• No results found

Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes

N/A
N/A
Protected

Academic year: 2021

Share "Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Virus Research

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / v i r u s r e s

Review

Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes

Clara C. Posthuma

a,∗,1

, Aartjan J.W. te Velthuis

b,c,1

, Eric J. Snijder

a,1

aMolecularVirologyLaboratory,DepartmentofMedicalMicrobiology,LeidenUniversityMedicalCenter,Leiden,theNetherlands

bSirWilliamDunnSchoolofPathology,UniversityofOxford,SouthParksRoad,OxfordOX13RE,UnitedKingdom

cClarendonLaboratory,DepartmentofPhysics,UniversityofOxford,ParksRoad,OxfordOX13PU,UnitedKingdom

a r t i c l e i n f o

Articlehistory:

Received9December2016

Receivedinrevisedform24January2017 Accepted26January2017

Availableonline6February2017

Keywords:

Coronavirus Arterivirus

Replicationandtranscriptioncomplex Polymerasefidelity

Processivityfactors SubgenomicmRNAsynthesis

a b s t r a c t

Coronavirusesandarterivirusesaredistantlyrelatedhumanandanimalpathogensthatbelongtothe orderNidovirales.Nidovirusesarecharacterizedbytheirpolycistronicplus-strandedRNAgenome,the productionofsubgenomicmRNAsandtheconservationofaspecificarrayofreplicasedomains,including keyRNA-synthesizingenzymes.Coronaviruses(26–34kilobases)havethelargestknownRNAgenomes andtheirreplicationpresumablyrequiresaprocessiveRNA-dependentRNApolymerase(RdRp)and enzymaticfunctionsthatsuppresstheconsequencesofthetypicallyhigherrorrateofviralRdRps.The arteriviruseshavesignificantlysmallergenomesandformanintriguingpackagewiththecoronaviruses toanalyseviralRdRpevolutionandfunction.TheRdRpdomainofnidovirusesresidesinacleavage productofthereplicasepolyproteinnamednon-structuralprotein(nsp)12incoronavirusesandnsp9 inarteriviruses.Inallnidoviruses,theC-terminalRdRpdomainislinkedtoaconservedN-terminal domain,whichhasbeencoinedNiRAN(nidovirusRdRp-associatednucleotidyltransferase).Althoughno structuralinformationisavailable,thefunctionalcharacterizationofthenidovirusRdRpandthelarger enzymecomplexofwhichitispart,hasprogressedsignificantlyoverthepastdecade.Incoronaviruses severalsmaller,non-enzymaticnspswerecharacterizedthatdirectRdRpfunction,whilea3-to-5exori- bonucleaseactivityinnsp14wasimplicatedinfidelity.Inarteriviruses,thensp1subunitwasfound tomaintainthebalancebetweengenomereplicationandsubgenomicmRNAproduction.Understand- ingRdRpbehaviourandinteractionsduringRNAsynthesisandsubsequentprocessingwillbekeyto rationalisingtheevolutionarysuccessofnidovirusesandthedevelopmentofantiviralstrategies.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction...59

2. GeneralfeaturesofnidovirusRNApolymerasesubunits:twodomainswithdistinctactivities...60

3. StructuralmodelsofnidovirusRdRps...62

4. InvitroRdRpactivityoftheCoVnsp12...63

5. CoVnsp8:primaseornot? ... 63

Abbreviations:5-AZC,5-azacytidine;5-FU,5-fluorouracil;AV,arterivirus;CBV3,coxsackievirusB3;CoV,coronavirus;EAV,equinearteritisvirus;EM,electronmicroscopy;

ExoN,exoribonuclease;FCoV,felinecoronavirus;FMDV,footandmouthdiseasevirus;HCoV-229E,humancoronavirus229E;IMPDH,inosine-5-monophosphatedehydro- genase;IVRA,invitroRNAsynthesisassay;kb,kilobases;M2H,mammalian2-hybrid;MERS,MiddleEastrespiratorysyndrome;MHV,murinehepatitiscoronavirus;NiRAN, nidovirusRdRp-associatednucleotidyltransferase;nsp,non-structuralprotein;ORF,openreadingframe;PABP,Poly(A)-bindingprotein;PEDV,porcineepidemicdiarrhea virus;PNS,post-nuclearsupernatant;pp,polyprotein;PRRSV,porcinereproductiveandrespiratorysyndromevirus;RBV,ribavirin;RdRp,RNAdependentRNApolymerase;

RTC,replicationandtranscriptioncomplex;SARS,severeacuteresporiatorysyndrome;sg,subgenomic;ss,single-stranded;TGEV,transmissiblegastroenteritisvirus;TRS, transcription-regulatorysequence;ub,ubiquitin;wt,wild-type;Y2H,yeast2-hybrid;ZBD,zinc-bindingdomain.

∗ Correspondingauthor.

E-mailaddress:c.c.posthuma@lumc.nl(C.C.Posthuma).

1 Theseauthorscontributedequally.

http://dx.doi.org/10.1016/j.virusres.2017.01.023

0168-1702/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

6. TheRNApolymeraseactivityofnsp12andtheroleofnsp8asco-factor:thensp7+8+12tripartitecomplex .... 64

7. TheelusiveinvitroRNApolymeraseactivityofAVnsp9...65

8. Thenidovirus-specificdomainattheN-terminusoftheRdRp-containingsubunit:NiRAN...66

9. Faithfulnidovirusreplicationandtranscriptioninvitroandtheinvolvementofotherco-factors...66

10. MakingtheRdRpswitchfromcontinuousintodiscontinuousmode:AVnsp1...67

11. PolymerasefidelityandnucleotideexcisionbytheCoVnsp14-ExoNexoribonuclease...68

12. InhibitorsofnidovirusRNApolymeraseactivity...69

13. Conclusionandoutlook...70

Acknowledgements ... 70

References...70

1. Introduction

Positive-strandedRNA(+RNA)virusesthatbelongtotheorder Nidoviralesinfectawiderangeofvertebrates(familiesArteriviridae and Coronaviridae)or invertebrates (Mesoniviridae and Roniviri- dae)(deGrootetal.,2012;Lauber etal.,2012)andcanhave a significanteconomicandsocietalimpact.Forexample,infections withthearterivirus(AV)porcinereproductiveandrespiratorysyn- dromevirus(PRRSV) haveseverelyaffectedthe swineindustry foralmostthreedecadesnow(Holtkampetal.,2013;Perezetal., 2015; Pileriand Mateu,2016), whereas zoonotic coronaviruses (CoVs)havecausedepisodesofsevereacuterespiratorysyndrome (SARS)andMiddleEastrespiratorysyndrome(MERS)inhumans (Grahametal.,2013;PerlmanandNetland,2009)andmaydoso again(Menacheryetal.,2015).AnimalCoVscontinuetoemergeand causegreateconomiclosses,asexemplifiedbytherecentoutbreaks of porcine deltacoronavirus and the porcine epidemic diarrhea virus(PEDV) in Chinaand theUnited States(Choudhuryet al., 2016;Wengetal.,2016;Zhang,2016).Genetically,thenidoviruses constituteamonophyleticgroupthatischaracterizedbycommon ancestryoftheirkeyreplicativeenzymesandassociatedsimilari- tiesingenomeorganizationandexpression(Fig.1A)(deGrootetal., 2012;Lauberetal.,2013).However,nidovirusgenomesizesvary significantly,withAVgenomesrangingfrom13to16kilobases(kb), mesonivirusgenomesfrom20to21kb,andCoVgenomesfrom26 to34kb(Lauberetal.,2013).Ithasbeenpostulatedthatthissize variationreflectsalonghistoryofgradualgenomeexpansion,dur- ingwhichthedifferentnidoviruslineagesadaptedtotheirspecific nichesbyacquiringarangeofnovelfunctions,encodedbydomains thatwereeitherincorporatedasadditionalgenesorintegratedinto thelargenidovirusreplicasegene(Lauberetal.,2013).

