W. M. D., “iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM ,” Acta Crys- tallographica Section D Biological Crystallography, vol. 67, pp. 271–281, apr 2011. 116

[148] Y. Zhang, “I-TASSER server for protein 3D structure prediction.,” BMC bioinformatics, vol. 9, p. 40, jan 2008. 121

(21)
(22)

Curriculum Vitae

Yaowang Li was born on September 1, 1983 in Jiangxi, China. He started his Food Science and Engineer education in Jiangxi Agricultural University in 2004. During the college time, his interest focus on the computer science. In 2008, He obtained a bachelor degree in Food Science.

At the same year, He decided to join the Postgraduate Admission Test, and it was lucky that his Master’s supervisor provide him a project about bioinformatics research at China Argicultural University.

Through data analysis with statistical methods, to build the connection between structure and activity for antioxidative peptide.

Shortly after he received a master degree, in 2011, he got the schol- arship from China Scholarship Council and joined the project in the department of Biophysical Structural Chemistry, Leiden University, as a PhD candidate. He devoted himself to the research of new methods that can solve the structure of macromolecules base on randomly oriented projections of three-dimensional nano-crystals, which was reported in this thesis.

Currently he will join the Beijing Advanced Innovation Center For Structural Biology at Tsinghua University, continue to the methods re- search in structural biology.

(23)
(24)

Publications

1. van Genderen E.*, LI Y.W.*, Nederlof I., Abrahams,J.P. (2016) Lattice filter for processing image data of three-dimensional protein nanocrys- tals, Acta Crystallographica Section D: Biological Crystallography, vol 72, pp. 34-39. (* co-first author)

2. Abrahams J, van Genderen E, Nederlof I, Clabbers M, Li Y (2015) Electron diffraction and imaging of 3D nanocrystals of pharmaceuticals, peptides and proteins. Acta Crystallographica Section A: Foundations and Advances 71, pp. s103.

3. Clabbers Max TB, van Genderen E, Nederlof I, Li Y, Abrahams J (2015) Electron crystallography of 3D nano-crystals. Acta Crystallographica Section A: Foundations and Advances 71, pp. s405.

4. Nederlof, I, Li, Y.W., van Heel, M., Abrahams, J.P., (2013) Imaging protein three-dimensional nanocrystals with cryo-EM, Acta Crystallo- graphica Section D: Biological Crystallography, vol. 69, pp. 852-859.

5. Nederlof, I, van Genderen, E., Li, Y.W., Abrahams, J.P., (2013) A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals, Acta Crystallographica Section D: Biological Crystallography, 69, pp. 1223- 1230.

6. Li Y.W., Li B., (2013) Characterization of structure-antioxidant activ- ity relationship of peptides in free radical systems using QSAR models:

key sequence positions and their amino acid properties. Journal of The- oretical Biology, 318, pp. 29-43.

(25)

7. Li Y.W., Li B., He J., Qian P., (2011) Quantitative structure-activity re- lationship study of antioxidant peptides by using different sets of amino acids descriptors. Journal of Molecular Structure, 998, pp. 53-61.

8. Li Y.W., Li B., He J., Qian P.,(2011) Structure-activity relation- ship study of antioxidative peptides by QSAR modeling: the amino acid next to C-terminal affects the activity. Journal of peptide science,17(6),pp.454-462.

9. Li Y.W., Li B., (2010) Quantitative structure-activity relationship study of radical scavenging peptides based on ORAC method by using differ- ent sets of amino acids descriptor. International Conference of CMBB (Cellular, Molecular Biology, Biophysics and Bioengineering), vol. III, IEEE press, pp. 251-257.

Referenties

GERELATEERDE DOCUMENTEN

The handle http://hdl.handle.net/1887/40676 holds various files of this Leiden University dissertation.. Algorithms for finite rings |

Professeur Universiteit Leiden Directeur BELABAS, Karim Professeur Universit´ e de Bordeaux Directeur KRICK, Teresa Professeur Universidad de Buenos Aires Rapporteur TAELMAN,

We are interested in deterministic polynomial-time algorithms that produce ap- proximations of the Jacobson radical of a finite ring and have the additional property that, when run

The handle http://hdl.handle.net/1887/40676 holds various files of this Leiden University

A total of 39 questions were selected from this question- naire (see the Appendix) that were either relevant to the mathematics lessons in general (teacher characteristics,

The common elements of the control and intervention training do appear to be responsible for the observed changes in strategy choices and accuracy, as no such changes occurred in

The tasks that students had to do were typical educational tasks from the domain of mathematics that are especially interesting with regard to strategy use: solving twelve

Differentially expressed genes between the two treatments, using low cellobiose treatment as a reference, were identified at significance level of 0.05 with a false discovery