• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/65535 holds various files of this Leiden University

dissertation.

Author: Matthee, J.J.A.

Title: Identifying the origins of galaxy formation

Issue Date: 2018-09-19

(2)

Identifying the origins of

galaxy formation

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden op gezag van Rector Magnificus prof. mr. C.J.J.M Stolker,

volgens besluit van het College voor Promoties te verdedigen op woensdag 19 september 2018

klokke 10:00 uur

door

Jorryt Johan Anton Matthee

geboren te Utrecht in 1990

(3)

Promotiecommissie

Promotor: Prof. dr. Huub R¨ottgering Promotor: Prof. dr. Joop Schaye

Co-promotor: Dr. David Sobral (Lancaster University)

Overige leden: Prof. dr. Richard Ellis (University College London) Prof. dr. Andrea Ferrara (Scuola Normale Superiore Pisa) Prof. dr. Marijn Franx

Dr. Jacqueline Hodge Prof. dr. Paul van der Werf

(4)

For those born in less favourable spacetime locations

(5)

Front cover: Logarithmic spiral where the radius of each quarter increases with growth factor φ = 1+25, the golden ratio. From small to large: temperature fluctuations of the cosmic microwave background observed by the Planck satellite; simulated large-scale structure of dark matter in the universe in the EAGLE simulation; NASA/Hubble Space Telescope image of The Pillars of Creation in the Eagle nebula based on observations in the [Sii], Hα and [Oiii] filters; artist impression of the CR7 galaxy, ESO/Kornmesser; part of the COSMOS field imaged in the near-infrared using J, H and K filters on VIRCAM as part of the UltraVISTA survey; simulated large-scale structure of the universe in dark matter, gas and stars in the EAGLE simulation.

Back cover: From bottom-left to top-right: stylised photograph from the Isaac Newton Telescope on La Palma; drawing from the Moon by Galileo Galilei in 1610 based on the first astronomical usage of a telescope; drawing of Saturn by Christiaan Huygens in 1698; illustration of the NASA/GALEX satellite;

drawing of the Whirlpool galaxy (M51) by Lord Rosse in 1850; illustration of the spectrum of a Lyman-α photon; hexagonal cut-outs of observations used in this thesis from the INT, Subaru and the HST.

ISBN 978-94-028-1132-2

(6)

i

Contents

1 Introduction 1

1.1 Historical, physical and methodological framework . . . 2

1.1.1 History and cosmology . . . 2

1.1.2 Methodology . . . 3

1.2 Galaxy formation: theoretical perspective . . . 5

1.2.1 Structure formation in a ΛCDM Universe . . . 5

1.2.2 Gas cooling, star and black formation and feedback . . . 6

1.2.3 The star formation history of the Universe . . . 10

1.2.4 Chemical enrichment . . . 10

1.2.5 Reionization . . . 11

1.3 Galaxy formation: observational perspectives . . . 13

1.3.1 Observational tools . . . 13

1.3.2 What do galaxy colours tell us . . . 16

1.3.3 The physics encoded in nebular emission lines . . . 17

1.3.4 Studying galaxy formation with the Lyα emission line . . . 19

1.3.5 Sample selection methods . . . 22

1.4 This thesis, outlook . . . 23

1.4.1 Challenges & Open questions . . . 23

1.4.2 This thesis . . . 24

2 Identification of the brightest Lyα emitters at z = 6.6: implications for the evolution of the luminosity function in the reionization era 27 2.1 Introduction . . . 28

2.2 Observations & Data reduction . . . 31

2.3 Selecting Lyman-α emitters at z=6.6 . . . 35

2.4 Number counts, completeness and corrections for filter profile bias 46 2.5 Lyα Luminosity function at z=6.6 . . . 53

2.6 Discussion . . . 57

2.7 Conclusions . . . 64

3 Spectroscopic properties of luminous Lyα emitters at z ≈ 67 and comparison to the Lyman-break population 67 3.1 Introduction . . . 68

3.2 Sample & Observations . . . 69

3.3 Results . . . 72

3.4 Properties of newly confirmed LAEs . . . 75

3.5 Discussion . . . 80

(7)

ii CONTENTS

3.6 Conclusions . . . 94

3.A Galaxy compilation . . . 96

4 On the evidence for PopIII-like stellar populations in the most lumi- nous Lyman-α emitters at the epoch of reionization 99 4.1 Introduction . . . 100

4.2 Sample and Spectroscopic observations . . . 103

4.3 Measurements and SED fitting . . . 109

4.4 Discovery of the most luminous Lyα emitters . . . 111

4.5 SED fitting CR7 . . . 114

4.6 Discussion . . . 120

4.7 Conclusions . . . 124

4.A Summaries of articles interpreting CR7 . . . 127

4.B Comparison to Bowler et al. (2017b) . . . 130

4.C Comparison to Shibuya et al. (2018) . . . 132

5 ALMA reveals metals yet no dust within multiple components in CR7 133 5.1 Introduction . . . 134

5.2 UV properties of CR7 . . . 136

5.3 ALMA data . . . 137

5.4 Resolved [Cii] emission . . . 140

5.5 IR continuum . . . 146

5.6 The SFR-L[CII]relation . . . 150

5.7 Discussion . . . 154

5.8 Conclusions . . . 156

6 Confirmation of double peaked Lyα emission atz= 6.593: witnessing a galaxy directly contributing to the reionization of the Universe 161 6.1 Introduction . . . 162

6.2 Data . . . 164

6.3 Is COLA1 a LAE at z=6.59 or an [Oii] emitter at z=1.47? . . . . 169

6.4 Properties of COLA1 – a unique LAE at z=6.6 . . . 172

6.5 Discussion: witnessing a galaxy reionising its surroundings . . . . 179

6.6 Summary . . . 188

7 The CALYMHA survey: Lyα escape fraction and its dependence on galaxy properties atz=2.23 191 7.1 Introduction . . . 192

7.2 Sample and Observations . . . 194

7.3 Measurements . . . 196

7.4 Stacking method . . . 202

7.5 Direct measurements for individual galaxies . . . 205

7.6 Correlations between Lyα escape and galaxy properties . . . 211

7.7 Extended emission . . . 215

7.8 Discussion . . . 217

7.9 Conclusions . . . 223

(8)

Contents iii 8 The production and escape of Lyman-Continuum radiation from star-

forming galaxies atz∼2 and their redshift evolution 227

8.1 Introduction . . . 228

8.2 Galaxy sample . . . 230

8.3 GALEX UV data . . . 234

8.4 The escape fraction of ionizing photons . . . 235

8.5 Constraining fescof HAEs from the ionizing background . . . 239

8.6 The ionizing properties of star-forming galaxies at z=2.2 . . . 245

8.7 Implications for reionization . . . 252

8.8 Conclusions . . . 253

9 Bo¨otes-HiZELS: an optical to near-infrared survey of emission-line galaxies atz=0.4−4.7 261 9.1 Introduction . . . 262

9.2 Observations & data . . . 263

9.3 Data reduction & Catalogue production . . . 266

9.4 Classifying line-emitters . . . 269

9.5 Number densities . . . 276

9.6 Properties of line-emitters . . . 286

9.7 Conclusions . . . 290

10 The origin of scatter in the stellar mass - halo mass relation of central galaxies in the EAGLE simulation 297 10.1 Introduction . . . 298

10.2 Methods . . . 299

10.3 Correlations between stellar mass and DMO halo properties . . . . 308

10.4 Sources of scatter . . . 312

10.5 A Parametric description for predicting stellar masses . . . 317

10.6 Evolution . . . 320

10.7 Discussion . . . 320

10.8 Conclusions . . . 325

11 The origin of scatter in the star formation rate - stellar mass relation in EAGLE 331 11.1 Introduction . . . 332

11.2 Methods . . . 333

11.3 The amount of scatter . . . 335

11.4 How long galaxies remain above/below the main sequence . . . . 339

11.5 The origin of long time-scale correlations . . . 344

11.6 Relation with the growth of black hole mass . . . 351

11.7 Discussion . . . 356

11.8 Summary . . . 359

12 Star-forming galaxies are predicted to lie on a fundamental plane of mass, star formation rate and α-enhancement 365 12.1 Introduction . . . 366

12.2 Methods . . . 367

(9)

iv CONTENTS

12.3 The scatter in 2D and 3D mass - metallicity relations . . . 368 12.4 Discussion . . . 373

Nederlandse samenvatting 377

Bibliography 391

Publications 409

Curriculum Vitae 413

Acknowledgements 415

Referenties

GERELATEERDE DOCUMENTEN

In particular, we studied which di- mensional dark matter halo property X is most closely related to stellar mass, and whether other dimensionless halo properties are responsible

The difference between the stellar mass and star formation rate density contributions of disc, spheroid and asymmetric morphological structures are striking.. They result from

Redshift Evolution of Galaxy Quenching/Bursting Comparing the low- and high-z results indicates that at fixed M ∗ , sSFR, and environment, higher redshift galaxies (all, centrals,

At high stellar masses (M ∗ /M & 2 × 10 10 ), where HiZELS selects galaxies close to the so-called star-forming main sequence, the clustering strength is observed to

At the highest stellar masses (log 10 (M ? /M ) & 11), there are few star- forming galaxies in both high and lower density regions and we see little dependence of the

We model the star formation sequence with a Gaussian distribution around a hyperplane between log M ∗ , log SFR, and log(1 + z), to simultaneously constrain the slope,

We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data en- able us to derive star-formation rates

Umemura 2001), the numerical study of supersonic hydrodynam- ics and magnetohydrodynamics of turbulence (Padoan et al. 2007), gradual processes behind building of a galaxy (Gibson