In all nidoviruses, at leasttwo-thirds of thecapacity of the polycistronicgenomeisoccupiedbythetwolargeopenreading frames(ORFs;1aand1b)thattogetherconstitutethereplicasegene (Fig.1A).BothORFsaretranslateddirectlyfromtheviralgenome andbrieflyoverlapwherea −1ribosomalframeshiftdirectsthe expression of ORF1b to facilitate the formation of an ORF1ab- encoded polyprotein (pp1ab). Cleavage of the pp1aand pp1ab polyproteinsby multipleintrinsic protease activities,in combi- nationwith−1and−2frameshifting inthensp2codingregion inmostarteriviruseswiththeexceptionofequinearteritisvirus (EAV),resultsintheproductionof 13to17non-structuralpro- teins (nsps) (Fang et al., 2012; Li et al., 2014b; Snijder et al., 2013;Ziebuhretal.,2000).Thecommonancestryoftheextremely divergednidoviruslineagesisprimarilyreflectedin theconser- vationofanarrayof‘corereplicasedomains’(Gorbalenyaetal., 2006; Lauber et al., 2013; Snijder et al., 2016), which is com- posedoftwo trans-membraneproteins,theviralmainprotease, and–encodeddownstreamoftheORF1a/1bframeshiftsite–the RNA-dependentRNApolymerase(RdRp)-andhelicase-containing subunits (Fig. 1B),with thecanonical RdRp domainresiding in CoVnsp12andAVnsp9.Nidovirusgenomesarethoughttohave expanded graduallyby gene duplication and theacquisition of

noveldomains(Lauberetal.,2013).Duringthisprocess,specific innovationsmayhaveenabledthemtoexploreanunprecedented evolutionary space and adapt toa wide variety of hostorgan- isms,includingmammals,birds,fish,insectsandcrustaceans.In particular, thegeneralgenomesize restrictions ofRNA viruses, commonlyattributedtothepoornucleotideincorporationfidelity oftheviralRdRpdomain,mayhavebeenmitigatedbytheacqui- sition of compensatoryenzymatic functions(Denget al.,2014;

Eckerleetal.,2010;Eckerleetal.,2007;Gorbalenyaetal.,2006;

Snijderetal.,2003).Consequently,somenidovirusnspscontaina uniquesetofactivitiesnotseeninother+RNAviruses(discussed e.g.inSections8and11inmoredetail).Imagingandbiochemical characterizationofnidovirusnspshaveshownthattheyaretar- getedtospecificvirus-inducedmembranestructures(reviewedin (Hagemeijeretal.,2012;Neumanetal.,2014;vanderHoevenetal., 2016))wheretheyassembleintoaso-calledreplicationandtran- scriptioncomplex(RTC;see(Neumanetal.,2014;Snijderetal., 2016;Subissietal.,2014a)forreviews).

The RNA-templatedsynthesis of newRNA bythe viralRNA polymeraseisarguablythekeystepintheinfectioncycleof all RNA viruses. In the case of nidoviruses and theirpolycistronic genomes,RNAsynthesisentailsnotonlygenomeamplificationbut alsothesynthesisofanestedsetofsubgenomic(sg)mRNAs(Fig.1A;

reviewedin(Pasternaketal.,2006;Sawickietal.,2007;Solaetal., 2011).ThesgmRNAsservetomakethegenesdownstreamofthe nidovirusreplicaseORFs1aand1baccessiblefortranslation.These ORFsencodestructuralandso-called ‘accessory’proteins,which areoftendispensableforreplicationinvitro,butimportantfore.g.

immuneevasionandpathogenesisinvivo(Liuetal.,2014;Weiss andLeibowitz,2011).Forthepurposeofthisreview,wewillreferto theprocessofsgmRNAsynthesisas‘transcription’;theunderlying mechanismswillbediscussedinmoredetailinSection10.

Eachnidoviral sg mRNAis producedfrom a complementary subgenome-lengthtemplate.MinusstrandRNAsynthesiscanbe either continuous (producing a full-length minus-strand tem- plate for genome replication) or discontinuous to produce the subgenome-lengthtemplatesfortheproductionofthesgmRNAs (SawickiandSawicki,1995;Sethnaetal.,1989).Inadditiontothe overallRNAstructureofthegenomeandtranscription-specificpro- teinfactors,conservedtranscription-regulatorysequences(TRSs) in the genomic template are thought to be the prime trigger andguidingelementsthatmakethenidovirusRTCsynthesizea subgenome-lengthratherthana full-lengthminusstrand.Thus, theTRSsconstituteoneclassofcis-actingRNAsignalswithwhich thenidovirusRTCneedstointeract,although wenotethatthis featurehasmainlybeenaddressedfromtheRNAside(e.g.,bysite- directedmutagenesisofTRSs)(Dufouretal.,2011;Pasternaketal., 2001;Zheng et al.,2014;Zuniga etal.,2004).Thesame essen- tiallyappliestothemajorcis-actingRNAelementsthatconstitute theinitiationsitesforminusandplusstrandRNAsynthesisnear the3endoftheplusandminusstrand,respectively.Indeed,in bothCoVandAVgenomes,anumberofprimaryandhigher-order structuralfeatureshavebeenidentifiedandstudied,includingsev-

(3)

Fig.1.Nidovirusgenomeorganizationandthecorereplicasedomains.(A)Genomeorganizationofrepresentativesofthefourmajornidoviruslineages(CavV,Cavallyvirus;

GAV,gill-associatedvirus;notethattheEAVgenomeisdrawntoadifferentscale).Foreachgenome,theknownopenreadingframes(ORFs)areindicatedwiththereplicase ORFs1aand1bdepictedingreyandstructuralproteingenesdepictedindifferentcolours.ORFsencoding‘accessoryproteins’(inSARS-CoV)orpoorlycharacterizedproducts aredepictedinwhite.ToillustratetheprincipleofsubgenomicmRNAsynthesis,asemployedbyallnidoviruses,thenestedsetstructureandcompositionofthemRNAs issummarizedforSARS-CoV,withthecommon5leadersequenceindicatedinredandthetranslatedpartofthegenomeandeachofthesubgenomicmRNAsdepicted ingreen.Seemaintextformoredetails.(B)Domainorganizationofthepp1abreplicasepolyproteinforthefourmajornidoviruslineages(notethattheAVproteinis drawntoadifferentscale).Proteolyticcleavagesandnon-structuralproteinnumberingareindicatedforEAVandSARS-CoV.Theschemehighlightstheconservationofthe so-callednidovirus‘corereplicase’,consistingoftheORF1a-encodedmainprotease(Mpro)flankedbytwotransmembrane(TM)domains,followedbytheORF1b-encoded NiRANnucleotidyltransferase(NT),RNApolymerase(RdRp),zincbindingdomain(Z)andsuperfamily1helicase(HEL1).Accessory(papain-like)proteasedomainsand theircleavagesitesareindicatedforEAVandSARS-CoV(P1,P2,PLpro).Thezinc-fingerdomain(F)inEAVnsp1thatiscrucialforsubgenomicmRNAsynthesis(seetext)is alsohighlighted.TheC-terminalpartofpp1abencodesanumberofenzymaticdomainsthatarenotstrictlyconservedamongallnidoviruslineages:U,endoribonuclease, conservedinvertebratenidoviruses;EN,exoribonuclease(ExoN)conservedinnidoviruseswithgenomesizes>20kb(seetext);N7-and2-Omethyltransferases(N7and 2O)involvedincapmodification(notidentifiedinAVs).

eralRNAhairpinsandpseudoknots.Theimportanceofmultipleof theseelementsissupportedbybioinformatics(conservation),bio- chemicalprobing,andsite-directedmutagenesis.Foranoverview ofthestructureandfunctionoftheRNAelementsthathavebeen implicatedinCoVorAVreplicationandtranscription,thereader isreferredtodetailedreviewsthathavebeenpublishedelsewhere (Madhugirietal.,2016;Masters,2007;Snijderetal.,2013;Sola etal.,2011;YangandLeibowitz,2015).However,ithasremained largelyunclearwhetherthese elementsinteractwiththeRdRp domain-containingsubunitdirectlyorwithothercomponentsof theRTC,asforexamplereportedbyZüstetal.whoobservedthat second-sitemutationsinthesmallnsp8andnsp9subunitsofthe RTCcouldcompensateformutationsinconservedRNAsequences nearthegenomic3endofthemurinehepatitiscoronavirus(MHV) genome(Züstetal.,2008).Inthecaseofthe5-proximaldomainof thegenomicRNA(oritsminus-strandedcounterpart),functional studieshavebeen complicatedby thefactthat RNAsignals for replication,transcription,translationand(potentially)packaging maybeoverlappinganddifficulttoseparate,bothphysicallyand functionally.

Inthis review, we willfocusmainly on‘theproteinside’ of nidovirusRNAsynthesis,andwhatisknownabouttheinitiation

of RNAsynthesis by nidovirus RNA polymerases.The ability of thenidovirusRTCtodirectthevariousprocessesofRNAsynthesis outlinedabovecriticallyreliesontheactivityofacanonicalRdRp domain,whichresidesinnsp12inCoVsandinnsp9inAVs.These replicasesubunits,whichalsocarryauniqueandnidovirus-specific N-terminalextension,arebelievedtocatalysethenucleotidecon- densationreactionthatdrivesreplicationandtranscription.Given theirpivotalroleinviralreplicationandtheefficacyofusingpoly- meraseinhibitorstocombatothervirusinfections,AVnsp9and CoVnsp12are alsoconsideredan importanttarget for rational drug design. Unfortunately, these nsps have remained refrac- torytostructuralanalysessofar,butsignificantadvancesinour understandingof theseenzymesand theirco-factorshavebeen madeusingbioinformatics,biochemicalandmolecularvirological approaches,inparticularforAVsandCoVs,aswewillsummarize below.

2. GeneralfeaturesofnidovirusRNApolymerasesubunits:

twodomainswithdistinctactivities

In all nidoviruses, the RdRp-containing subunit consists of at least two domains (Fig. 2A): a nidovirus-specific N-terminal

(4)

Fig.2.Schematicrepresentationofnsp12fromSARS-CoVandnsp9fromEAV.A)ThepositionofNiRAN(lightgrey),theRdRpdomain(darkgrey)andtherespective motifs(whiteboxes;subscript“N”wasaddedtoNiRANmotifstodicriminatethemfromRdRpmotifs)areindicatedinthefigure.TheexactC-terminalborderofNiRAN, aswellastheN-terminalborderoftheRdRparenotdefinedyetandareindicatedwithdashedlines.Thepositionofribosomalframeshiftingisindicatedwithatriangle;

translationoftheprecedingORF1aproductsterminatesshortlydownstreamtheframeshiftsite(SARS-CoVnsp11within4aminoacids,EAVnsp8within1aminoacid,not indicatedinthefigure).NiRANandRdRpmotifsaredisplayedaswhiteboxesinthefigure,basedon(Lehmannetal.,2015a)forNiRANmotifs,and(Xuetal.,2003)(SARS-CoV) or(Beerensetal.,2007)(EAV)fortheRdRpmotifs.NotethatMotifDwasnotdefinedforEAVnsp9inBeerensetal.andthattheapproximatepositionisindicatedasadashed box.Therulersindicateaminoacidpositionsintheproteins.Questionmarkindicatespartofthenspthatmayrepresentalinkingdomainoradomainwithanadditional (unknown)function.B)AlignmentofNiRANmotifsA,BandCfromeightrepresentativenidovirusesfromall4families(Modifiedfrom(Lehmannetal.,2015a)).C)Alignment ofRdRpmotifsA,BandCfromthesamenidoviruses.Completelyconservedresiduesareindicatedingreyboxes.SARS-CoV,SARScoronavirusFrankfurt1(AY291315;

Coronaviridae);MERS-CoV,MiddleEastrespiratorysyndromecoronavirusEMC/2012(JX869059.2;Coronaviridae);GAV,Gill-associatedvirus(AF227196;Roniviridae);YHV, yellowheadvirus(EU487200;Roniviridae);CAVV,Cavallyvirus(HM746600;Mesoniviridae);MenoV,Menovirus(JQ957873;Mesoniviridae);PRRSV-1,porcinereproductive andrespiratorysyndromevirus,Europeangenotype(GU737264.2;Arteriviridae).EAV,Equinearteritisvirus(DQ846750;Arteriviridae).

domainisfollowed bya canonical RdRpdomainoccupyingthe C-terminaltwo-thirdsoftheprotein(Gorbalenyaetal.,1989;Xu etal.,2003).AlthoughthepresenceofthisN-terminalextension wasfirstrecognizedwhenthereplicasepolyproteincleavagesites werepredictedover25yearsago(Gorbalenyaetal.,1989),anenzy- maticactivity(nucleotidylation)wasassignedtoitonlyrecently.

ThedomainisnowreferredtoasthenidovirusRdRp-associated nucleotidyltransferase (NiRAN)domain (Lehmann et al.,2015a) (Fig.2B),anditwillbediscussedinmoredetailinSection8.AstheC- terminalborderofNiRANisdifficulttodefine,yetanotherdomain (approximately50–175aminoacidsforAVandCoV,respectively;

Fig.2A)mayturnouttoconnecttheNiRANand RdRpdomains (Lehmannetal.,2015a).

RdRpdomainsincludesixcanonicalconservedmotifs,named AtoF(Figs.2Cand3A),thatareinvolvedintemplateandsub- strate recognitionand the catalysis of nucleotidecondensation (Pochetal.,1989;teVelthuis,2014).Nucleotidecondensationpar- ticularlydependsonmotifsAandC,whichassistincoordinating thetwometalionsintheactivesite(AlphonseandGhose,2017;

teVelthuis,2014).NidovirusRdRpdomainswerefirstidentified bysequencecomparisonwithknownRdRpdomainsfromother

virusgroups,revealinganSDDsequence(insteadoftheusualGDD signaturefoundinotherpositive-strandRNAvirusRdRpdomains) asthekeyresiduesofmotifC(denBoonetal.,1991;Gorbalenya etal.,1989;Snijderetal.,1990)(residues759-761inSARS-CoV)and D618andD623astheconservedaspartateresiduesofmotifAof SARS-CoVnsp12.TheseresiduescorrespondwithD445andD450 inmotifAandSDDatpositions559-561innsp9oftheAVprototype EAV.Twodecadeslater,themutationalanalysisofconservedRdRp domainresiduesconfirmedthatthecatalyticaspartatesofmotifsA andCareimportantforRNApolymeraseactivityandviralRNAsyn- thesis(Ahnetal.,2012;Lehmannetal.,2016;Subissietal.,2014b;

teVelthuisetal.,2010a).InadditiontotheessentialRdRpdomain motifsmentionedabove,CoVnsp12hasamotifG,whichisconsid- eredasignaturesequenceforprimer-dependentRNApolymerases (Gorbalenyaetal.,2002;Xuetal.,2003).Remarkably,thismotifis onlypartiallyconservedintheAVnsp9(Beerensetal.,2007).

AstructuralpredictionfortheSARS-CoVRdRpdomainwaspub- lishedasearlyas2003(Xuetal.,2003)(Fig.3B),yetexperimental studiestosupportthismodelhavebeengreatlyhamperedbydif- ficultieswithattemptstostablyexpressandpurifyCoVnsp12.As aresult,thecrystalstructureoftheCoVRNApolymeraseremains

(5)

Fig.3. ModelsofthenidovirusRdRps.A)StructureoftheFMDVRdRp(pdb2E9R).Inthetoppanel,conservedpolymerasemotifsA-Fareindicated.Inthebottompanel, thetemplateentry,templateexitandNTPentrychannelsareindicated.B)ModelsoftheSARS-CoVnsp12RdRpgeneratedbySwiss-ModelandPhyre2superposedonthe model1O5S(Xuetal.,2003).AllthreemodelsarebasedontheC-terminalpolymerasedomainandexcludedtheN-terminalNiRANdomain.Allmodelsshowanoverall similarfold.Differencesexistinthefingerssubdomainandsurfaceloopsofthethumbsubdomain.C)SuperposedmodelsoftheEAVnsp9RdRpgeneratedbyuseofI-TASSER, Swiss-ModelandPhyre2.Overall,allthreemodelsshowaverysimilarfold,withsmalldifferencesinthefingerssubdomain.D)MotifsofthepolymerasedomainofSARS-CoV nsp12indicatedonthestructuralmodel1O5S(Xuetal.,2003).E)MotifsofthepolymerasedomainofEAVnsp9thatwasgeneratedusingPhyre2.F)Keyactivesiteand fidelityresiduesindicatedonthemodelofpolymerasedomainofSARS-CoVnsp121O5S.

tobesolvedanditsbiochemicalcharacterizationinaveryearly stage.Unfortunately,thesituationisnotmuchdifferentfortheAV RNApolymerase.Mostofourcurrentunderstandingofthestruc- turalandenzymaticfeaturesofthenidovirusRNApolymerase/RTC isbasedexclusivelyonstudieswithSARS-CoV,whichwastargeted byanumberoflaboratoriesfollowingthe2003outbreak.

3. StructuralmodelsofnidovirusRdRps

Todate,nocryo-EMorcrystallographicstructuresofCoVnsp12 orAV nsp9areavailable. However,usingsequence alignments, secondary structure predictions and homology modelling, the molecularstructureofthensp12subunitofSARS-CoV(Xuetal., 2003)(Fig.3B)andMHV(Sextonetal.,2016)hasbeenpredicted.

Incaseoftheformer,amodelcouldbereliablygeneratedforitscon- servedRdRpdomain,basedonacarefulalignmentofaminoacids 388–890toknownpolymerasesequences(Xuetal.,2003);Fig.3B.

SimilarstructuresforSARS-CoVnsp12arepredictedbyonlinetools likeSwiss-Model(Biasinietal.,2014)andPhyre2 (Kelley etal., 2015)(Fig.3B).However, nostructural predictionsarepossible fortheN-terminaldomainofnsp12,which containstheNiRAN domain,andtheC-terminaltailoftheRdRpdomain(aminoacids 891–932inSARS-CoVnsp12).Likewise,onlytheC-terminalRdRp

domainoftheAVnsp9sequencecanbemodelledatpresent,as depictedinFig.3CforEAV.

Ananalysis of the predictedCoV RdRp domain architecture usingthreemodels(Fig.3B)revealedaright-handedfoldthatcon- sistsofthumb, palmand fingerssubdomains, similartoknown crystalstructuresofRdRpdomainsorcompleteRNApolymerases (shownforfootandmouthdiseasevirus(FMDV)inFig.3A).The modelsalsopredictthepresenceofasingle-stranded(ss)RNAentry channelatthetopofthepolymeraseandanNTPentrychannelat therear(Fig.3).TheduplexthatisformedastheRNApolymerase catalysesnucleotidecondensation,thusconsistingofthenascent RNAproductandtheviraltemplate,likelyleavestheenzymevia arelativelywideexitchannelatthefrontofthemolecule.This predictedthree-channelarchitecturewouldmake thenidovirus RNApolymerasecomparabletoother+RNA-viralRNApolymerases, butdifferentfromtheRNApolymerasesofnegative-strandedRNA viruses,whicharebelievedtohaveseparateexitchannelsforthe template and nascent strand(Pfluget al., 2017;Regueraet al., 2016;teVelthuisandFodor,2016).Putativechannelssimilarto thosepredictedfortheCoVnsp12RdRpdomaincanbeseeninthe modelsoftheEAVnsp9RdRpdomaingeneratedwiththepredic- tiontoolsSwiss-Model, Phyre2andI-TASSER(Yangetal.,2015) (Fig.3C),in linewithearlier sequenceanalysessuggesting that

(6)

theoverallmoleculararchitectureisconservedamongnidovirus RdRpdomains(Beerensetal.,2007).InneithertheCoVnortheAV RdRpdomainmodelthereisevidenceforthepresenceofapriming- looporsimilarinitiationplatform,whichistypicallyrequiredfor denovoinitiationonthe3terminusoftheviralRNA(teVelthuis, 2014).Thisisinlinewiththepresenceof(apartial)motifG(see above)andtogetherthesefeaturesmayhaveimportantfunctional implicationsfortheinitiationofviralRNAsynthesis.

In boththeCoV nsp12and EAV nsp9RdRpdomainmodels, thethreesubstratechannelsconverge atthebetasheetsofthe palmsubdomain.HerethecatalyticaspartatesofmotifsAandC coordinatethecatalyticionsthatareessentialforthenucleotide condensation reaction (te Velthuis, 2014) (Fig. 3D and E). As describedforotherRdRpdomains,thekeylysineofmotifD,which likely actsasgeneralacidduringcatalysis (Castro et al.,2009), is locatednear theentrance of the NTP channel. Furtherfunc- tionalpredictionsabouttheCoVRNApolymerasecomefroman alignmentofaPhyre2-basedmolecularmodelofMHVnsp12with thecrystalstructuresoftheRdRpdomainsofcoxsackievirusB3 (CVB3)andpoliovirus(Sextonetal.,2016).Inparticular,thisstudy identifiedV553andM611(homologsofSARS-CoVnsp12residues V557 and M615, Fig. 3F) as putative equivalents of the CVB3 RdRpresiduesI176andI230,whichareknowntobeinvolvedin RdRpfidelity.Subsequentmutationoftheseresiduestoisoleucine (V553I)andphenylalanine(M611F)inthevirusconferredresis- tanceto5-fluorouracil(5-FU)and5-azacytidine(5-AZC),or5-FU only,respectively(Sextonetal.,2016).

4. InvitroRdRpactivityoftheCoVnsp12

ThefirstpublishedattemptstopurifyaCoVnsp12employed anN-terminalGST-fusionwithSARS-CoVnsp12,whichyieldeda recombinantproteinwithpoorsolubilityandstability(Chengetal., 2005).Sincethen,advanceshavebeenmadetoimprovethesta- bilityandyieldofSARS-CoVnsp12byusingcodonoptimization, differentpurificationtagsattheN-orC-terminus,ortheaddition ofanN-terminal,cleavableubiquitin(ub)fusionpartner(incom- binationwithaC-terminalHis6-tag)(Ahnetal.,2012;Subissietal., 2014b;teVelthuisetal.,2010a).Bacterialexpressionofthelat- ter(i.e.,ub-nsp12-His6)stillresultedinanunstableprotein,but co-expressionoftheubiquitinproteaseUbp1,whichcanhydrol- ysetheub-nsp12fusionsitetoproducearecombinantnsp12-His6 containingthenaturalnsp12N-terminus,significantlyimprovedits stability(teVelthuisetal.,2010a).TheC-terminalHis6-tagproved suitabletopurifynsp12fromE.coliwithoutasignificanteffecton thestabilityoftheenzyme.Overall,theseresultssuggestedthat,as forthepoliovirusRNApolymerase3Dpol(ThompsonandPeersen, 2004),theN-terminusofnsp12or,alternatively,theproperfold- ingoftheNiRANdomainwhichisnotpresentin3Dpol,isimportant forthestabilityandpossiblyalsotheactivityofnsp12(teVelthuis etal.,2010a).

AnalysisoftheCoVnsp12aminoacidsequence usingalign- mentsandmolecularmodellingpredictedthattheenzymelacks apriminglooporotherinitiationplatformthatwouldpromotede novoinitiationofRNAsynthesis(seeabove).SincemotifG,apre- sumed hallmark of primer-dependentpolymerases (Gorbalenya etal.,2002;Xuetal.,2003),wasidentifiedinthensp12sequence and structural model (Figs. 2A and 3B), it wasassumed that a primer would be required for the initiation of RNA synthesis bynsp12. Studiesfromboth Chenget al.and te Velthuiset al.

showedthattheactivityofrecombinantSARS-CoVGST-nsp12or nsp12-His6wasindeedprimer-dependentinthepresenceofMg2+

(Cheng et al.,2005; teVelthuis et al., 2010a).By contrast,Ahn etal.foundthatrecombinantSARS-CoVnsp12withanN-terminal His6-tag(His6-nsp12)requiredhighconcentrationsofMn2+.Under

theseconditions,theenzymewasalsoabletoinitiatedenovoon homopolymerictemplatesandasequencerepresentingthe3ter- minusoftheviralgenome(Ahnetal.,2012).Likewise,His6-nsp12 wasabletosynthesizerelativelylongRNAproductsinthepresence of Mn2+ (Ahn etal., 2012).The activityof nsp12-His6 on tem- plateslongerthan20nucleotideswasnottested(teVelthuisetal., 2010a).Curiously,themostrecentstudyonrecombinantSARS-CoV nsp12(containingaC-terminalstrep-tag)didnotfindanyprimer extension,denovoinitiationactivity,or binding(using1␮Mof nsp12-strep)toaprimedRNAtemplate(Subissietal.,2014b).By contrast,thensp12-His6 variantwasfoundtobindRNAwithan apparentKdof∼0.1␮M(teVelthuisetal.,2010a).

Thelimitedreproducibilityofthesebiochemicalobservations and thescant supportfor substantial processivityof nsp12are in starkcontrastwiththefactthat theCoVRNApolymeraseis requiredtoreplicateandtranscribea∼30-kbgenomeduringinfec- tion.Technicaldifferencesbetweenthesestudies(e.g.regarding theconstructsandtemplatesused)mayhavecontributedtothe mostlycontradictoryresults.Nevertheless,togethertheobserva- tionsteachusthattheactivityofnsp12alonemustberelatively weakandsensitivetothepresenceofpurificationtags,buffercon- ditionsandthesimplicityofthetemplate.ItislikelythatCoVnsp12 requiresadditionalfactorsthatimproveitsRNApolymeraseactiv- ityandthereisindeedevidencethatothernspsfulfilthisrole(see below)(Subissietal.,2014b).

5. CoVnsp8:primaseornot?

In astudyaimedat findingputativeinteraction partnersfor nsp12, a second RNA polymerase activity was reported to be associated with SARS-CoV nsp8, a 22-kDa protein encoded in ORF1a(Imbertetal.,2006).Thisactivity,whichwouldbeunique amongRNAviruses,wasobservedtoinitiateRNAsynthesisina primer-independentmannerontemplatescontainingcytidine-rich sequencesinvitroandtogenerateproductsofapproximately6nt inlength(Imbertetal.,2006).Togetherwiththeassumptionbased oncomparativegenomicsthatnsp12isaprimer-dependentRNA polymerase(seeabove),nsp8wasthusproposedtofunctionasa primase,presumablygeneratingtheinitiationsubstratefornsp12.

Insubsequentbiochemicalanalyses,itwasfoundthattheN- terminus of SARS-CoV nsp8 modulates its oligomerization and polymeraseactivity (te Velthuis et al.,2012; Xiaoet al.,2012).

Moreover,proteolyticcleavageofaninactivensp8containingan N-terminal ubiquitin- and C-terminal His6-tag showed that its nucleotidecondensationabilities (i.e.denovosynthesisbut also primerextensionactivity)canbeactivatedbytheremovalofthe terminal tags. These observations are in linewithexperiments showingthatnsp8appearstobelargelyinactiveinthecontextof theprecursorpolyproteinsnsp7-8andnsp7-10(teVelthuisetal., 2012;Xiaoetal.,2012)andtogethertheysuggestthatthe(faithful) processingofnsp8canaffectandpotentiallyregulatetheactivity ofnsp8inthecomplexesinwhichitresidesininfectedcells.We note,however,thattheabilityofnsp8toextendprimer-template duplexeswith[␣-32P]ATPcouldnotbeconfirmedinasubsequent studyusingaradiolabeledprimer(Subissietal.,2014b).Thedenovo RNAsynthesisactivityofnsp8wasnotaddressedinthisstudy.

Thestructureofnsp8aloneispresentlyunknown,butitislikely thatitformsoligomersbasedongelshift,electronmicroscopy(EM) andgelfiltrationstudies(teVelthuisetal.,2012;Zhaietal.,2005).

The involvement of conserved nsp8 residues in its polymerase activityhassofarbeenprobedintwoinvitrostudies(Imbertetal., 2006;teVelthuisetal.,2012).Inbothstudies,aconservedlysine (K58inSARS-CoV)wasfoundtobeessentialforpolymeraseactiv- ityandcrucialforthebindingofnsp8toRNA(Imbertetal.,2006;te Velthuisetal.,2012).Anotherconservedlysine(K82)andseveral,

(7)

amongCoronavirinae conserved aspartates,including aD/ExD/E motifwithD50andD52askeyresiduesinSARS-CoVnsp8,affected nsp8’sabilitytosynthesizeRNAinvitro(Imbertet al.,2006;te Velthuisetal.,2012).Thecriticalroleoftheaboveresidueswassub- stantiated,inpart,byobservationsthatnsp8mutationsD52Aand K82AcrippleSARS-CoVRNAsynthesisincellcultureandthatmuta- tionK58Aislethalforthevirus(Subissietal.,2014b).However, nsp8sharesnostructuralhomologywithotherprimasesorRNA polymerases(seeSection6),sointheabsenceofatertiarystruc- tureofnsp8boundtoRNAandnucleotides,itispresentlyunclear howtheseputativeactivesiteresiduesmayassistthenucleotide condensationactivityofnsp8invitro(Imbertetal.,2006;teVelthuis etal.,2012).Moreover,asforSARS-CoVnsp12,contradictoryresults havebeenobtainedinthehandfulofnsp8studiesperformedby differentlaboratories,whichmayhavebeenduetodifferencesin experimentaldesignand/orthefactthatnidovirusRdRpsappear tobetechnicallychallengingproteins.Unfortunately,wetherefore havetoconcludethatthequestionwhethernsp8functionsaspri- masestillremainswideopen.Inthenextsection,wewillelaborate ontheroleofnsp8asacofactorforRNAreplicationbynsp12in moredetail.

6. TheRNApolymeraseactivityofnsp12andtheroleof nsp8asco-factor:thensp7+8+12tripartitecomplex

In2005,theSARS-CoV22-kDansp8wasshowntoformaring- likecomplextogether withthe12-kDansp7(Zhaietal., 2005) (Fig.4A–C).Thiscomplexconsistedof8copiesofeachsubunit,ori- entedsuchthattheinnercavityoftheringwaspositivelycharged andcapableofbindingRNA(Zhaietal.,2005)(Fig.4A).Giventhe structuralsimilarityofthishexadecamertotheeukaryoticPCNA slidingclampandthe␤-subunitoftheE.coliDNApolymeraseIII, itwasproposedthatitcouldfunctionasaprocessivityfactorfor theRNApolymerasefunctionofnsp12(Zhaietal.,2005).Interest- ingly,nsp7andnsp8fromthedistantlyrelatedfelinecoronavirus (FCoV)werefoundtoformadifferentnsp7+8complexinwhich nsp7andnsp8formaheterotrimerconsistingof2copiesofnsp7 and1copyofnsp8(Fig.4D)(Xiaoetal.,2012).Althoughthehet- erotrimerwasfoundtobethemostlikelycomplexinsolution,it maybepossiblethatthistrimerformshigherorderstructures,as itcanself-interactundercrystallizationconditionsandformahet- erohexamer(Xiaoetal.,2012).Togetherwiththeobservationsfrom Zhaietal.,thissuggeststhatthensp7+8complexisrelativelyplastic andthatitmayperformmultiplefunctions.Indeed,severalnsp7+8 complexeshavebeenobservedacrossanumberofexperimentsand studies(teVelthuisetal.,2012;Xiaoetal.,2012;Zhaietal.,2005).

Alternatively,thedifferencebetweenthevariousnsp7+8complex structurescanbeattributedtothepositionofthepurificationtags, thegeneticbackgroundoftheprotein(FCoVversusSARS-CoV)or thecrystallizationprocedures(Xiaoetal.,2012).

Incontrasttotheiroligomericform,thestructureoftheindi- vidualnsp7andnsp8subunitsisconsistentacrossthestructural studies.Nsp7adoptsaglobularstructurethatconsistsmostlyof alpha-helices,bothinsolutionandinthensp7+8crystal(Johnson etal.,2010;Zhaietal.,2005).Nsp8canadoptagolfclub-likeshape thatispresentina‘straight’(nsp8-I)and‘bent’(nsp8-II)conforma- tion.Bothformsarepresentinthehexadecamericnsp7+8complex (Fig.4BandC),butonlythe‘straight’formofnsp8isseeninthe FCoVnsp7+8complex(Xiaoetal.,2012)(Fig.4D).Insidethering structure,SARS-CoVnsp7andnsp8interactextensively,withnsp7 likelystabilisingtheframeworkofinterlinkingnsp8subunits(Zhai etal.,2005).AlthoughSARS-CoVnsp8canassembleintooligomers intheabsenceofnsp7(teVelthuisetal.,2012;Zhaietal.,2005), (Johnsonetal.,2010;Xiaoetal.,2012;Zhaietal.,2005),nsp7+8 complexeswerefoundtohaveahigherRNAbindingaffinitythan

nsp8oligomersalone(teVelthuisetal.,2012)andmutationsin nsp7affecttheRNAbindingabilityofthensp7+8complex(Subissi etal.,2014b).

Inmultipleearlierstudies,nsp7andnsp8werealsoshowntoco- purifyorinteractwithnsp12(Imbertetal.,2008;vonBrunnetal., 2007).In2014,Subissietal.discoveredthatanunknownformof thensp7+8complexcaninteractwithnsp12-strepandincrease theprocessivityofitsprimer-dependentpolymeraseactivitysev- eralordersofmagnitude(Subissietal.,2014b).Inthepresenceof Mg2+,thensp7+8+12tripartitecomplexwasalsoabletoinitiate RNAsynthesisdenovoona339-ntlongfragmentrepresentingthe 3-terminalpartoftheviralgenome(Subissietal.,2014b).Interest- ingly,theefficiencyofthepolymerasereactionwasimprovedby creatingaphysicallinkbetweenthensp7andnsp8subunitsinthe formofa6-or12-aminoacidlinker(nsp7L8),whichsuggeststhat nsp7+8complexformationonthetemplateisarate-limitingstep (Subissietal.,2014b).Subissietal.alsofoundthatthensp7L8+12- strepcomplexhadahigherRNAbindingaffinitythannsp7L8or nsp12-strepalone,ofwhichthelatterwasunabletobindtotheRNA template(Subissietal.,2014b).Unfortunately,nodirectcompari- sonwasmadebetweennsp7+8andnsp7L8,soitisunclearwhether thensp7+8+12-strepcomplexbehavesinasimilarfashion.

Mutagenesis of SARS-CoV nsp8 within the context of the nsp7+8+12complexresultedintheidentificationofresiduesthat areimportantfortheinteractionbetweennsp8andnsp12(nsp8 P183andnsp8R190).Asinstudiesonnsp8aloneandthensp7+8 complex,residueK58,whichisfullyconservedamongmembersof theCoronaviridaefamily,wasfoundtobeinvolvedinthebind- ing of the RNA template. In line with their observed roles in thecomplex,each ofthesethree mutationsalsoinactivatedthe primer-dependentanddenovoactivityofthensp7+8+12complex invitroandresultedinanon-viablevirusphenotypewhenreverse- engineered into the SARS-CoV genome (Subissi et al., 2014b).

By contrasttotheabovethree mutations, only limitedcorrela- tionbetweenthebiochemicalandthereversegeneticsdatawas observedforothermutationsinnsp8,suggestingthattheroleof nsp7andnsp8intheRTCismorecomplexthantheinvitroexper- imentswillhaveusbelieve.Nsp8mutantsD52AorK82A,which werefoundtocripplethensp7+8activityinvitro(teVelthuisetal., 2012)andviralRNAsynthesisincellculture(Subissietal.,2014b), didnotaffectnsp7+8+12complexformationortheprimerexten- sionactivityofthensp7+8+12complex.ThissuggeststhattheRdRp activityofnsp7+8asobservedbyteVelthuisetal.isnotinvolved intheprimer-extensionactivityofthensp7+8+12complex,which providessupportforthehypothesisthatnsp7+8actsasaproces- sivityfactor.However,theabilityofnsp8mutantsD52AandD82A tosupportdenovoinitiationonthe3terminusoftheviralgenome inthecontextofthensp7+8+12complexhasnotyetbeentested.

MutagenesisofD760inmotifCofSARS-CoVnsp12RdRpdomain (Fig.2C)resultedinaninactivecomplexthatshowednoprimer- extensionand,rathersurprisingly,nodenovoinitiationactivityon the3 terminusoftheviralgenome.Inlightofthepreviousbio- chemicalstudiesonnsp8andnsp12,itisdifficulttointerpretthis result.Ontheonehand,itsuggeststhatonlynsp12canactively catalyseRNAsynthesis,whilensp7andnsp8aremerelypresentas co-factors.Ontheotherhand,itispresentlyjustaslikelythatnsp12 isadominantfactorinthensp7+8+12complex,whichregulatesthe primaseandelongationactivitiesofnsp8,orthatnsp7+8+12isstill anincompleteorincorrectlyassembledcomplex.Inturn,thelack ofoneormoreadditional(proteinorRNA)factorsmaypreventus fromseeingconsistencybetweenthebiochemicalresponsesofthe polymerasecomplexinvitroandthefunctionalityoftheRTCinthe infectedcell.Clearly,boththeroleofnsp8(primaseand/orproces- sivityfactor?)andtheinitiationmechanismemployedbynsp12 requirefurtherstudy.

(8)

Fig.4.ThestructureoftheCoVnsp7-8complex.A)ThehollowhexadecamericringoftheSARS-CoVnsp7-8complexhasapositivelychargedchannel(bluesurfaceshading) thatislikelyimportantforRNAbinding.Theoutsideofthehexadecamerispredominantlynegativelycharged(redsurfaceshading).B)TheSARS-CoVnsp8crystalstructure (pdb2AHM)resemblesa‘golfclub’withalongstickattheN-terminus(N)andahead-likeshapeattheC-terminus(C).Thensp8structurecanadopttwoconformations, hereshadedgreen(nsp8-I)andorange(nsp8-II).C)Inthehexadecamereachofthetwonsp8structuresispresentfourtimesandcomplementedbyeightnsp7subunitsthat actasmortar.Twoorientationsofthensp7subunitareindicated(orangeandgreen).D)TheFCOVheterotrimericnsp7-8complex(pdb3ub0)consistsofonensp8(shaded green)subunitandtwonsp7subunits(orangeandblue).Thensp8subunitadoptsannsp8-Iconformation.

7. TheelusiveinvitroRNApolymeraseactivityofAVnsp9

Toourknowledge,attemptstoachieveinvitroactivityofan AV RdRp haveonly beenmade usingEAV nsp9.By contrastto SARS-CoVnsp12,recombinant EAVnsp9witha C-terminalHis- tagcouldbestablyexpressedtohighlevelsinE.coliandreadily

purified(Beerensetal.,2007;Lehmannetal.,2016).Beerensetal.

reportedthatrecombinantEAVnsp9iscapableofdenovoinitia- tionofRNAsynthesisonhomopolymerictemplates(poly(C)and poly(U)).However,noactivitywasfoundwhenanRNAtemplate representingthe3-terminalpartoftheviralgenomewasprovided orwhenaprimerwashybridizedtothetemplate(Beerensetal.,

(9)

2007).Onthehomopolymerictemplates,RNAsynthesisrequired thepresenceofMn2+,butitcouldbestimulatedbyMg2+ifMn2+

waspresent.Althoughnoactivesitemutantwastestedintheinitial EAVnsp9study,thedenovoinitiationonthepoly(U)templatewas repeatedinasubsequentstudywithawild-type(wt)EAVnsp9 andD445AmotifA mutant.In theseassays,theD445Amutant showedasignificantlyreducedactivitycomparedtothewtcon- trol(teVelthuisetal.,2010b).Unfortunately,morerecentefforts usingthe sameT7-driven expression construct failedto repro- ducetheseobservationsregardingtheactivityofnsp9(Lehmann et al.,2016).Sufficient C-terminally His6-taggednsp9 couldbe purified,but afterextensivemutationof theconservedmotif A andCaspartatestheproteinpreparationscontinuedtoshowde novoandprimer-dependentpolymeraseactivitiesonbothRNAand DNAtemplates(Lehmannetal.,2016).Itwasthusconcludedthat contaminatingtraceamountsofT7RNApolymerasemayhavepro- ducedtheseresults.Toalleviatethisproblem,nsp9wasexpressed inaT7polymerase-freeE.colisystemthathadpreviouslybeenused toexpressaC-terminallytaggednsp12withanativeN-terminus (te Velthuis etal.,2010a).Unfortunately, this recombinantver- sionofnsp9showednodenovopolymeraseactivity,whilethe primer-dependentandterminaltransferaseactivitieswereinsen- sitivetoreplacementoftheconservedmotifAandCaspartates (Lehmannetal.,2016).Itmustthereforebeconcludedthat,asfor SARS-CoVnsp12,theactivityofnsp9likelyisveryweakandsen- sitivetothepurificationorassayconditions,andthat–byanalogy withCoVnsp12–otherco-factorsmayberequiredtostimulateits activity.However,preliminaryexperimentsinwhichRdRpassays withrecombinantEAVnsp9weresupplementedwithseveralsmall productsfromthensp6-8regionof pp1afailedtoactivateRNA synthesisinvitro(Lehmannetal.,2016).

8. Thenidovirus-specificdomainattheN-terminusofthe RdRp-containingsubunit:NiRAN

Ithaslongbeenrecognizedthatthenidovirusreplicasesubunit thatharbourstheRdRpdomainhasanunusuallylargeN-terminal extensionthatdoesnotseemtobepartoftheRdRpdomainitself.

Noviralorcellularhomologueshavebeenidentifiedthusfar,and evenwithintheorderNidoviralesthelevelofconservationofthis domainisverylimited,whichlonghamperedattemptstodeducea possiblefunctionand/oractivitybyusingbioinformaticstools.Ina recentstudythatcombinedextensivebioinformaticsanalysis,bio- chemicalstudiesandreversegenetics,anucleotidylationactivity wasassignedtothisdomain,whichwasnamedNiRAN(Lehmann etal.,2015a).Thedomainisonlypresentinnidovirusesand,in additiontoauniquezinc-bindingdomain(ZBD)thatisassociated withthenidovirushelicase(Dengetal.,2014),isconsideredto beaseconduniversalgeneticmarkerforthisvirusorder,andthe firstwithanenzymaticactivity.Despitelimitedsequenceconser- vationandsignificantsizedifferences,from∼220residuesinAV toover300residuesinCoV,threemotifswereidentified:AN,BN

andCN(thesubscriptNfortheNiRANdomainwasaddedtodis- criminatethemfromtheconservedRdRpdomainmotifs).Together thesecontainonlysevenresiduesthat areabsolutelyconserved amongnidoviruses(Fig.2B).Thereisamarkedsizedifferenceinthe spacingbetweenNiRANdomainmotifsBNandCNwhencompar- ingAVwithallothernidoviruslineages:thesemotifsareadjacent inAV,butseparatedby40–60residuesinothernidoviruses.The C-terminalborderofthedomaincouldnotbedefinedwithcer- taintyleavingroomforthepresenceofathirddomainof∼50or

∼175aminoacidsforAVandCoV,respectively,thatmayconnect theNiRANandRdRpdomains(Lehmannetal.,2015a).

NucleotidylationactivitywasshownforrecombinantEAVnsp9, expressedinandpurifiedfromE.coli.Incubationoftheproteinwith

[␣-32P]GTP or [␣-32P]UTP, but not [␥-32P]-labelled nucleotides, resultedin labellingof nsp9itself, whichwasattributedtothe covalentbindingof monophosphatenucleotideswhilereleasing pyrophosphate(Lehmannetal.,2015a).ThisreactionwasMn2+- dependentanddisplayeda5-foldstrongeraffinityforUTPoverGTP asasubstrate.Mostlikelyaphosphoamidebondisformedbetween thenucleotideandaconservedlysineinmotifAN(K54inEAVnsp9).

MutagenesisofconservedresiduesinmotifsAN,BNorCNresulted in lessthan 10% invitroactivity forall but theK106Amutant, whichconfirmedtheassociationofthenucleotidylationactivity withtheN-terminaldomainofnsp9.AD445Amutationinmotif Aofthensp9RdRpdomainonlymoderatelyaffectednucleotidyla- tion,strengtheningthenotionthatthisactivityisassociatedwith theNiRANdomain.For both EAV nsp9andSARS-CoV nsp12,it wasshownthattheNiRANdomainisessentialforviralreplica- tion:reverseengineeredmutantswithsubstitutionsinthemotifs oftheNiRANdomainwereeithernon-viableorcrippled,inwhich casetheymostlyrevertedbacktothewtsequence(Lehmannetal., 2015a).

Despiteconvincingevidenceforthenucleotidylationactivityof EAVnsp9,thisactivityisyettobedemonstratedforCoVsandother membersoftheorderNidovirales.Inaddition,theroleofthisactiv- ityinthenidovirusreplicativecycleremainsunknown.Givenits covalentlinkagetotheRdRpdomain,ithasbeensuggestedthat NiRANisimportantforRNAsynthesis,inanalogytotheN-terminal domainof theRdRpof double-strandedRNAviruses(Taoetal., 2002;Xuetal.,2003).ItmayalsoaddtothestabilityoftheNiRAN andRdRp-containingreplicasesubunit,assuggestedbytheinabil- itytoexpressEAVnsp9whentheN-terminaldomainisdeleted (Beerensetal.,2007).WhileanRdRpmutationmoderatelyinflu- encedNiRANnucleotidylation,itwasunfortunatelynotpossibleto studytheeffectofNiRANmutationsonAVRNApolymeraseactiv- ity,asarobustinvitroassayremainstobedeveloped(seeabove).

Yet,giventheintegrationofthetwodomainsinasinglereplicase subunit,structuraland/orfunctionalcrosstalkbetweentheNiRAN andtheRdRpdomainisalikelyscenario.

Sofar, three possible functionshave been proposedfor the nucleotidylationactivityoftheNiRANdomaininnidoviralrepli- cation(Lehmannetal.,2015a).Thefirstisaroleintheligationof yettobeidentifiedRNAmoleculesbasedonthedomain’sabilityto covalentlybindnucleotidemonophosphates,oneofthestepsofthe universalligationmechanism(ShumanandLima,2004).Asecondis apossibleroleinthe5cappingofmRNAs,whileathirdpossibility isthattheNiRANdomainisinvolvedinfacilitatingprotein-primed RNAsynthesis,similartotheuseofauridylatedVpGprimerby picornaviruses(Pauletal.,2000).Eachofthesehypotheseshasbeen discussedinmoredetailbyLehmannetal.(2015a),butsinceall threerequireadditionalassumptionsaboutnidovirusRNAsynthe- sistheyarestillhighlyspeculative.Moreover,basedontheextentof divergentevolutionwithintheNiRANdomainitcannotbeexcluded thattheenzymeperformsdifferentrolesindifferentnidoviruses (Lehmannetal.,2015a).

9. Faithfulnidovirusreplicationandtranscriptioninvitro andtheinvolvementofotherco-factors

ThecoreofthenidovirusRTClikelyconsistsoftheRdRpdomain- containingnspandotherviralRNA-bindingproteins,likensp7-10 andnsp13-16inthecaseofCoVs.Intheinfectedcell,thesesub- unitsassembleintoamembrane-boundcomplexthatisassociated withanetworkofmodifiedhostmembranes,presumablyderived fromtheendoplasmicreticulum(reviewedin(Hagemeijeretal., 2012;Neumanetal.,2014;vanderHoevenetal.,2016)).Analter- nativeapproachtoassaynidovirusRNAsynthesisinvitro,without theuseofpurifiedrecombinantproteins,isbasedontheisolation

(10)

ofthemembrane-associatedRTCsfrominfectedcells(vanHemert etal.,2008a,2008b).ToprepareRTCsforthisinvitroRNAsynthesis assay(IVRA),infectedcellsaremechanicallydisruptedandfrac- tionatedbycentrifugation.Lowspeedcentrifugationstepsyield apost-nuclearsupernatant(PNS),fromwhichnuclei,largedebris andremainingintactcellshavebeenremoved.Thesynthesisof SARS-CoVandEAVgenomeandsgmRNAscanbereadilyrepro- ducedusingsuchaPNSsupplementedwith[␣-32P]-CTP,Mg2+and anATP-generatingsystem.

Additional fractionation of the PNS, during which the RTC- containingmembraneswereseparatedfromthecytosolfraction byahigh-forcecentrifugationstep,revealedthatasolublehostfac- torisrequiredforCoVandAVinvitroRNAsynthesis(vanHemert etal.,2008a,b).Furthercharacterizationofthishostfactorusing EAVRTCsshowedthatithasamassrangingfrom59to70kDa,that itisconservedamonganimals,butnotlowereukaryotes,andthat itcanbeaddedtoinactiveRTCpreparationsintheformofacytoso- licfractionthatwasextractedfromuninfectedcells.Presently,the exactnatureofthishostfactorremainsunknown(vanHemertetal., 2008a)anditmayalsonotbetheonlyhostfactor requiredfor nidovirusRNAsynthesis.Protein-protein(Pfefferleetal.,2011)and protein-RNAinteractionstudies,focusingonthe5and3termini ofthegenomeasputativetargets(Galanetal.,2009;Spagnoloand Hogue,2000;Tanetal.,2012),havesuggestedthatanumberofhost factors,suchaspoly(A)-bindingprotein(PABP),arecriticalcompo- nentsoftheCoVRTCaswell.Similarly,yeast2-hybrid(Y2H)and mammalian2-hybrid(M2H)experiments(Imbertetal.,2008;Pan etal.,2008;Prenticeetal.,2004;vonBrunnetal.,2007),pulldown assaysorco-purifications(e.g.(Brockwayetal.,2003;Imbertetal., 2008;Subissietal.,2014b;Suttonetal.,2004;vonBrunnetal., 2007))andco-crystallizationstudies(e.g.(Decrolyetal.,2011;Ma etal.,2015;Zhaietal.,2005))haveimplicatedseveraladditional CoVnspsandthenucleocapsid(N)proteinaspotentialviralco- factorsoftheRNApolymerase.FortheAVPRRSV,usingdifferent technicalapproaches,multiplehostproteinsthatappeartointer- actwithnsp9wereidentified,althoughitremainstobestudied whethertheydirectlybindtotheRdRpdomainoftheproteinand affectitsfunction(s)inRNAsynthesis(Dongetal.,2014;Lietal., 2014a;Liuetal.,2016).Sincetheexactroleofthese(presumed) hostandviralco-factorsofthenidovirusRNApolymeraseremains tobeexplored,wewillnowfocusontwoproteinswhoserolein nidovirusRNAsynthesishasbeendefinedinmoredetail:AVnsp1 andCoVnsp14.

10. MakingtheRdRpswitchfromcontinuousinto discontinuousmode:AVnsp1

Ininfectedcells, thenidoviral genomeandsgmRNAsareall producedwithaspecificrelativeabundanceanditispoorlyunder- stoodhowtheRNA polymeraseiscontrolledtomaintainthese ratios.Asoutlinedintheintroduction,eachsgmRNAisproduced fromasubgenome-lengthcomplement(Fig.5),whichderivesfrom aprocessofdiscontinuousminusstrandRNAsynthesis(Sawicki and Sawicki, 1995; Sethna et al., 1989). Whereas continuous minusstrandsynthesisproduces thefull-lengthtemplate(anti- genome)for genomereplication,discontinuous minus-stranded RNAsynthesisyieldsanestedsetofshortertemplatesforsgmRNA production(reviewedin(Pasternaketal.,2006;Sawickietal.,2007;

Solaetal.,2011).In mostnidovirus families,includingAVsand CoVs,thesgmRNAsconsistofsequencesthatarenon-contiguous intheviralgenome:acommon5‘leader’sequenceisattachedto different‘body’segmentsrepresentinga variablepartofthe3- proximalregionofthegenome (Fig.1A).The joiningofleader- andbody-encodingsequencesoccursduringdiscontinuousminus strandRNAsynthesis(Fig.5).Followinginitiationofminusstrand

RNAsynthesis,whichinvariablyoccursatthegenomic3 end,a uniquemechanism of‘polymerasejumping’ formsthebasis for leader-to-bodyjoining.Thisstepappearstobeprimarilydirected byTRSs,theshortconservedsequencemotifsthatarepresentin thegenomictemplatebothatthe3endoftheleadersequenceand atthe5endofeachofthesgmRNAbodies.Whenminusstrand RNAsynthesishasbeenattenuatedatabodyTRS,thebodyTRS complement,whichformsthe3endofthenascentminusstrand, canbasepairwiththegenomicleaderTRStodirectre-initiation of RNA synthesis. Subsequently, the subgenome-length minus strandiscompletedbyadditionofthecomplementofthegenomic leadersequence.Theimportanceof(−)TRS-(+)TRSbasepairingwas probedand confirmedextensively bysite-directedmutagenesis andreversegeneticsforbothAVsandCoVs(reviewedin(Pasternak etal.,2006;Sawickietal.,2007;Solaetal.,2011).Inadditionto TRSbasepairing,higher-orderRNAstructurelikelyco-determines therelativeefficiencyofdifferentTRSsinnidovirustranscription, whichmechanisticallyresemblestheprocessofcopy-choiceRNA recombination,asitisthoughttocommonlyoccuramong+RNA viruses(Pasternaketal.,2001;Solaetal.,2015;Yountetal.,2006).

The above strongly suggests that nidovirus replication and transcription are competing for common factors, like the RNA polymerase,and that thebalancebetweencontinuous and dis- continuous minus strandRNA synthesis must be regulated. In additiontoregulatoryRNAsignalsliketheTRSs,specificreplicase subunitsmayinteractwiththeRNApolymerasetoinfluenceits behaviouronthegenomictemplate.Solidsupportforthishypoth- esis wasobtainedin theEAV model, inparticular for thensp1

“transcriptionfactor”andthensp10helicase.Specificmutations inthesetwosubunitscan(nearly)completelyinactivatetranscrip- tion (Nedialkova et al., 2010; Seybert et al.,2005; Tijms etal., 2001; vanDintenet al., 1997), withsignificantupregulationof genomereplicationbeingaprominentandstrikingside-effect.EAV nsp1wasconcludedtocontrolthelevelsatwhichthegenome- lengthand differentsubgenome-lengthminusstrandtemplates accumulateintheinfected cell(Nedialkovaetal.,2010).TheN- terminalzincfingerdomainofnsp1isimportantforthisfunction, butalsomutationsinothernsp1domainscanstronglyinfluence transcription (Nedialkovaet al.,2010; Tijmset al.,2001).Nsp1 mutagenesisandpseudorevertantanalysisprovidedgeneticevi- dencethatabalancedratiobetweenreplicationandtranscription, andalsobetweenindividualsgmRNAspecies,isvitaltothevirus (Nedialkovaetal.,2010).However,itremainsunclearhowAVnsp1 interactswithe.g.thenetworkofTRSsignals,theviralRNApoly- merase(AVnsp9),orthehelicase(AVnsp10),whichhasalsobeen implicatedintranscriptionalcontrol(Dengetal.,2014;Lehmann etal.,2015b).Theproteincoulde.g.modulateRTCstallingatbody TRSs,nascentminusstrandtransfertotheleaderTRSorreinitia- tionofRNAsynthesisfollowing(−)TRS-(+)TRSbasepairing.Studies aimingtodetectAVnsp1-nsp9ornsp1-nsp10interactionshavenot beensuccessfulsofar,butitisconceivablethatsuchcomplexes areshort-lived.Clearly,arobustinvitroAVRdRpassaycouldbea ground-breakingtooltoexploreattenuationduringminus-strand RNAsynthesis,TRSbasepairingandtheroleofregulatoryprotein factorslikeAVnsp1andnsp10.

ThecompositionoftheRNA-synthesizingcomplexesthatother nidovirusesemployforreplicationandtranscriptionhasnotyet beenstudiedingreatdetail.Theirmuchlargergenomesizethan theAVgenomeclearlyprovidesamplegroundstospeculatethat theymayencodemechanismsandfactorsthatarelackinginthe AVsystem.Still,thusfaronlyafew studieshave suggestedthe existenceofCoV“transcriptionfactors”withanimpactresembling thatofAVnsp1.Apointmutationinthehelicase(nsp13)oftheCoV infectiousbronchitisviruswasreportedtocauseaspecificblockin transcription(Fangetal.,2007),butthisobservationhasnotbeen followedupinmoredetailforanyCoVthusfar.Morerecently,N

Referenties

GERELATEERDE DOCUMENTEN

All +RNA viruses hijack intracellular membranes from host cell organelles and studies on different +RNA viruses have implicated different membrane donors in the formation of the

Specific +RNA virus replicase subunits are targeted to the membranes of particular cell organelles that are subsequently modified into characteristic structures with

Our data on the effect of BFA treatment on SARS-CoV protein synthesis (Fig. 1C and D) and in vitro RTC activity (Fig. 2), the lack of colocalization between replicase

Our study of RNA syn- thesis and RVN development early in infection revealed that coronavirus RTCs (i) are stable even when viral protein synthesis is stalled (ii) remain capable

Finally, as discussed previously for coronaviruses [198] and now enhanced by the strikingly similar results obtained for EAV DMVs in this study: it is tempting to propose that

For EAV, it was shown that the first two transmembrane replicase subunits, nsp2 and nsp3, are capable of inducing characteristic double membranes and DMVs when expressed together

(2006) Ultra- structure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex.. Stertz S, Reichelt M, Spiegel M, Kuri

As a novel approach to visualize and quantify the RNA content of viral replication structures, we explored electron spectroscopic imag- ing of DMVs, which