• No results found

University of Groningen Donor-Acceptor Stenhouse Adducts Lerch, Michael Markus

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Donor-Acceptor Stenhouse Adducts Lerch, Michael Markus"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Donor-Acceptor Stenhouse Adducts

Lerch, Michael Markus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Lerch, M. M. (2018). Donor-Acceptor Stenhouse Adducts. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

iii

Donor–Acceptor Stenhouse Adducts

(3)

First edition, June 2018

The work described in this thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.

This work was financially supported by the Netherlands Organization for Scientific Research (NWO-CW; TOP Grant NWO) and Laserlab-Europe (LENS002289).

Cover art and photographs by Rita M. Lerch-Heer

Printed by Ipskamp Drukkers BV, Enschede, The Netherlands ISBN: 978-94-034-0565-0 (Printed Version)

(4)

v

Donor–Acceptor Stenhouse Adducts

PhD thesis

to obtain the degree of PhD at the University of Groningen

on the authority of the Rector Magnificus Prof. E. Sterken

and in accordance with the decision by the College of Deans. This thesis will be defended in public on

Friday 1 June 2018 at 16:15 hours

by

Michael Markus Lerch

born on 15 February 1989 in Brittnau (AG), Switzerland

(5)

Supervisors Prof. dr. B.L. Feringa Prof. dr. W.R. Browne Co-supervisor Dr. W.C. Szymański Assessment committee Prof. dr. S.R. Meech Prof. dr. S. Otto

Prof. dr. E.J.R. Sudhölter

Paranymphs D. Dunkelmann Dr. L. Pfeifer

(6)

vii

Donor–Acceptor Stenhouse Adducts

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen

op gezag van de

rector magnificus prof. Dr. E. Sterken en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op vrijdag 1 juni 2018 om 16:15 uur

door

Michael Markus Lerch

geboren op 15 februari 1989 te Brittnau (AG), Zwitserland

(7)

Promotores Prof. dr. B.L. Feringa Prof. dr. W.R. Browne Copromotor Dr. W.C. Szymański Beoordelingscommissie Prof. dr. S.R. Meech Prof. dr. S. Otto

Prof. dr. E.J.R. Sudhölter

Paranimfen D. Dunkelmann Dr. L. Pfeifer

(8)

ix

This work is dedicated to Rita & Erich, Thomas and Lilian and to all the giants on whose shoulders we stand, including Ben, who – with his trust and willingness to let us explore any possible untrodden paths – has enabled this work.

(9)
(10)

xi

I

Chapter 1

The (Photo)chemistry of Stenhouse Photoswitches: Guiding Principles and System Design 1

1.1 Introduction 2

1.1.1 Molecular photoswitches 2

1.1.2 Towards visible and NIR photoswitching 3

1.1.3 Donor–acceptor Stenhouse adducts 3

1.2 Synthesis 5

1.3 Photoswitching 6

1.3.1 The absorption spectrum 7

1.3.2 Solid-state structures 11

1.3.3 Photoswitching 13

1.3.4 Cyclization under exclusion of light 15 1.3.5 Kinetics of cyclization and ring-opening 15

1.3.6 Solvent effects 19

1.4 Illustrative Applications 21

1.4.1 Drug delivery 21

1.4.2 Dynamic phase-transfer for catalyst recycling 23 1.4.3 Applications in polymers and on surfaces 23

1.4.4 Liquid crystals 29 1.4.5 Wavelength-selective photoswitching 30 1.4.6 Chemosensing 36 1.5 Stenhouse Photoswitches 43 1.6 Acknowledgments 44 1.7 References 45 Chapter 2

Orthogonal Photoswitching in a Multifunctional Molecular System 51

2.1 Introduction 52

2.2 Results and Discussion 53

2.2.1 Selection of a compatible photoswitch pair 53 2.2.2 Intermolecular combination of photoswitches 55 2.2.3 Structural scope of photoswitches 59 2.2.4 Orthogonal photoswitching in an intramolecular system 62 2.2.5 Model application in modulation of phase transfer and supramolecular

interactions 66

2.3 Conclusion 72

2.4 Acknowledgments 73

Preface I

(11)

