• No results found

Biochemical and molecular studies of atypical nevi Nieuwpoort, A.F. van

N/A
N/A
Protected

Academic year: 2021

Share "Biochemical and molecular studies of atypical nevi Nieuwpoort, A.F. van"

Copied!
23
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation

Nieuwpoort, A. F. van. (2011, March 16). Biochemical and molecular studies of atypical nevi. Retrieved from https://hdl.handle.net/1887/16632

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the

University of Leiden

Downloaded from: https://hdl.handle.net/1887/16632

Note: To cite this publication please use the final published version (if applicable).

(2)

management of reactive oxygen   species in atypical melanocytes 

Frans A. van Nieuwpoort1  Arij Weerheim 1  Coby Out‐Luiting1  Paul Hensbergen2  Femke A. de Snoo3  

Stan Pavel1  Wilma Bergman1  Nelleke A. Gruis1  

1)  Department Of Dermatology, Leiden University Medical Centre, Leiden,   The Netherlands  2) Department of Parasitology, Leiden University Medical Centre, Leiden, The Neth‐

erlands   3) Centre for Human and Clinical Genetics Leiden University Medical Centre, Leiden, 

The Netherlands 

Submitted 

(3)
(4)

Summary 

A better understanding of the early stages of melanoma development might  contribute to earlier intervention and a better prognosis in patients. In this study  we investigated differences in protein expression between normal melanocytes  and melanocytes from atypical nevi. Two‐dimensional differential in‐gel  electrophoresis (2D‐DIGE) was performed on proteins derived from 18 sets of  normal and atypical melanocytes from the same individual. Subsequent liquid  chromatography‐tandem mass spectrometry (Maldi‐ToF‐ToF) revealed protein  changes that relate to reduced management of oxidative stress in atypical  melanocytes. These protein findings are in line with our earlier biochemical  observations and results from gene expression analysis on the same material,  providing additional evidence that a reduced management of oxidative stress, is a  common feature of atypical melanocytes. Further studies are required to define  how the sustained stress and accompanying oxidative DNA damage contribute to  further melanoma development. 

 

Keywords: (atypical) melanocytes, proteomics, oxidative stress 

(5)

Introduction 

Cutaneous melanoma is a highly malignant tumour which originates from  melanocytes, the pigment producing cells of the skin. Melanoma development is a  multi‐step process starting with the transition of normal melanocytes into 

pigmented nevi which can further grow to form so called clinical atypical (or  dysplastic) nevi. These atypical nevi can eventually progress into radial and  subsequently vertical growth phase melanoma [1,2]. The complex multistage  development process of melanoma is mediated via various cellular, biochemical  and molecular changes [3].  

Histopathological investigations show characteristic morphological  changes, including  proliferation and variable atypia of epidermal melanocytes,  formation of irregular nests in the epidermal basal and suprabasal layers, and the  interconnection of these nests and layers (bridging) [4]. Atypical melanocytes  furthermore exhibit morphological alterations in melanosomes and mitochondria,  similar to those observed in melanoma cells [4,5]. 

On the biochemical level we previously showed that atypical melanocytes  in comparison with normal melanocytes show an increase in pheomelanin, iron  and calcium levels resulting in elevated Reactive Oxygen Species (ROS) levels [6,7]. 

The ROS levels sustain in the atypical melanocytes due to lower levels of 

antioxidant enzymes thereby causing chronic oxidative stress [6,7]. The latter was  furthermore confirmed by gene expression profiling and subsequent gene  ontology analysis that clearly demonstrated decreased expression of genes  involved in the management of oxidative stress (submitted).  

In the present study, the same sets of normal and atypical melanocytes  used for the gene expression study, were now investigated for differences at the  protein level, by using two‐dimensional differential in‐gel electrophoresis (2D‐

DIGE) [8] and liquid chromatography‐tandem mass spectrometry (Maldi‐ToF‐ToF).  

 

(6)

In line with the lower expressed genes identified in the GO‐analysis of the gene  expression study, the atypical melanocytes showed lower expression of proteins  involved in the management of the oxidative status of the cell. This lowered  management can lead to increased oxidative stress levels, which might play an  important role in the development of oxidative DNA damage and subsequent  melanoma promoting DNA mutations.  

 

Materials and Methods  Cell cultures 

After approval by the Review Board of Leiden University Medical Centre, 18  patients attending the Pigmented Lesions Clinic of the Department of Dermatology  consented to have one atypical nevus excised. From the most atypical part of this  atypical nevus a small biopsy was taken for review by a pathologist to confirm  atypia and to exclude primary melanoma. Fat tissue was discarded and normal skin  at the tips of the excision was removed for the purpose of normal melanocyte  culture. Both the normal skin and remaining atypical part of the nevus were  incubated with trypsin solution containing 0.25% Trypsin 250 (Difco labs, Detroit,  MI, USA), 0.02 g EDTA (Mallinckrodt Baker, Deventer, The Netherlands) and 0.1 g  d(+)‐Glucose‐monohydrate (Mallinckrodt Baker, Deventer, The Netherlands) for 18  hours at 4  C. The epidermis and dermis from both parts were separated, 

collected and resuspended in cell culture medium (Ham’s F10 with penicillin (100  U/ml), streptomycin (100 U/ml), L‐glutamine (all obtained from Invitrogen, Breda,  The Netherlands), 1% Ultroser G (Biosepra, Cipbergen inc, Fremont California,  USA) including the following growth factors: Endothelin‐1 (5 ng/ml), basic‐FGF (5  ng/ml), Cholera toxin (30 µg/ml), IBMX (33 µM) and TPA (8 nM, all obtained from  Sigma Aldrich, Zwijndrecht, The Netherlands). Both the normal and atypical  melanocytes were cultured for a maximum of 6 passages while being in the log‐

phase to minimize differences due to cell cycle effects.  

(7)

Isolation of proteins 

For protein isolation, the cells were rinsed with PBS and incubated for 5 min with  trypsin solution containing 0.01% Trypsin 250 (Difco labs, Detroit, MI, USA), 0.02 g  EDTA (Mallinckrodt Baker, Deventer, The Netherlands) and 0.1 g d(+)‐Glucose‐

monohydrate (Mallinckrodt Baker, Deventer, The Netherlands). The reaction was  terminated by adding 4 ml of cell culture medium. Cells were spun down for 5 min  at 1100 rpm. The cell pellet was resolved in 1 ml of TRIzol® reagent (Invitrogen,  Paisley, Scotland, United Kingdom). Total protein was obtained using TRIzol® 

reagent (Invitrogen, Life Technologies, Breda, The Netherlands) according to the  manufacturer’s instructions. After isolation the total protein was stored pelleted at 

−20 °C. Prior to use in 2D gel electrophoresis, the air‐dried protein pellets were  solubilised in 9 mol/L urea, 2% Chaps (3‐[(3‐cholamidopropyl)dimethylammonio]‐

1‐propanesulphonate), 0.5% IPG buffer (=isoelectric focusing buffer, Amersham–

Pharmacia Biotech, Roosendaal, The Netherlands), and 5 mg/mL dithiothreitol. The  protein concentration was measured by the BCA‐Protein Assay Kit (colorimetric)  from Pierce (Rockford, IL, USA) according to the manufacturer’s protocol.  

Labelling of the proteins with cy‐dyes 

Samples were labelled using the fluorescent cyanine dyes developed for 2‐D DIGE  (Amersham–Pharmacia Biotech) following the manufacturer’s recommended  protocols. Protein (10 ug) was labelled with 1000 pmol of amine reactive cyanine  dyes, freshly dissolved in anhydrous dimethyl formamide. The labelling reaction  was incubated at room temperature in the dark for 30 min. The reaction was  terminated by addition of 10 nmol lysine. Equal volumes of sample buffer (7 M  urea, 2 M thiourea, 2% amidosulfobetaine‐14, 20 mg/mL DTT and 2% Pharmalytes  3–10) were added to each of the labelled protein samples and the two samples  were mixed.  

 

(8)

Rehydration buffer (7 M urea, 2 M thiourea, 2% amidosulfobetaine‐14, 2 mg/mL  DTT and 1% Pharmalytes 3–10) was added to make up the volume to 250 ml prior  to 2D‐DIGE. To check for labelling differences between cy3 and cy5 dye swap  experiments were performed.  

 

2D‐DIGE 

2D electrophoresis was performed as described previously [9]. Briefly, the protein  mix was loaded on 18‐cm isoelectric focusing ready‐made IPG (Immobilised pH  Gradient) strips with a non‐linear gradient of pH 3–10 (Amersham–Pharmacia  Biotech). Rehydration of the IPG strips was performed for 12 h at 30 V after which  proteins were focused for 65,000 V h (IPGphor, Amersham–Pharmacia Biotech). 

Prior to the second dimension, IPG strips were equilibrated in 1% dithiothreitol  (w/v) followed by 2.5% iodoacetamide (w/v), both for 15 min in 50 mM Tris–HCl,  pH 8.8, 6 M urea, 30% glycerol, and 2% SDS (sodium dodecyl sulphate). After this  procedure, the strips were placed on top of a polyacrylamide gel (13% 

homogeneous, 2.6% cross‐linking, 0.1% SDS, and 375 mM Tris–HCl, pH 8.8) and run  for 45 min at 5 W/gel followed by 4 h at 15 W/gel (Ettan Dalt, Amersham–

Pharmacia Biotech). Gels were scanned in low‐fluorescent glass plates using a  Typhoon 9400 scanner (GE Health care UK ltd., Buckinghamshire, UK, equipped  with DeCyder™ 2 Software v6.5 ) at 600 V with excitation wavelengths for 

fluorescence Cy3 532 nm and Cy5 633 nm with a resolution of 100 micron resulting  in 2 images per gel. Images were saved as 16 bit tagged image file format (TIFF)  files (65,536 levels) with standard image orientation.  

         

(9)

Data analysis of 2D‐DIGE 

All TIFF images of the 2D‐DIGE gels were analysed using Delta2D v3.4 software  (Dodecon, Greifswald, Germany) to detect spots. After spot detection the spots  were quantified and normalised based on the total spot volume of one gel and the  matched spot volumes were subsequently normalised across the whole set. The  normalised spot volumes were compared between images in the set. Statistical  significant differences between normalised spot volumes were determined using  the Welch‐modified Student’s t‐test and step‐down Westfall and Young method as  a correction for the false discovery rate resulting in 99 statistically differently  expressed protein spots. 

 

In‐gel digestion and peptide mass finger print by MALDI‐ToF‐ToF 

Protein spots of interest were excised, and dehydrated in 100% acetonitrile for 10  min. After removal of the acetonitrile, gel pieces were dried in a Speed‐Vac (Savant  Instruments, Holbrook, New York) and subsequently allowed to re‐swell in a  trypsin solution (20 ng per mL (Promega Benelux, Leiden, the Netherlands)) in 50  mM ammonium bicarbonate (pH 7.9) for 45 min on ice. Further incubation was  performed overnight at 37 °C. Peptide fragments were extracted for 20 min at  RTusing 100 mL 25 mM ammonium bicarbonate, followed two times by an  extraction using 60 mL 0.1% trifluoric acid/50% acetonitrile. The extraction  solutions were pooled, concentrated to approximately 30 mL (Speed‐ Vac, Savant  Instruments), and desalted over Poros 50R2 (Applied Biosystems, Forster City,  California). For characterization by MALDI‐ToF (Matrix Assisted Laser Desorption/ 

Ionization‐Time of Flight) MS (Ultraflex, Bruker, Germany), peptides were directly  eluted with matrix solution (a‐cyanocinnamic acid). All mass fingerprint and  MS/MS data were searched against the human protein database using the Mascot  program (Matrix Science, Boston, Massachusetts).  

(10)

Results 

Protein analysis by 2D‐DIGE 

Eighteen sets of normal and atypical melanocytes were subjected to 2D‐

DIGE to determine protein expression alterations characteristic for this very early  step in melanoma development. In figure 1, a representative example of a  comparison of proteins of normal melanocytes (green, cy3) and its corresponding  protein expression in atypical melanocytes (red, cy5) is shown. To check for  labelling efficiency between cy3 and cy5 a dye swap on various samples was  performed. The dye swap did not indicate large differences in the labelling  efficiency of the same sample with either cy3 or cy5 (data not shown).  

Each of the 2D‐DIGE‐gels contained on average 2205 spots, 90% of these  spots were reproducible in at least 15 gel sets. Protein spots (n=99) that were  differentially expressed between normal and atypical melanocytes in at least 15  gel sets (determined by the Welch‐modified Student’s t‐test and step‐down  Westfall and Young method) were excised and subsequent Maldi‐ToF‐ToF analysis  and database mining resulted in the annotation of 70 proteins (Supplementary  table 1). In table 1 the 16 most differentially expressed proteins (p<0.03 and at  least 2‐fold expression difference) are given. Proteins most significantly lower  expressed in atypical melanocytes were ribosomal proteins S6, S7 and L9. These  mitochondrial related proteins are involved in the protein translation process in  mitochondria [10,11].  

The proteins glutathione‐S‐transferase Omega, ferritin heavy chain and  cytochrome b‐c1 complex subunit Rieske, HSP27, ATP synthase and tyrosine 3‐

monooxygenase activation protein were also found to be expressed at much lower  levels in the atypical melanocyte. These proteins are involved in the management  of oxidative stress [12‐15], the energy production of the cell [16] and eumelanin  synthesis [17]. Other proteins in atypical melanocytes we found to be expressed at  lower levels were vimentin, annexin A2, which are respectively part of the actin  filament and the intermediate filament system of the melanocyte [18,19].  

(11)

Proteins found to be higher expressed in atypical melanocytes were  eukaryotic translation initiation factor 3, GTP‐binding rho‐like protein cdc42, prolyl  4‐hydroxylase, platelet‐activating factor acetylhydrolase and DnaJ homolog  subfamily B. These proteins play a role in protein synthesis and folding [20‐24]. 

Discussion 

In order to define changes in protein expression in the earliest stage of  melanoma development, we compared protein profiles within 18 sets of normal  melanocytes and melanocytes obtained from atypical nevi. The protein profile  comparison and subsequent peptide analysis resulted in the identification of 70  differentially expressed proteins. 

Melanocytes from atypical nevi showed much lower expression of  mitochondrial related proteins (MRPs): ribosomal proteins S6, S7 and L9. These  MRPs are involved in the synthesis of the proteins involved in the electron 

transport chain located within the mitochondrion. The low expression of the MRPs  in atypical nevi could lead to a malfunctioning of the electron transport chain  leading to accumulation of electrons which leak into the cytosol of the cell giving  rise to reactive oxygen species (ROS) [25]. In addition, we found lower expression  of cytochrome bc1 complex Rieske, which plays a role in maintaining the structure  of the mitochondrial membrane [26]. The lower expression of this protein 

increases leakage of electrons out of the mitochondria resulting again in increasing  ROS levels [26] in atypical melanocytes. 

In contrast to the lowered expression of MRPs in atypical nevi in our  study, Simon et al. observed over‐expression of the ribosomal proteins MRPL3,  MRPS11 and MRPS10 in late stage metastatic cell lines [27]. They suggest that the  up‐regulation of these ribosomal proteins could reflect the higher level of 

metabolic activity in melanoma cells as compared to normal melanocytes. 

Therefore, more detailed studies on MRPs are needed to define the precise role  and functions of the MRPs in relation to melanoma development and progression.  

(12)

Previous biochemical studies by our group already suggested that atypical  melanocytes have a reduced capacity to reduce oxidative stress levels, which can  be partly explained by down‐regulation of the antioxidant enzyme glutathione  [6,7]. The results in the current study indicate that other antioxidant enzymes such  as glutathione‐S‐transferase, ferritin and HSP27 are down‐regulated in the atypical  melanocyte as well. Especially the diminished protein expression of glutathione‐S‐

transferase is of interest, since this enzyme catalyses the interaction of glutathione  with a wide variety of compounds thereby being the first step in the ROS reducing  process [28,29]. It is anticipated that the lowered protein expression of 

glutathione‐S‐transferase, besides the already reduced level of glutathione itself,  could underlie the elevated levels of ROS in atypical melanocytes [6,7].  

Expressed at lower levels were the cytoskeletal proteins vimentin and  annexin in atypical melanocytes, which are respectively part of the actin filament  or the intermediate filament system. The actin filaments in the cell provide  structural support and allow the cell to move [30]. Vimentin is regarded as a  cytoskeletal safeguard, which protects the cell against various stresses such as  heat shock and oxidative stress [31‐35]. A change in cell morphology is known to  be one of the consequences of oxidative stress injury [36‐39]. Therefore lowered  expression of both the vimentin and the actin filaments could explain the  morphological atypia of melanocytes in atypical nevi [4,6,7].  

The group of Mirabelli et al. showed that actin not only becomes oxidised  by ROS but also by quinones [36,40]. Especially in the atypical melanocyte the  oxidation of actin by quinones can be of importance since these melanocytes  display elevated levels of pheomelanin intermediates (which are quinones) as a  result of increased pheomelanin synthesis. We also observed a lower level of  ferritin, the iron store of the cell. Decreased levels of ferritin increase ROS 

formation by releasing free iron that acts as a catalyst for hydroxyl radicals [41‐43]. 

Melanin precursors can also liberate iron from ferritin, which can subsequently  increase the level of ROS via the Fenton reaction [6,44].  

(13)

Therefore the increased pheomelanin production in the atypical melanocytes  could be regarded as a plausible cause underlying several of the observed protein  differences.  

Proteins that were higher expressed in atypical melanocytes compared to  normal melanocytes were eukaryotic translation initiation factor 3, GTP‐binding  rho‐like protein cdc42, prolyl 4‐hydroxylase, platelet‐activating factor 

acetylhydrolase and DnaJ homolog subfamily B. These proteins are involved in  protein synthesis and folding [20‐24]. In Alzheimer’s disease and Parkinson’s  disease it is known that due to high levels of ROS proteins show problems with  correct protein folding and this could be anticipated in atypical melanocytes as  well [45‐49]. Further research is needed to determine the exact role of protein  misfolding in melanoma development and progression. 

In addition to our study, only a few proteomic studies have been  published focussing mainly on the late melanoma development stages [50‐54]. 

Bernard et al. compared 12 melanoma cell lines representing radial growth phase  melanoma, vertical growth phase melanoma and metastatic tumours, with two  melanocyte cell cultures to identify candidate molecular markers for melanoma  progression [53]. In total only 8 proteins were identified as candidate markers of  melanoma progression. Proteins up‐regulated in melanoma in comparison to  normal melanocytes were hepatoma derived growth factor (HDGF) and 

nucleophosmin/B23. Down‐regulated proteins in melanoma were cathepsin D and  glutathione‐S‐transferase. HDGF has DNA‐binding activity and may play a role in  cellular proliferation and differentiation [55]. Nucleophosmin/B23 is implicated in  multiple functions, including ribosomal protein assembly and transport [56]. 

Cathepsin D is located in the lysosomes and melanosomes and is involved in  protein breakdown [57]. Lowered glutathione‐S‐transferase was the only protein  in common with our analysis, suggesting that most proteins found in the study  from Bernard et al. are associated with late stage melanoma progression.  

(14)

Also Carta et al. studied protein expression differences between short‐

term cultured normal melanocytes and primary and metastatic melanoma cell  lines albeit from one patient to investigate the presence of pathogenic  mechanisms playing a role in melanocytic transformation and melanoma 

development [54]. Thirty‐seven differentially expressed proteins were identified in  this study. The authors classified the differential proteins into three groups: 

structural proteins, stress proteins and enzymes in ATP production. Most of the  proteins in the stress protein group corresponded to heat shock proteins (HSP). 

HSPs function as a chaperone of proteins, protecting them from environmental  stress and HSPs play a role in transporting proteins to their target organelles  [58,59].  

With respect to the stress protein group, Carta et al. observed an up‐regulation of  HSP 27, 60 and 70 whereas the antioxidant enzymes glutathione transferase  omega, thiodoxin‐dependent peroxide reductase were down‐regulated in all  melanoma cells [54]. Over expression of HSP60 and HSP70 has been described in  various cancer types, including malignant melanoma [60]. In our study we 

observed a lower expression of HSP27 in the atypical melanocytes, which contrasts  to the results of Carta et al. A role for HSP27 to prevent actin depolymerisation has  been described in various studies as an adaptive response to oxidative stress [61‐

63]. As mentioned above, actin filaments are a key role player in providing a cell  structural support. The lowered HSP27 level that we observed in atypical 

melanocytes in comparison with normal melanocytes is another factor that could  contribute to the observed morphological atypia of melanocytes in atypical nevi  [4,6,7]. 

In contrast to the studies of Bernard et al. and Carta et al. who 

concentrated on the late melanoma progression stages, our study focused on the  early stage of melanoma progression. Most of our differentially expressed proteins  show that atypical melanocytes are insufficient in the management of oxidative  stress in comparison with their normal counterpart.  

(15)

These findings are consistent with the results of previous biochemical and gene  expression studies of our group [6,7], and further support the view that oxidative  stress may play an important role in the early stages of melanoma development  [64‐67]. There is supportive evidence that sustained oxidative stress is related to  oxidative DNA damage [68]. Whether oxidative DNA damage furthermore  introduces genetic alterations leading to malignant transformation is not yet clear  and needs to be the subject of further study. 

Acknowledgements    

Prof. W. Mooi (Department of Pathology, Free University Medical Center,  Amsterdam, The Netherlands) is acknowledged for histopathological analysis of  the excised nevi. F.v.N. is supported by the Netherlands Organization for Scientific  Research (grant number 015.001.060) and by the Dutch Cancer Society (grant  number RUL2003‐2805). N.G. is a recipient of an Aspasia fellowship of the  Netherlands Organization for Scientific Research. 

(16)

Table I: Top 16 differentially expressed proteins in normal and atypical melanocytes determined by 2D-DIGE.

Swiss‐

prot id  Protein name 

Mol. Mass  calculated  (Da)

pI obs. 

pI  calc.

% Pept. 

Coverage    Ratio (AM 

/ NM) P‐value  General function 

Q9Y2R9  Ribosomal protein S7  22113 10.09 10 43 0.1310 0.010946  Translational elongation 

P32969  Ribosomal protein L9   21964 9.96 9.96 29 0.22334 0.016167  Translational elongation 

P78417 

Glutathione S‐transferase omega 1‐

27833 6.23 6.24 21 0.23627 0.013815 

Exhibits glutathione‐dependent thiol transferase and  dehydroascorbate reductase activities 

P62753  Ribosomal protein S6  28842 10.9 10.85 23 0.31890 0.012139 

Controlling cell growth and proliferation through the  selective translation of particular classes of mRNA 

O75947 

ATP synthase, H+ transporting,  mitochondrial F0 complex, subunit 

d   18537 5.21 5.21 41 0.32135 0.027965 

Mitochondrial membrane ATP synthase that produces  ATP from ADP 

P04792  Heat shock protein 27  22427 7.83 5.98 57 0.36622 0.023047  Involved in stress resistance and actin organization. 

P02794  Ferritin heavy chain   21252 5.3 5.08 46 0.40067 0.006873 

Stores iron in a soluble, non‐toxic, readily available  form. Important for iron homeostasis.  

Q59EQ2 

Tyrosine 3‐monooxy‐

genase/tryptophan 5‐

monooxygenase activation protein  28179 4.76 4.73 26 0.41836 0.012436  oxido‐reductase 

P08670  Vimentin  53710 5.06 5.06 43 0.4478 0.023374  Vimentins are class‐III intermediate filaments 

P07355  Annexin A2  36631 8.32 7.56 53 0.47142 0.00642  May be involved in heat‐stress response 

(17)

Swiss‐

prot id  Protein name 

Mol. Mass  calculated 

pI obs. 

pI  calc.

% Pept. 

Coverage   

P47985 

Cytochrome b‐c1 complex subunit 

Rieske  29934 8.55 6.3 5 0.47725 0.008578 

Component of the ubiquinol‐cytochrome c reductase  complex  

Q5U0F4 

Eukaryotic translation initiation 

factor 3  36878 5.38 5.38 32 3.2155 0.018194  protein synthesis 

O94844  GTP‐binding rho‐like protein cdc42  20123 5.25 4.83 55 2.88699 0.017896 

The protein may play a role in small GTPase‐mediated  signal transduction and the organization of the actin  filament system. 

P07237  Prolyl 4‐hydroxylase   57480 4.76 4.69 46 2.79651 0.009987 

This multifunctional protein catalyzes the formation,  breakage and rearrangement of disulfide bonds.  

Q6IBR6 

Platelet‐activating factor 

acetylhydrolase   25569 5.57 5.57    2.46963 0.008975  Lipid metabolic process 

Q9UBS4  DnaJ (Hsp40) homolog, subfamily B  40774 5.81 5.81 30 2.33737 0.011076 

Binds directly to both unfolded proteins that are  substrates for ERAD and nascent unfolded peptide  chains. 

1) Calculated molecular mass of the protein in Dalton (Da) 2) Isoelectric point (pI) observed in this study

3) pI calculated according to the Mascot database 4) Percentage peptide coverage

5) Protein ratio atypical melanocyte (AM) / normal melanocyte (NM)

(18)

  Figure 1: representable 2D‐DIGE image of a comparison of normal melanocytes (labelled with cy3 (green)) compared to the  atypical melanocytes (labelled with cy5 (red)) obtained from the same individual. A yellow colour means equal expression off a  protein in both normal and atypical melanocyte, red is over expression in atypical melanocytes while green depicts over  expression of a protein in the normal melanocyte. The labelled arrows show spots that were excised and identified on the mass  spectrometer. To help identification of spots throughout the gel set also not differentially expressed proteins were excised. 

(19)

Reference List   

  1   M.H.Greene, W.H.Clark, Jr., M.A.Tucker, D.E.Elder, K.H.Kraemer, D.Guerry, W.K.Witmer, J.Thompson, I.Matozzo, and  M.C.Fraser, Acquired precursors of cutaneous malignant melanoma. The familial dysplastic nevus syndrome, N. Engl. J. 

Med. 312 (1985) 91‐97. 

  2   W.H.Clark, Jr., D.E.Elder, D.Guerry, M.N.Epstein, M.H.Greene, and H.M.Van, A study of tumor progression: the  precursor lesions of superficial spreading and nodular melanoma, Hum. Pathol. 15 (1984) 1147‐1165. 

  3   A.J.Miller and M.C.Mihm, Jr., Melanoma, N. Engl. J. Med. 355 (2006) 51‐65. 

  4   K.Langer, K.Rappersberger, A.Steiner, K.Konrad, and K.Wolff, The ultrastructure of dysplastic naevi: comparison with  superficial spreading melanoma and common naevocellular naevi, Arch. Dermatol. Res. 282 (1990) 353‐362. 

  5   A.R.Rhodes, Y.Seki, T.B.Fitzpatrick, and R.S.Stern, Melanosomal alterations in dysplastic melanocytic nevi. A  quantitative, ultrastructural investigation, Cancer 61 (1988) 358‐369. 

  6   S.Pavel, F.van Nieuwpoort, H.van der Meulen, C.Out, K.Pizinger, P.Cetkovska, N.P.M.Smit, and H.K.Koerten, Disturbed  melanin synthesis and chronic oxidative stress in dysplastic naevi, European Journal of Cancer 40 (2004) 1423‐1430. 

  7   N.P.Smit, F.A.van Nieuwpoort, L.Marrot, C.Out, B.Poorthuis, P.H.van, J.R.Meunier, and S.Pavel, Increased  melanogenesis is a risk factor for oxidative DNA damage‐‐study on cultured melanocytes and atypical nevus cells,  Photochem. Photobiol. 84 (2008) 550‐555. 

  8   R.Tonge, J.Shaw, B.Middleton, R.Rowlinson, S.Rayner, J.Young, F.Pognan, E.Hawkins, I.Currie, and M.Davison,  Validation and development of fluorescence two‐dimensional differential gel electrophoresis proteomics technology,  Proteomics. 1 (2001) 377‐396. 

  9   I.L.Boxman, P.J.Hensbergen, R.C.van der Schors, D.P.Bruynzeel, C.P.Tensen, and M.Ponec, Proteomic analysis of skin  irritation reveals the induction of HSP27 by sodium lauryl sulphate in human skin, Br. J. Dermatol. 146 (2002) 777‐785. 

  10   T.W.O'Brien, Properties of human mitochondrial ribosomes, IUBMB. Life 55 (2003) 505‐513. 

  11   T.W.O'Brien, B.J.O'Brien, and R.A.Norman, Nuclear MRP genes and mitochondrial disease, Gene 354 (2005) 147‐151. 

  12   M.Mari, A.Morales, A.Colell, C.Garcia‐Ruiz, and J.C.Fernandez‐Checa, Mitochondrial glutathione, a key survival  antioxidant, Antioxid. Redox. Signal. 11 (2009) 2685‐2700. 

  13   K.H.Zhang, H.Y.Tian, X.Gao, W.W.Lei, Y.Hu, D.M.Wang, X.C.Pan, M.L.Yu, G.J.Xu, F.K.Zhao, and J.G.Song, Ferritin heavy  chain‐mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for  epithelial‐mesenchymal transition, Cancer Res. 69 (2009) 5340‐5348. 

  14   M.Ott, V.Gogvadze, S.Orrenius, and B.Zhivotovsky, Mitochondria, oxidative stress and cell death, Apoptosis. 12 (2007)  913‐922. 

  15   A.P.Arrigo, S.Virot, S.Chaufour, W.Firdaus, C.Kretz‐Remy, and C.Diaz‐Latoud, Hsp27 consolidates intracellular redox  homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels, Antioxid. Redox. 

Signal. 7 (2005) 414‐422. 

(20)

  16   N.V.Dudkina, R.Kouril, K.Peters, H.P.Braun, and E.J.Boekema, Structure and function of mitochondrial supercomplexes,  Biochim. Biophys. Acta (2009). 

  17   M.del, V, F.Solano, A.Sels, G.Huez, A.Libert, F.Lejeune, and G.Ghanem, Glutathione depletion increases tyrosinase  activity in human melanoma cells, J. Invest Dermatol. 101 (1993) 871‐874. 

  18   M.F.Olson and E.Sahai, The actin cytoskeleton in cancer cell motility, Clin. Exp. Metastasis 26 (2009) 273‐287. 

  19   J.E.Eriksson, T.Dechat, B.Grin, B.Helfand, M.Mendez, H.M.Pallari, and R.D.Goldman, Introducing intermediate  filaments: from discovery to disease, J. Clin. Invest 119 (2009) 1763‐1771. 

  20   U.A.Bommer, G.Lutsch, J.Stahl, and H.Bielka, Eukaryotic initiation factors eIF‐2 and eIF‐3: interactions, structure and  localization in ribosomal initiation complexes, Biochimie 73 (1991) 1007‐1019. 

  21   M.G.Tucci, G.Lucarini, D.Brancorsini, A.Zizzi, A.Pugnaloni, A.Giacchetti, G.Ricotti, and G.Biagini, Involvement of E‐

cadherin, beta‐catenin, Cdc42 and CXCR4 in the progression and prognosis of cutaneous melanoma, Br. J. Dermatol. 

157 (2007) 1212‐1216. 

  22   K.L.Gorres and R.T.Raines, Prolyl 4‐hydroxylase, Crit Rev. Biochem. Mol. Biol. 45 (2010) 106‐124. 

  23   D.M.Stafforini, Biology of platelet‐activating factor acetylhydrolase (PAF‐AH, lipoprotein associated phospholipase A2),  Cardiovasc. Drugs Ther. 23 (2009) 73‐83. 

  24   D.W.Summers, P.M.Douglas, C.H.Ramos, and D.M.Cyr, Polypeptide transfer from Hsp40 to Hsp70 molecular  chaperones, Trends Biochem. Sci. 34 (2009) 230‐233. 

  25   T.W.O'Brien, Evolution of a protein‐rich mitochondrial ribosome: implications for human genetic disease, Gene 286  (2002) 73‐79. 

  26   J.S.Armstrong, H.Yang, W.Duan, and M.Whiteman, Cytochrome bc(1) regulates the mitochondrial permeability  transition by two distinct pathways, J. Biol. Chem. 279 (2004) 50420‐50428. 

  27   H.G.Simon, B.Risse, M.Jost, S.Oppenheimer, C.Kari, and U.Rodeck, Identification of differentially expressed messenger  RNAs in human melanocytes and melanoma cells, Cancer Res. 56 (1996) 3112‐3117. 

  28   J.Borovansky, Free radical activity of melanins and related substances: biochemical and pathobiochemical aspects, Sb  Lek. 97 (1996) 49‐70. 

  29   M.Benathan, V.Virador, M.Furumura, N.Kobayashi, R.G.Panizzon, and V.J.Hearing, Co‐regulation of melanin precursors  and tyrosinase in human pigment cells: roles of cysteine and glutathione, Cell Mol. Biol. (Noisy. ‐le‐grand) 45 (1999)  981‐990. 

  30   T.D.Pollard and J.A.Cooper, Actin, a central player in cell shape and movement, Science 326 (2009) 1208‐1212. 

  31   W.J.Welch and J.P.Suhan, Morphological study of the mammalian stress response: characterization of changes in  cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts  after heat‐shock treatment, J. Cell Biol. 101 (1985) 1198‐1211. 

  32   J.Choi, C.C.Conrad, R.Dai, C.A.Malakowsky, J.M.Talent, C.A.Carroll, S.T.Weintraub, and R.W.Gracy, Vitamin E prevents  oxidation of antiapoptotic proteins in neuronal cells, Proteomics. 3 (2003) 73‐77. 

(21)

  33   P.K.Allani, T.Sum, S.G.Bhansali, S.K.Mukherjee, and M.Sonee, A comparative study of the effect of oxidative stress on  the cytoskeleton in human cortical neurons, Toxicol. Appl. Pharmacol. 196 (2004) 29‐36. 

  34   I.Paron, A.D'Elia, C.D'Ambrosio, A.Scaloni, F.D'Aurizio, A.Prescott, G.Damante, and G.Tell, A proteomic approach to  identify early molecular targets of oxidative stress in human epithelial lens cells, Biochem. J. 378 (2004) 929‐937. 

  35   K.Nishio, A.Inoue, S.Qiao, H.Kondo, and A.Mimura, Senescence and cytoskeleton: overproduction of vimentin induces  senescent‐like morphology in human fibroblasts, Histochem. Cell Biol. 116 (2001) 321‐327. 

  36   F.Mirabelli, A.Salis, M.Perotti, F.Taddei, G.Bellomo, and S.Orrenius, Alterations of surface morphology caused by the  metabolism of menadione in mammalian cells are associated with the oxidation of critical sulfhydryl groups in  cytoskeletal proteins, Biochem. Pharmacol. 37 (1988) 3423‐3427. 

  37   F.Mirabelli, A.Salis, M.Vairetti, G.Bellomo, H.Thor, and S.Orrenius, Cytoskeletal alterations in human platelets exposed  to oxidative stress are mediated by oxidative and Ca2+‐dependent mechanisms, Arch. Biochem. Biophys. 270 (1989)  478‐488. 

  38   G.Bellomo, F.Mirabelli, P.Richelmi, W.Malorni, F.Iosi, and S.Orrenius, The cytoskeleton as a target in quinone toxicity,  Free Radic. Res. Commun. 8 (1990) 391‐399. 

  39   G.Bellomo, F.Mirabelli, M.Vairetti, F.Iosi, and W.Malorni, Cytoskeleton as a target in menadione‐induced oxidative  stress in cultured mammalian cells. I. Biochemical and immunocytochemical features, J. Cell Physiol 143 (1990) 118‐

128. 

  40   G.Bellomo and F.Mirabelli, Oxidative stress and cytoskeletal alterations, Ann. N. Y. Acad. Sci. 663 (1992) 97‐109. 

  41   P.Arosio and S.Levi, Ferritin, iron homeostasis, and oxidative damage, Free Radic. Biol. Med. 33 (2002) 457‐463. 

  42   P.Arosio and S.Levi, Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative  damage, Biochim. Biophys. Acta (2010). 

  43   J.M.Mates and F.M.Sanchez‐Jimenez, Role of reactive oxygen species in apoptosis: implications for cancer therapy, Int. 

J. Biochem. Cell Biol. 32 (2000) 157‐170. 

  44   S.Pavel and N.P.Smit, Metabolic interference of melanogenesis in pigment cells, Sb Lek. 97 (1996) 29‐39. 

  45   E.R.Stadtman and R.L.Levine, Protein oxidation, Ann. N. Y. Acad. Sci. 899 (2000) 191‐208. 

  46   E.R.Stadtman and B.S.Berlett, Reactive oxygen‐mediated protein oxidation in aging and disease, Drug Metab Rev. 30  (1998) 225‐243. 

  47   C.X.Santos, L.Y.Tanaka, J.Wosniak, and F.R.Laurindo, Mechanisms and implications of reactive oxygen species  generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial  electron transport, and NADPH oxidase, Antioxid. Redox. Signal. 11 (2009) 2409‐2427. 

  48   E.Shacter, Quantification and significance of protein oxidation in biological samples, Drug Metab Rev. 32 (2000) 307‐

326. 

  49   J.D.Malhotra and R.J.Kaufman, The endoplasmic reticulum and the unfolded protein response, Semin. Cell Dev. Biol. 18  (2007) 716‐731. 

(22)

  50   M.Al‐Ghoul, T.B.Bruck, J.L.Lauer‐Fields, V.S.Asirvatham, C.Zapata, R.G.Kerr, and G.B.Fields, Comparative proteomic  analysis of matched primary and metastatic melanoma cell lines, J. Proteome. Res. 7 (2008) 4107‐4118. 

  51   G.A.de Souza, L.M.Godoy, V.R.Teixeira, A.H.Otake, A.Sabino, J.C.Rosa, A.R.Dinarte, D.G.Pinheiro, W.A.Silva, Jr.,  M.N.Eberlin, R.Chammas, and L.J.Greene, Proteomic and SAGE profiling of murine melanoma progression indicates the  reduction of proteins responsible for ROS degradation, Proteomics. 6 (2006) 1460‐1470. 

  52   F.Baruthio, M.Quadroni, C.Ruegg, and A.Mariotti, Proteomic analysis of membrane rafts of melanoma cells identifies  protein patterns characteristic of the tumor progression stage, Proteomics. 8 (2008) 4733‐4747. 

  53   K.Bernard, E.Litman, J.L.Fitzpatrick, Y.G.Shellman, G.Argast, K.Polvinen, A.D.Everett, K.Fukasawa, D.A.Norris, N.G.Ahn,  and K.A.Resing, Functional proteomic analysis of melanoma progression, Cancer Res. 63 (2003) 6716‐6725. 

  54   F.Carta, P.P.Demuro, C.Zanini, A.Santona, D.Castiglia, S.D'Atri, P.A.Ascierto, M.Napolitano, A.Cossu, B.Tadolini,  F.Turrini, A.Manca, M.C.Sini, G.Palmieri, and A.C.Rozzo, Analysis of candidate genes through a proteomics‐based  approach in primary cell lines from malignant melanomas and their metastases, Melanoma Res. 15 (2005) 235‐244. 

  55   J.Yang and A.D.Everett, Hepatoma‐derived growth factor binds DNA through the N‐terminal PWWP domain, BMC. Mol. 

Biol. 8 (2007) 101. 

  56   M.Okuwaki, The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein, J. 

Biochem. 143 (2008) 441‐448. 

  57   I.Bartenjev, Z.Rudolf, B.Stabuc, I.Vrhovec, T.Perkovic, and A.Kansky, Cathepsin D expression in early cutaneous  malignant melanoma, Int. J. Dermatol. 39 (2000) 599‐602. 

  58   F.U.Hartl, Molecular chaperones in cellular protein folding, Nature 381 (1996) 571‐579. 

  59   E.A.Nollen and R.I.Morimoto, Chaperoning signaling pathways: molecular chaperones as stress‐sensing 'heat shock'  proteins, J. Cell Sci. 115 (2002) 2809‐2816. 

  60   B.Farkas, M.Hantschel, M.Magyarlaki, B.Becker, K.Scherer, M.Landthaler, K.Pfister, M.Gehrmann, C.Gross,  A.Mackensen, and G.Multhoff, Heat shock protein 70 membrane expression and melanoma‐associated marker  phenotype in primary and metastatic melanoma, Melanoma Res. 13 (2003) 147‐152. 

  61   J.Huot, F.Houle, F.Marceau, and J.Landry, Oxidative stress‐induced actin reorganization mediated by the p38 mitogen‐

activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells, Circ. Res. 80 (1997) 383‐392. 

  62   A.Clerk, A.Michael, and P.H.Sugden, Stimulation of multiple mitogen‐activated protein kinase sub‐families by oxidative  stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes, Biochem. J. 

333 ( Pt 3) (1998) 581‐589. 

  63   J.Guay, H.Lambert, G.Gingras‐Breton, J.N.Lavoie, J.Huot, and J.Landry, Regulation of actin filament dynamics by p38  map kinase‐mediated phosphorylation of heat shock protein 27, J. Cell Sci. 110 ( Pt 3) (1997) 357‐368. 

  64   F.L.Meyskens, Jr. and M.Berwick, UV or not UV: metals are the answer, Cancer Epidemiol. Biomarkers Prev. 17 (2008)  268‐270. 

(23)

  65   S.Gidanian, M.Mentelle, F.L.Meyskens, Jr., and P.J.Farmer, Melanosomal damage in normal human melanocytes  induced by UVB and metal uptake‐‐a basis for the pro‐oxidant state of melanoma, Photochem. Photobiol. 84 (2008)  556‐564. 

  66   C.S.Sander, F.Hamm, P.Elsner, and J.J.Thiele, Oxidative stress in malignant melanoma and non‐melanoma skin cancer,  Br. J. Dermatol. 148 (2003) 913‐922. 

  67   C.S.Sander, H.Chang, F.Hamm, P.Elsner, and J.J.Thiele, Role of oxidative stress and the antioxidant network in  cutaneous carcinogenesis, Int. J. Dermatol. 43 (2004) 326‐335. 

  68   M.S.Cooke, M.D.Evans, M.Dizdaroglu, and J.Lunec, Oxidative DNA damage: mechanisms, mutation, and disease, FASEB  J. 17 (2003) 1195‐1214. 

   

Referenties

GERELATEERDE DOCUMENTEN

Internet health sites can: be or come to be a replacement for face-to-face consultations; supplement existing forms of care; create favorable circumstances for strengthening

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

There is a huge variation in skin type among individuals. Even within races 

  After receiving informed consent and approval by local ethics committee, 

polymerize with each other forming a polymer network. The redox‐cycling of the 

categories (organellar ribosome (P=1x10 ‐5 ), mitochondrial ribosome (P=1x10 ‐5 ),  hydrogen ion transporter activity (P=9.22x10 ‐5

Also the lower expression of genes in atypical melanocytes compared to 

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the. University