• No results found

Infra-red spectra of complex organic molecules in astronomically relevant ice matrices

N/A
N/A
Protected

Academic year: 2021

Share "Infra-red spectra of complex organic molecules in astronomically relevant ice matrices"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Laboratory Astrophysics: from Observations to Interpretation Proceedings IAU Symposium No. 350, 2019

F. Salama & H. Linnartz, eds. doi:10.1017/S1743921319008780

Infrared spectra of complex organic molecules

in astronomically relevant ice matrices

J. Terwisscha van Scheltinga

1,2

, N. F. W. Ligterink

3

,

A. C. A. Boogert

4

, E. F. van Dishoeck

2,5

and H. Linnartz

1

1Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513,

2300 RA Leiden, the Netherlands email:jeroentvs@strw.leidenuniv.nl

2Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlands 3Center for Space and Habitability, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 4Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 98622, USA

5Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbackstr. 1,

85748 Garching, Germany

Abstract. The identification of complex organic molecules, COMs, in inter- and circumstellar gas phase environments is steadily increasing. The formation of such COMs takes largely place on the icy dust grains, as has been shown in recent laboratory studies. Until now solid state features of smaller molecular species have been directly identified in these environments. The presented work on acetaldehyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3) in different astronomically relevant ice environments and for temperatures in the range 15 to 160 Kelvin, provides the necessary tools to guide or interpret astronomical observations, specifically for upcoming James Webb Space Telescope observations.

Keywords. astrochemistry, methods: laboratory, techniques: spectroscopic, molecular processes

1. Introduction

The first molecule detected in the solid state in the interstellar medium was water (Gillett & Forrest 1973). Over time more than 10 other molecules have been detected in the solid state (i.e. CO, CH4, CO2, NH3, and CH3OH). The formation of these small molecules and also more complex organic molecules has been linked to icy surfaces on dust grains. With the combined effort of space based telescopes, the Infrared Space Observatory (ISO) and Spitzer Space Telescope, laboratory studies, and astrochemi-cal modelling the understanding of the structure and composition of these icy dust grains has been greatly improved (e.g. see reviews by Herbst & van Dishoeck 2009,

Boogert et al. 2015, and Linnartz et al. 2015). With the launch of the James Webb Space Telescope (JWST) in the near future and availability of the state-of-the-art instru-ments, MIRI and NIRSpec, the community will be able to measure spectra with higher spectral and spatial resolution and sensitivity. This improvement allows to search for COMs beyond methanol and to aim to a new level of complexity in interstellar ices. In order to unambiguously identify these COMs, with similar functional groups and thus similar spectral features, we provide in this work the tools to distinguish acetalde-hyde (CH3CHO), ethanol (CH3CH2OH), and dimethyl ether (CH3OCH3). The matrix in which these COMs reside influences the spectral features, i.e. peak position, FWHM change, and band strengths, and are thus also investigated in this work.

c

 International Astronomical Union 2020

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921319008780

(2)

Ice spectra of complex organic molecules 357 0.4 0.6 0.8 1.0 1.2 1.4

CH

3

CHO 7.427 μm band

FWHM (cm -1 ) Wavenumber (cm-1)

Pure Water CO MeOH CO:MeOH

1346 1347 1348 1349 1350 4 6 8 10 12 14 15 30 70 90 110 120 15 30 70 90 110 120 140 160 15 30 15 30 70 90 110 15 30 70 90 7.43 7.425 7.42 7.415 7.41

Wavelength (μm) Relative band strength

Figure 1. Left: peak position vs. FWHM, pure in squares (black), water in circles (red), CO in triangles (blue), methanol in upside down triangles (purple), and CO:CH3OH in diamonds (green) at various temperatures. Right: the relative band strength for the 7.427µm band at 15 K in the different matrices.

2. Results

The spectra of the selected molecules have been recorded under high vacuum conditions in transmission mode with a FTIRS (Varian 670-IR) in the range 4000-500 cm−1 (2.5-20

µm) and a spectral resolution of 1.0 cm−1. These COMs have been measured in pure

form but also diluted, 1:20, in the different matrices: water (H2O), carbon-monoxide (CO), methanol (CH3OH), and a 1:1 mixture of CO:CH3OH. The ratio between COM and matrix’s is set to 1:20 as an estimate for the dilution of COMs in interstellar ices. For each molecule several transitions have been selected that do not have significant overlaps with the other COMs in this work and are thus good candidates for identification in space. These transitions have been analysed and their FWHM, peak position, and relative band strengths recorded. An example of this can be seen in Fig. 1 were we show the results for the 7.4µm band of acetaldehyde. It is evident from the left part of the figure that the FWHM and position of the absorption band depend on the matrix in which acetaldehyde resides, but also the temperature of the ice. The right part of the figure indicates that the intensity of this transition decreases when acetaldehyde is diluted in astronomically relevant molecules. The FWHM, peak position, and integrated absorbance ratios of all these transitions will allow astronomers to interpret and identify these COMs in interstellar ices. For more details please seeTerwisscha van Scheltinga et al. 2018or visit the Leiden Database for Ice (http://icedb.strw.leidenuniv.nl).

References

Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541 Gillett, F. C. & Forrest, W. J. 1973, ApJ, 179, 483

Herbst, E. & van Dishoeck, E. F. 2009, ARA&A, 47, 427

Linnartz, H., Ioppolo, S., & Fedoseev, G. 2015, Int. Rev. Phys. Chem., 34, 205

Terwisscha van Scheltinga, J., Ligterink, N. F. W., Boogert, A. C. A., van Dishoeck, E. F., & Linnartz, H. 2018, A&A, 611, A35

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1743921319008780

Referenties

GERELATEERDE DOCUMENTEN

Als alleen wordt gekeken naar de vaste stof die bij de eerste kristallisatie ontstaat, verwachten we of alleen KMnO 4 (s) of alleen KClO 4 (s), behalve indien de samenstelling van

300010 25A 2 Lees verder Vraag 15. gesteente dat

joodethaan zal met Na nog sneller ethylradicalen doen ontstaan, zodat deze (evenals in onderdeel 6 ) ook in vat A reeds tot butaan combineren en vat B niet bereiken.. Voor de

In deze opgave worden de waarden 20,2° en 3,4° de molaire optische draaiing van - glucose, respectievelijk -glucose, genoemd.. van 't Hoff veronderstelde dat de totale

Opmerking: Het verschil tussen beide stoffen, dat rond het C(1)atoom bestaat, heeft wel (veel) invloed op de draaiing veroorzaakt door C(1), maar nauwelijks op de draaiing

Er worden dus Ce 4+ - in Ce 3+ -ionen omgezet en de oplossing wordt sterker zuur door het ontstaan van H + en het verdwijnen van water.. De elektrolyse in de aparte ruimte verloopt

I~zuur of derivaten daarvan als eindcomponent dragen. Het bleek op deze wijze echter niet mogelijk brillante en zéér lichtechte tinten te vervaardigen, vooral het groen

1. de kwantitatieve micromethodes. De kwalitatieve chemische micro-analyse werd door onze landgenoot H. Behrens uitgewerkt en voor- lopig tot afsluiting gebracht, maar