2.5 Author Contributions 73

2.6 Experimental Data 74

2.6.1 Materials and Methods 74

2.6.2 Synthesis and Characterization 74

2.6.3 Binding Studies 83

2.6.4 Photochemical Characterization of Two-Photoswitch Mixtures 84

2.6.4.1 Mixture of compound 1 + 4 84

2.6.4.2 Mixture of compound 1 + 5 85

2.6.4.3 Mixture of compound 1 + 6 86

2.7 References 87

Chapter 3

Unravelling the Photoswitching Mechanism in Donor–Acceptor Stenhouse Adducts 93

3.1 Introduction 94

3.2 Results and Discussion 95

3.3 Conclusion 102

3.4 Acknowledgements 102

3.5 Author Contributions 103

3.6 Experimental Data 103

3.6.1 Materials and Methods 103

3.7 References 103

Chapter 4

Shedding Light on the Photoisomerization Pathway of Donor–Acceptor Stenhouse Adducts 109

4.1 Introduction 110

4.2 Results and Discussion 112

4.3 Conclusion 120

4.4 Acknowledgements 120

4.5 Author Contributions 121

4.6 Experimental Data 121

4.6.1 Materials and Methods 121

4.6.2 Synthesis and Characterization 123

4.6.3 Target analysis for DASA 1 125

4.7 References 127

Chapter 5

Tailoring Photoisomerization Pathways in Donor-Acceptor Stenhouse Adducts:

The Role of the Hydroxy Group 133

5.1 Introduction 134

5.2 Results and Discussion 137

(12)

xiii

I

5.2.2 Steady state spectroscopy 137

5.2.3 Time-resolved spectroscopy 143 5.2.4 1H-NMR in situ-irradiation experiments 148 5.3 Conclusions 153 5.4 Acknowledgments 153 5.5 Author Contributions 154 5.6 Experimental Data 154

5.6.1 Materials and methods 154

5.6.2 Synthesis and characterization 156

5.6.3 Photoswitching 159

5.7 References 162

Chapter 6

Solvent Effects in the Actinic Step of Donor–Acceptor Stenhouse Adducts Photoswitching 167

6.1 Introduction 168

6.2 Results and Discussion 171

6.3 Conclusion 177

6.4 Acknowledgments 177

6.5 Author Contributions 178

6.6 Experimental Data 178

6.6.1 Materials and Methods 178

6.6.2 Solvatochromic Shifts 180 6.6.3 Time-resolved spectroscopy 182 6.6.3.1 Compound 1 182 6.6.3.2 Compound 2 184 6.6.3.3 Compound 3 186 6.6.4 FTIR-spectroscopy 187 6.7 References 189 Chapter 7 Conclusion 195 Chapter 8 Research Prospect 203 8.1 Introduction 204 8.2 Photopharmacology 204

8.3 Wavelength-selective and orthogonal photocontrol 205

8.4 Functional responsive materials 208

8.5 Out-of-equilibrium systems 208

8.6 Conclusion 209

(13)

Summary 215 Samenvatting 217 Zusammenfassung 221 Popular Summary 227 Populär-Wissenschaftliche Zusammenfassung 229 Appendix – A

Materials and Methods 1

A.1 Synthesis 1

A.2 UV/visible static and steady state measurements 2 A.3 1H-NMR in situ-irradiation measurements 2

A.4 Light sources 2

A.4.1 Fiber-coupled LEDs 3

A.4.2 Optical Filters 3

A.5 References 3 Appendix – B Short Biography 4 Appendix – C List of Publications 5 Appendix – D Acknowledgements 7

(14)

xv

Referenties

GERELATEERDE DOCUMENTEN

Compared to the spectra of the parent DASA compound 2 (Figure 5.2c), the absorption band of compound 1 (Figure 5.2b) undergoes a hypsochromic shift in all solvents, indicating that

A comparison of the photoswitching of compound 1 in normal methanol and deuterated methanol shows negligible differences in the band shape of the transient spectra and

photoswitching and what structural features of Stenhouse photoswitches are responsible for which properties (ε, φ, t 1/2 , λ max , solubility, photoswitching kinetics) is

Biological evaluation can be challenging, as the influence of the different wavelengths of light used for uncaging on the biological system needs to be tested and the

Seit der Einführung von DASAs im Jahr 2014 hat diese neue Klasse von molekularen Schaltern eine rapide Entwicklung unterlaufen und deren Potential wurde durch interessante

Deze molecuul, die verandert van structuur zodra er licht op schijnt, kan ingezet worden voor verschillende toepassingen: zo kan het bijvoorbeeld gebruikt worden in de bouw

Dear members of the BioSubGroup: Mickel, thank you for the countless discussions and brainstorming sessions about research ideas and questions and what it means to have a

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright