• No results found

University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp. Pratama, Akbar Adjie"

Copied!
36
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The ecology and evolution of bacteriophages of mycosphere-inhabiting Paraburkholderia spp.

Pratama, Akbar Adjie

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Pratama, A. A. (2018). The ecology and evolution of bacteriophages of mycosphere-inhabiting

Paraburkholderia spp. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

A

Abby, S. S., and Rocha, E. P. C. (2012). The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8. doi:10.1371/journal.pgen.1002983.

Achouak, W., Christen, R., Barakat, M., Marte, M., and Heulinl, T. (1999). Burkholderia caribensis sp. now, an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int. J. Syst. Bacteriol. 49, 787–794.

Adams, M. (1959). Bacteriophages. , ed. A. D. Hershey London: Interscience Publishers.

Adriaenssens, E. M., and Cowan, D. A. (2014). Using signature genes as tools to assess environmental viral ecology and diversity. Appl. Environ. Microbiol. 80, 4470–4480. doi:10.1128/AEM.00878-14.

Adriaenssens, E. M., Kramer, R., Van Goethem, M. W., Makhalanyane, T. P., Hogg, I., and Cowan, D. A. (2017). Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83. doi:10.1186/s40168-017-0301-7.

Adriaenssens, E. M., van Vaerenbergh, J., Vandenheuvel, D., Dunon, V., Ceyssens, P. J., de Proft, M., et al. (2012). T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by “Dickeya solani.” PLoS One 7. doi:10.1371/journal.pone.0033227. Adriaenssens, E. M., Van Zyl, L., De Maayer, P., Rubagotti, E., Rybicki, E., Tuffin, M., et al. (2015).

Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ. Microbiol. 17, 480–495. doi:10.1111/1462-2920.12528.

Akhter, S., Aziz, R. K., and Edwards, R. A. (2012). PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity-and composition-based strategies. Nucleic

Acids Res. 40, 1–13. doi:10.1093/nar/gks406.

Almendros, C., Guzmán, N. M., García-Martínez, J., and Mojica, F. J. M. (2016). Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR–Cas I-F systems. Nat. Microbiol. 1, 16081. doi:10.1038/nmicrobiol.2016.81.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic

Acids Res. 25, 3389–3402. doi:10.1093/nar/25.17.3389.

Anantharam, V., Allison, M. J., and Maloney, P. C. (1989). Oxalate:formate exchange. the basis for energy coupling in oxalobacter. J. Biol. Chem. 264, 7244–7250.

Ashelford, K. E., Day, M. J., and Fry, J. C. (2003). Elevated abundance of bacterophage infecting bactera in soil. Appl. Environ. Microbiol. 69, 285–289. doi:10.1128/AEM.69.1.285-289.2003.

B

Balbuena, J. A., Míguez-Lozano, R., and Blasco-Costa, I. (2013). PACo: a novel procrustes application to cophylogenetic analysis. PLoS One 8. doi:10.1371/journal.pone.0061048. Baltrus, D. A. (2013). Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–

495. doi:10.1016/j.tree.2013.04.002.

Barrett, E. L., and Riggs, D. L. (1982). Evidence for a second nitrate reductase-activity that is distinct from the respiratory enzyme in Salmonella-Typhimurium. J. Bacteriol. 150, 563– 571.

(3)

Bautz, E. K. F., Bautz, F. A., and Dunn, J. J. (1969). E. coli σ factor: a positive control element in phage T4 development. Nature 223, 1022–1024. doi:10.1038/224488a0.

Bensing, B. A., Siboo, I. R., and Sullam, P. M. (2001). Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage.

Infect. Immun. 69, 6186–6192. doi:10.1128/IAI.69.10.6186-6192.2001.

Bernhardt, T. G., Roof, W. D., and Young, R. (2000). Genetic evidence that the bacteriophage ΦX174 lysis protein inhibits cell wall synthesis. Proc. Natl. Acad. Sci. U. S. A. 97, 4297–4302. doi:10.1073/pnas.97.8.4297.

Beukes, C. W., Palmer, M., Manyaka, P., Chan, W. Y., Avontuur, J. R., van Zyl, E., et al. (2017). Genome data provides high support for generic boundaries in Burkholderia sensu lato.

Front. Microbiol. 8, 1–11. doi:10.3389/fmicb.2017.01154.

Blaud, A., Lerch, T. Z., Phoenix, G. K., and Osborn, A. M. (2015). Arctic soil microbial diversity in a changing world. Res. Microbiol. 166, 796–813. doi:10.1016/j.resmic.2015.07.013. Bloch, S., Nejman-Faleńczyk, B., Topka, G., Dydecka, A., Licznerska, K., Narajczyk, M., et al.

(2015). UV-sensitivity of shiga toxin-converting bacteriophage virions Φ24B, 933W, P22, P27 and P32. Toxins (Basel). 7, 3727–3739. doi:10.3390/toxins7093727.

Bobay, L. M., Rocha, E. P. C., and Touchon, M. (2013). The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751. doi:10.1093/molbev/mss279.

Bobay, L.-M., Touchon, M., and Rocha, E. P. C. (2014). Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. 111, 12127–12132. doi:10.1073/ pnas.1405336111.

Boersma, F. G. H., Otten, R., Warmink, J. A., Nazir, R., and van Elsas, J. D. (2010). Selection of

Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released

compounds. Soil Biol. Biochem. 42, 2137–2145. doi:10.1016/j.soilbio.2010.08.009.

Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L., and Sullivan, M. B. (2017). iVirus: Facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14. doi:10.1038/ismej.2016.89.

Bondy-Denomy, J., Qian, J., Westra, E. R., Buckling, A., Guttman, D. S., Davidson, A. R., et al. (2016). Prophages mediate defense against phage infection through diverse mechanisms.

ISME J. 22. doi:10.1038/ismej.2016.79.

Boto, L. (2010). Horizontal gene transfer in evolution: facts and challenges. Proc. R. Soc. B Biol.

Sci. 277, 819–827. doi:10.1098/rspb.2009.1679.

Brabcová, V., Nováková, M., Davidová, A., and Baldrian, P. (2016). Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 210, 1369–1381. doi:10.1111/nph.13849.

Breitbart, M. (2012). Marine viruses: Truth or dare. Ann. Rev. Mar. Sci. 4, 425–448. doi:10.1146/ annurev-marine-120709-142805.

Breitbart, M., and Rohwer, F. (2005). Here a virus, there a virus, everywhere the same virus?

Trends Microbiol. 13, 278–284. doi:10.1016/j.tim.2005.04.003.

Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., et al. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365. doi:10.1038/ srep08365.

(4)

Brockhurst, M. A., Morgan, A. D., Fenton, A., and Buckling, A. (2007). Experimental coevolution with bacteria and phage: The Pseudomonas fluorescens-Φ2 model system. Infect. Genet.

Evol. 7, 547–552. doi:10.1016/j.meegid.2007.01.005.

Brown, S. P., Le Chat, L., De Paepe, M., and Taddei, F. (2006). Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr. Biol. 16, 2048– 2052. doi:10.1016/j.cub.2006.08.089.

Brum, J. R., and Sullivan, M. B. (2015). Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159. doi:10.1038/nrmicro3404. Brüssow, H., Canchaya, C., Hardt, W., and Bru, H. (2004). Phages and the evolution of bacterial

pathogens : from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol.

Rev. 68, 560–602. doi:10.1128/MMBR.68.3.560.

Burns, N., James, C. E., and Harrison, E. (2015). Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo. Evol. Appl. 8, 346–351. doi:10.1111/eva.12243.

Busch, A., Kunert, G., Heckel, D. G., and Pauchet, Y. (2017). Evolution and functional characterization of CAZymes belonging to subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles. PLoS One 12, 1–23. doi:10.1371/journal. pone.0184305.

Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O’Mahony, J., and Coffey, A. (2017). Bacteriophages and bacterial plant diseases. Front. Microbiol. 8, 1–15. doi:10.3389/fmicb.2017.00034.

C

Campbell, A. (1961). Conditions for the existence of bacteriophage. Evolution. 15, 153–165. Canchaya, C., Fournous, G., and Brüssow, H. (2004). The impact of prophages on bacterial

chromosomes. Mol. Microbiol. 53, 9–18. doi:10.1111/j.1365-2958.2004.04113.x.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. doi:10.1038/ismej.2012.8.

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. doi:10.1073/pnas.1000080107.

Carrolo, M., Frias, M. J., Pinto, F. R., Melo-Cristino, J., and Ramirez, M. (2010). Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus

pneumoniae. PLoS One 5. doi:10.1371/journal.pone.0015678.

Cascales, E., Buchanan, S. K., Duche, D., Kleanthous, C., Lloubes, R., Postle, K., et al. (2007). Colicin Biology. Microbiol. Mol. Biol. Rev. 71, 158–229. doi:10.1128/MMBR.00036-06. Casjens, S. (2003). Prophages and bacterial genomics: what have we learned so far? Mol.

Microbiol. 49, 277–300. doi:10.1046/j.1365-2958.2003.03580.x.

Clokie, M. R. J., Millard, A. D., Letarov, A. V., and Heaphy, S. (2011). Phages in nature. Bacteriophage 1, 31–45. doi:10.4161/bact.1.1.14942.

Coleman, D., Knights, J., Russell, R., Shanley, D., Birkbeck, T. H., Dougan, G., et al. (1991). Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome. Mol. Microbiol. 5, 933–939. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1830359.

(5)

Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C. L., et al. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7. doi:10.1371/journal.ppat.1001264. Comeau, A. M., Bertrand, C., Letarov, A., Tétart, F., and Krisch, H. M. (2007). Modular architecture

of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362, 384–396. doi:10.1016/j.virol.2006.12.031.

Compant, S., Nowak, J., Coenye, T., Clement, C., and Ait Barka, E. (2008). Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607– 626. doi:10.1111/j.1574-6976.2008.00113.x.

Conow, C., Fielder, D., Ovadia, Y., and Libeskind-Hadas, R. (2010). Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, 16. doi:10.1186/1748-7188-5-16.

Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., et al. (2015). Secretion systems in gram-negative bacteria: structural and mechanistic insights.

Nat. Rev. Microbiol. 13, 343–359. doi:10.1038/nrmicro3456.

Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science (80-. ). 284, 1318–1322.

Culley, A. I., Lang, A. S., and Suttle, C. A. (2006). Metagenomic analysis of coastal RNA virus communities. Sci. 312, 1795–1798. doi:10.1126/science.1127404.

D

D’Herelle, M. F. (1917). Sur un microbe invisible antagoniste des bacilles dysentérique. Acad

Sci Paris 165, 373–375.

Darling, A. E., Mau, B., and Perna, N. T. (2010). Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5. doi:10.1371/journal.pone.0011147. Day, A., Ahn, J., Fang, X., and Salmond, G. P. C. (2017). Environmental bacteriophages of the

emerging Enterobacterial phytopathogen, Dickeya solani, show genomic conservation and capacity for horizontal gene transfer between their bacterial hosts. Front. Microbiol. 8, 1654. doi:10.3389/fmicb.2017.01654.

De Carvalho, M. O., and Loreto, E. L. S. (2012). Methods for detection of horizontal transfer of transposable elements in complete genomes. Genet. Mol. Biol. 35, 1078–1084. doi:10.1590/ S1415-47572012000600024.

De Jong, I. G., Haccou, P., and Kuipers, O. P. (2011). Bet hedging or not? a guide to proper classification of microbial survival strategies. BioEssays 33, 215–223. doi:10.1002/ bies.201000127.

Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta - Mol.

Cell Res. 1694, 149–161. doi:10.1016/j.bbamcr.2004.05.001.

Dempsey, R. M., Carroll, D., Kong, H., Higgins, L., Keane, C. T., and Coleman, D. C. (2005). Sau421, a Bcgl-like restriction-modification system encoded by the Staphylococcus

aureus quandruple-converting phage Φ42. Microbiology 151, 1301–1311. doi:10.1099/

mic.0.27646-0.

Depoorter, E., Bull, M. J., Peeters, C., Coenye, T., Vandamme, P., and Mahenthiralingam, E. (2016). Burkholderia: an update on taxonomy and biotechnological potential as antibiotic

(6)

Dini-Andreote, F., de Cássia Pereira e Silva, M., Triadó-Margarit, X., Casamayor, E. O., van Elsas, J. D., and Salles, J. F. (2014). Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J. 8, 1989–2001. doi:10.1038/ismej.2014.54.

Dinsdale, E. A., Edwards, R. A., Hall, D., Angly, F., Breitbart, M., Brulc, J. M., et al. (2008). Functional metagenomic profiling of nine biomes. Nature 455, 830–830. doi:10.1038/nature07346. Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., et al. (2018). Systematic

discovery of antiphage defense systems in the microbial pangenome. Science 359, 0–12. doi:10.1126/science.aar4120.

Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatine, A., Keren, M., et al. (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. Science (80-. ). 4120. Duhaime, M. B., Deng, L., Poulos, B. T., and Sullivan, M. B. (2012). Towards quantitative

metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ. Microbiol. 14, 2526–2537. doi:10.1111/j.1462-2920.2012.02791.x.

Dunlap, D. S., Ng, T. F. F., Rosario, K., Barbosa, J. G., Greco, A. M., Breitbart, M., et al. (2013). Molecular and microscopic evidence of viruses in marine copepods. Proc. Natl. Acad. Sci. 110, 1375–1380. doi:10.1073/pnas.1216595110.

E

Edelman, D. C., and Barletta, J. (2003). Real-time PCR provides improved detection and titer determination of bacteriophage. Biotechniques 35, 368–375.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi:10.1093/nar/gkh340.

Edlin, G., Leo Lin, A., and Bitner, R. (1977). Reproductive fitness of P1, P2, and Mu lysogens of

Escherichia coli. J. Virol. 21, 560–564. doi:10.1007/978-1-59745-501-5_1.

Edlin, G., Lin, L., and Kudrna, R. (1975). λ Lysogens of E. coli reproduce more rapidly than non-lysogens. Nature 255, 735–737.

Edwards, R. A., McNair, K., Faust, K., Raes, J., and Dutilh, B. E. (2016). Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272. doi:10.1093/ femsre/fuv048.

Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., Peleg, Y., et al. (2017). Communication between viruses guides lysis-lysogeny decisions. Nature 541, 488–493. doi:10.1038/nature21049.

Estrada-De Los Santos, P., Vinuesa, P., MartInez-Aguilar, L., Hirsch, A. M., and Caballero-Mellado, J. (2013). Phylogenetic analysis of Burkholderia species by multilocus sequence analysis.

Curr. Microbiol. 67, 51–60. doi:10.1007/s00284-013-0330-9.

F

Faruque, S. M., Kamruzzaman, M., Nandi, R. K., Ghosh, a N., Nair, G. B., Mekalanos, J. J., et al. (2002). RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTX? Microbiology 70, 163–170. doi:10.1128/ IAI.70.1.163.

(7)

Fellous, S., and Salvaudon, L. (2009). How can your parasites become your allies? Trends

Parasitol. 25, 62–66. doi:10.1016/j.pt.2008.11.010.

Field, D., Garrity, G., Gray, T., Morrison, N., Selengut, J., Sterk, P., et al. (2008). The minimum information about a genome sequences (MIGS) specification. Nat Biotechnol. 26, 541–547. doi:10.1038/1360.

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590. doi:10.1038/nrmicro.2017.87.

Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., et al. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

Proc. Natl. Acad. Sci. 109, 21390–21395. doi:10.1073/pnas.1215210110.

Fitzpatrick, D. A., Logue, M. E., and Butler, G. (2008). Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol. Biol. 8, 1–15. doi:10.1186/1471-2148-8-181.

Forterre, P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16. doi:10.1016/j.virusres.2006.01.010.

Fortier, L. C., and Moineau, S. (2007). Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl. Environ. Microbiol. 73, 7358–7366. doi:10.1128/AEM.00582-07.

Frey, M. (1997). Analysis of a chemical plant defense mechanism in grasses. Science (80-. ). 277, 696–699. doi:10.1126/science.277.5326.696.

Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., et al. (2008). Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. 105, 3805–3810. doi:10.1073/pnas.0708897105.

Frias, M. J., Melo-Cristino, J., and Ramirez, M. (2009). The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae. J. Bacteriol. 191, 5428–5440. doi:10.1128/JB.00477-09.

G

Garbeva, P., van Veen, J. A., and van Elsas, J. D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness.

Annu. Rev. Phytopathol. 42, 243–270. doi:10.1146/annurev.phyto.42.012604.135455.

Garrity GM, Bell JA, L. T. (2005a). “Class II. Betaproteobacteria class. nov.,” in Bergey’s Manual of

Systematic Bacteriology Vol.2, ed. S. J. Garrity GM, Brenner DJ, Krieg NR (New York: Springer

US).

Garrity GM, Bell JA, L. T. (2005b). “Family I. Burkholderiaceae fam. nov.,” in Bergey’s Manual of

Sytematic Bacteriology, Vol. 2, ed. S. J. Garrity GM, Brenner DJ, Krieg NR (New York: Springer

US), 575.

Garrity GM, Bell JA, L. T. (2005c). “Order I. Burkholderiales ord. nov.,” in Bergey’s Manual of

Systematic Bacteriology Vol.2, ed. S. J. Garrity GM, Brenner DJ, Krieg NR (New York: Springer

US), 575.

Garrity GM, Bell JA, L. T. (2005d). “Phylum X. Proteobacteria phyl nov.,” in Bergey’s Manual of

Sytematic Bacteriology, Vol. 2, ed. S. J. Garrity GM, Brenner DJ, Krieg NR (New York: Springer

(8)

Gautheret, D., and Lambert, A. (2001). Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J. Mol. Biol. 313, 1003– 1011. doi:10.1006/jmbi.2001.5102.

Geoghegan, J. L., Duchêne, S., and Holmes, E. C. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families.

PLoS Pathog. 13, 1–17. doi:10.1371/journal.ppat.1006215.

Ghabrial, S. A., Castón, J. R., Jiang, D., Nibert, M. L., and Suzuki, N. (2015). 50-plus years of fungal viruses. Virology 479–480, 356–368. doi:10.1016/j.virol.2015.02.034.

Gill, J. J., Summer, E. J., Russell, W. K., Cologna, S. M., Carlile, T. M., Fuller, A. C., et al. (2011). Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J. Bacteriol. 193, 5300–5313. doi:10.1128/JB.05287-11. Gödeke, J., Paul, K., Lassak, J., and Thormann, K. M. (2011). Phage-induced lysis enhances biofilm

formation in Shewanella oneidensis MR-1. ISME J. 5, 613–626. doi:10.1038/ismej.2010.153. Goldberg, G. W., Jiang, W., Bikard, D., and Marraffini, L. A. (2014). Conditional tolerance of

temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514, 633– 637. doi:10.1038/nature13637.

Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., Charpak-Amikam, Y., et al. (2015). BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34, 169–183. doi:10.15252/embj.201489455.

Goldsmith, D. B., Crosti, G., Dwivedi, B., McDaniel, L. D., Varsani, A., Suttle, C. A., et al. (2011). Development of phoH as a novel signature gene for assessing marine phage diversity. Appl.

Environ. Microbiol. 77, 7730–7739. doi:10.1128/AEM.05531-11.

Gomez, P., and Buckling, A. (2013). Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J 7, 2242–2244. doi:10.1038/ismej.2013.105. Gomez, P., and Buckling, A. (2013). Coevolution with phages does not influence the evolution of

bacterial mutation rates in soil. ISME J 7, 2242–2244. doi:10.1038/ismej.2013.105. Gophna, U., Kristensen, D. M., Wolf, Y. I., Popa, O., Drevet, C., and Koonin, E. V. (2015). No evidence

of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. ISME J. 9, 2021–2027. doi:10.1038/ismej.2015.20.

Goris, J., Dejonghe, W., Falsen, E., De Clerck, E., Geeraerts, B., Willems, A., et al. (2002). Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst. Appl. Microbiol. 25, 340–352. doi:10.1078/0723-2020-00134.

Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91. doi:10.1099/ijs.0.64483-0.

Grissa, I., Vergnaud, G., and Pourcel, C. (2008). CRISPRFinder: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 36, 52–57. doi:10.1093/ nar/gkn228.

Gupta, R. S. (2000). The phylogeny of proteobacteria: Relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev. 24, 367–402. doi:10.1016/S0168-6445(00)00031-0.

(9)

Gutleben, J., Chaib De Mares, M., van Elsas, J. D., Smidt, H., Overmann, J., and Sipkema, D. (2018). The multi-omics promise in context: from sequence to microbial isolate. Crit. Rev. Microbiol. 44, 212–229. doi:10.1080/1040841X.2017.1332003.

H

Hall, A. R., Scanlan, P. D., Morgan, A. D., and Buckling, A. (2011). Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett. 14, 635–642. doi:10.1111/j.1461-0248.2011.01624.x.

Haq, I. U., Dini-Andreote, F., and van Elsas, J. D. (2017). Transcriptional responses of the bacterium Burkholderia terrae BS001 to the fungal host Lyophyllum sp. strain Karsten under soil-mimicking conditions. Microb. Ecol. 73, 236–252. doi:10.1007/s00248-016-0885-7. Haq, I. U., Graupner, K., Nazir, R., and Van Elsas, J. D. (2014). The genome of the fungal-interactive

soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol. Evol. 6, 1652–1668. doi:10.1093/gbe/evu126.

Haq, I. U., Graupner, K., Nazir, R., and Van Elsas, J. D. (2014). The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol. Evol. 6, 1652–1668. doi:10.1093/gbe/evu126.

Haq, I. U., Graupner, K., Nazir, R., and Van Elsas, J. D. (2014). The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol. Evol. 6, 1652–1668. doi:10.1093/gbe/evu126.

Haq, I. U., Rocha Calixto, R. O. da, Yang, P., dos Santos, G. M. P., Barreto-Bergter, E., and van Elsas, J. D. (2016). Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi. FEMS

Microbiol. Ecol. 92, 1–14. doi:10.1093/femsec/iw164.

Haq, I. U., Zwahlen, R. D., Yang, P., Elsas, J. D. Van, and Pereira, C. S. (2018). The response of

Paraburkholderia terrae strains to two soil fungi and the potential role of oxalate. Front. Microbiol. 9, 989. doi:10.3389/fmicb.2018.00989.

Harvey, H., Bondy-Denomy, J., Marquis, H., Sztanko, K. M., Davidson, A. R., and Burrows, L. L. (2018). Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat. Microbiol. 3, 47–52. doi:10.1038/s41564-017-0061-y.

Hatfull, G. F. (2015). Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89, 8107–8110. doi:10.1128/JVI.01340-15.

Hatfull, G. F., and Hendrix, R. W. (2011). Bacteriophages and their genomes. Curr. Opin. Virol. 1, 298–303. doi:10.1016/j.coviro.2011.06.009.

Hegazi, N. A., and Jensen, V. (1973). Studies of Azotobacter bacteriophages in Egyptian soils. Soil

Biol. Biochem. 5, 231–243. doi:10.1016/0038-0717(73)90006-0.

Hendrix R.W., Lawrence, J. G., G.F., H., and S, C. (2001). The origins and evolution of viruses.

Trends Microbiol. 9, 61. doi:10.1016/S0966-842X(00)01934-X.

Hendrix, R. W. (2008). Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453. doi:10.1016/j.mib.2008.09.004.

Hendrix, R. W., Lawrence, J. G., Hatfull, G. F., and Casjens, S. (2000). The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504–508. doi:10.1016/S0966-842X(00)01863-1.

(10)

Herron, P. R., and Wellington, E. M. H. (1990). New method for extraction of Streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl. Environ. Microbiol. 56, 1406–1412.

Herron, P. R., and Wellington, E. M. H. (1994). Population dynamics of phage-host interactions and phage conversion of Streptomycetes in soil. FEMS Microbiol. Ecol. 14, 25–32. doi:10.1111/j.1574-6941.1994.tb00087.x.

Hu, Z., Chen, L., Jia, C., Zhu, H., Wang, W., and Zhong, J. (2013). Screening of potential pseudo att sites of Streptomyces phage ΦC31 integrase in the human genome. Acta Pharmacol. Sin. 34, 561–569. doi:10.1038/aps.2012.173.

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., et al. (2016). A new view of the tree of life. Nat. Microbiol. 1, 1–6. doi:10.1038/nmicrobiol.2016.48. Hurwitz, B. L., and U’Ren, J. M. (2016). Viral metabolic reprogramming in marine ecosystems.

Curr. Opin. Microbiol. 31, 161–168. doi:10.1016/j.mib.2016.04.002.

Hurwitz, B. L., Brum, J. R., and Sullivan, M. B. (2015). Depth-stratified functional and taxonomic niche specialization in the “core” and “flexible” Pacific Ocean virome. ISME J. 9, 472–484. doi:10.1038/ismej.2014.143.

Hurwitz, B. L., U’Ren, J. M., and Youens-Clark, K. (2016). Computational prospecting the great viral unknown. FEMS Microbiol. Lett. 363, fnw077. doi:10.1093/femsle/fnw077.

Hutchinson, M. C., Cagua, E. F., Balbuena, J. A., Stouffer, D. B., and Poisot, T. (2017). PACo: implementing Procrustean Approach to Cophylogeny in R. Methods Ecol. Evol. 8, 932–940. doi:10.1111/2041-210X.12736.

J

Jansson, J. K., and Taş, N. (2014). The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425. doi:10.1038/nrmicro3262.

Jermyn, W. S., and Boyd, E. F. (2002). Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates.

Microbiology 148, 3681–3693. doi:10.1099/00221287-148-11-3681.

Jiang, W., Maniv, I., Arain, F., Wang, Y., Levin, B. R., and Marraffini, L. A. (2013). Dealing with the evolutionary downside of CRISPR Immunity: Bacteria and beneficial plasmids. PLoS Genet. 9. doi:10.1371/journal.pgen.1003844.

Juhala, R. J., Ford, M. E., Duda, R. L., Youlton, A., Hatfull, G. F., and Hendrix, R. W. (2000). Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51. doi:10.1006/jmbi.2000.3729.

K

Käll, L., Krogh, A., and Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036. doi:10.1016/j. jmb.2004.03.016.

Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726– 731. doi:10.1016/j.jmb.2015.11.006.

(11)

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066. doi:10.1093/nar/gkf436.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059– 3066. doi:10.1093/nar/gkf436.

Keen, E. C., Bliskovsky, V. V, Malagon, F., Baker, J. D., Prince, J. S., Klaus, J. S., et al. (2017). Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation.

MBio 8, 1–12. doi:10.1128/mBio.02115-16.

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. E. (2015). The Phyre2 web

portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. doi:10.1038/ nprot.2015.053.

Kim, K. H., and Bae, J. W. (2011). Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl. Environ. Microbiol. 77, 7663–7668. doi:10.1128/AEM.00289-11.

Kim, K. H., Chang, H. W., Nam, Y. Do, Roh, S. W., Kim, M. S., Sung, Y., et al. (2008). Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl. Environ. Microbiol. 74, 5975–5985. doi:10.1128/AEM.01275-08.

Knowles, B., Silveira, C. B., Bailey, B. A., Barott, K., Cantu, V. A., Cobián-Güemes, A. G., et al. (2016). Lytic to temperate switching of viral communities. Nature 539, 123–123. doi:10.1038/ nature19335.

Knowles, B., Silveira, C. B., Bailey, B. A., Barott, K., Cantu, V. A., Cobián-Güemes, A. G., et al. (2016). Lytic to temperate switching of viral communities. Nature 539, 123–123. doi:10.1038/ nature19335.

Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D., Mardis, E. R., et al. (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285. doi:10.1093/bioinformatics/btp373.

Koonin, E. V., and Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Curr.

Opin. Virol. 3, 546–557. doi:10.1016/j.coviro.2013.06.008.

Koonin, E. V., and Wolf, Y. I. (2015). Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus–host coevolution. Mol. BioSyst. 11, 20–27. doi:10.1039/C4MB00438H.

Koonin, E. V., Senkevich, T. G., and Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biol. Direct 1, 1–27. doi:10.1186/1745-6150-1-29.

Koskella, B., and Brockhurst, M. A. (2014). Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931. doi:10.1111/1574-6976.12072.

Krumsiek, J., Arnold, R., and Rattei, T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028. doi:10.1093/bioinformatics/ btm039.

Krupovic, M., and Koonin, E. V. (2017). Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl. Acad. Sci. 114, E2401–E2410. doi:10.1073/pnas.1621061114.

(12)

Krupovic, M., Prangishvili, D., Hendrix, R. W., and Bamford, D. H. (2011). Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75, 610–635. doi:10.1128/MMBR.00011-11.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. doi:10.1093/molbev/ msw054.

Kusaoke, H., Shinya, S., Fukamizo, T., and Kimoto, H. (2017). Biochemical and biotechnological trends in chitin, chitosan, and related enzymes produced by Paenibacillus IK-5 Strain. Int. J.

Biol. Macromol. 104, 1633–1640. doi:10.1016/j.ijbiomac.2017.04.118.

Kuzyakov, Y., and Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 83, 184–199. doi:10.1016/j.soilbio.2015.01.025.

L

Lackner, G., Moebius, N., and Hertweck, C. (2011). Endofungal bacterium controls its host by an hrp type III secretion system. ISME J. 5, 252–261. doi:10.1038/ismej.2010.126.

Lamont, I., Brumby, A. M., and Egan, J. B. (1989). UV induction of coliphage 186: prophage induction as an SOS function. Proc. Natl. Acad. Sci. 86, 5492–5496. doi:10.1073/ pnas.86.14.5492.

Lange, S. J., Alkhnbashi, O. S., Rose, D., Will, S., and Backofen, R. (2013). CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems.

Nucleic Acids Res. 41, 8034–8044. doi:10.1093/nar/gkt606.

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16. doi:10.1093/nar/gkh152. Lawrence, J. G., and Ochman, H. (1998). Molecular archaeology of the Escherichia coli genome.

Proc. Natl. Acad. Sci. 95, 9413–9417. doi:10.1073/pnas.95.16.9413.

Lawrence, J. G., Hendrix, R. W., and Casjens, S. (2001). Where are the pseudogenes in bacterial.

Trends Microbiol. 9, 535–540. doi:10.1016/S0966-842X(01)02198-9.

Leplae, R. (2004). ACLAME: A CLAssification of Mobile genetic Elements. Nucleic Acids Res. 32, 45D–49. doi:10.1093/nar/gkh084.

Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245. doi:10.1093/nar/gkw290.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. doi:10.1093/bioinformatics/btp324.

Lima-Mendez, G., Van Helden, J., Toussaint, A., and Leplae, R. (2008). Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777. doi:10.1093/molbev/msn023.

Lindell, D., Jaffe, J. D., Coleman, M. L., Futschik, M. E., Axmann, I. M., Rector, T., et al. (2007). Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86. doi:10.1038/nature06130.

Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., and Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89. doi:10.1038/nature04111.

(13)

Linn, S., and Imlay, J. a (1987). Toxicity, mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Cell Sci. Suppl. 6, 289–301. doi:10.1128/JB.169.7.2967-2976.1987.

Lopez, C. A., Winter, S. E., Rivera-Chávez, F., Xavier, M. N., Poon, V., Nuccio, S. P., et al. (2012). Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration. MBio 3, 1–10. doi:10.1128/mBio.00143-12.

Lowe, T. M., and Eddy, S. R. (1996). TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964. doi:10.1093/ nar/25.5.0955.

Luciano A. Marraffini and Erik J. Sontheimer (2011). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190. doi:10.1038/ nrg2749.CRISPR.

Lynch, K. H., Stothard, P., and Dennis, J. J. (2010). Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics 11, 599. doi:10.1186/1471-2164-11-599.

M

Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., et al. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722– 736. doi:10.1038/nrmicro3569.

Manrique, P., Bolduc, B., Walk, S. T., van der Oost, J., de Vos, W. M., and Young, M. J. (2016). Healthy human gut phageome. Proc. Natl. Acad. Sci. 113, 10400–10405. doi:10.1073/ pnas.1601060113.

Maslov, S., and Sneppen, K. (2015). Well-temperate phage: optimal bet-hedging against local environmental collapses. Sci. Rep. 5, 1–11. doi:10.1038/srep10523.

Matos, R. C., Lapaque, N., Rigottier-Gois, L., Debarbieux, L., Meylheuc, T., Gonzalez-Zorn, B., et al. (2013). Enterococcus faecalis prophage dynamics and contributions to pathogenic traits.

PLoS Genet. 9. doi:10.1371/journal.pgen.1003539.

Mavrich, T. N., and Hatfull, G. F. (2017). Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2, 17112. doi:10.1038/nmicrobiol.2017.112.

Maxwell, K. L. (2017). The Anti-CRISPR Story: a Battle for Survival. Mol. Cell 68, 8–14. doi:10.1016/j.molcel.2017.09.002.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2009). The Genome Analysis Toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 254–260. doi:10.1101/gr.107524.110.20.

McNair, K., Bailey, B. A., and Edwards, R. A. (2012). PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28, 614–618. doi:10.1093/bioinformatics/ bts014.

Meyer, J. R., Dobias, D. T., Weitz, J. S., Barrick, J. E., Quick, R. T., and Lenski, R. E. (2012). Repeatability and contigency in the evolution of a key innovation in phage lambda. Science

(80-. ). 335, 428–432. doi:10.1126/science.1214449.

Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., et al. (2015). The InterPro protein families database: The classification resource after 15 years. Nucleic Acids

(14)

Miura, T., Masago, Y., Sano, D., and Omura, T. (2011). Development of an effective method for recovery of viral genomic RNA from environmental silty sediments for quantitative molecular detection. Appl. Environ. Microbiol. 77, 3975–3981. doi:10.1128/AEM.02692-10. Modell, J. W., Jiang, W., and Marraffini, L. A. (2017). CRISPR–Cas systems exploit viral DNA

injection to establish and maintain adaptive immunity. Nature 544, 101–104. doi:10.1038/ nature21719.

Moore, W. E. C., Stackebrandt, E., Kandler, O., Colwell, R. R., Krichevsky, M. I., Truper, H. G., et al. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464. doi:10.1099/00207713-37-4-463. Morgan, G. J., Hatfull, G. F., Casjens, S., and Hendrix, R. W. (2002). Bacteriophage Mu genome

sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317, 337–359. doi:10.1006/jmbi.2002.5437.

Murphy, J., Mahony, J., Ainsworth, S., Nauta, A., and van Sinderen, D. (2013). Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Environ. Microbiol. 79, 7547–7555. doi:10.1128/AEM.02229-13.

Murros-Kontiainen, A., Johansson, P., Niskanen, T., Fredriksson-Ahomaa, M., Korkeala, H., and Björkroth, J. (2011). Yersinia pekkanenii sp. nov. Int. J. Syst. Evol. Microbiol. 61, 2363–2367. doi:10.1099/ijs.0.019984-0.

N

Nanda, A. M., Thormann, K., and Frunzke, J. (2015). Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197, 410– 419. doi:10.1128/JB.02230-14.

Narr, A., Nawaz, A., Wick, L. Y., Harms, H., and Chatzinotas, A. (2017). Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front. Microbiol. 8, 1–14. doi:10.3389/fmicb.2017.01975.

Nazir, R., Hansen, M. A., Sørensen, S., and van Elsas, J. D. (2012a). Draft genome sequence of the soil bacterium Burkholderia terrae strain BS001, which interacts with fungal surface structures. J. Bacteriol. 194, 4480–4481. doi:10.1128/JB.00725-12.

Nazir, R., Zhang, M., de Boer, W., and van Elsas, J. D. (2012). The capacity to comigrate with

Lyophyllum sp. strain Karsten through different soils is spread among several phylogenetic

groups within the genus Burkholderia. Soil Biol. Biochem. 50, 221–233. doi:10.1016/j. soilbio.2012.03.015.

Nedialkova, L. P., Sidstedt, M., Koeppel, M. B., Spriewald, S., Ring, D., Gerlach, R. G., et al. (2016). Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium. Environ. Microbiol. 18, 1591–1603. doi:10.1111/1462-2920.13077.

Nelson, C. E., Attia, M. A., Rogowski, A., Morland, C., Brumer, H., and Gardner, J. G. (2017). Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.

Environ. Microbiol. 19, 5025–5039. doi:10.1111/1462-2920.13959.

(15)

Obeng, N., Pratama, A. A., and Elsas, J. D. van (2016). The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449. doi:10.1016/j. tim.2015.12.009.

Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., Yaakov, G., et al. (2018). DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3, 90–98. doi:10.1038/s41564-017-0051-0.

Ohnishi, M., Kurokawa, K., and Hayashi, T. (2001). Diversification of Escherichia coli genomes: Are bacteriophages the major contributors? Trends Microbiol. 9, 481–485. doi:10.1016/ S0966-842X(01)02173-4.

Ohnishi, M., Kurokawa, K., and Hayashi, T. (2001). Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485. doi:10.1016/ S0966-842X(01)02173-4.

P

Paez-Espino, D., Chen, I. M. A., Palaniappan, K., Ratner, A., Chu, K., Szeto, E., et al. (2017a). IMG/ VR: A database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res. 45, D457–D465. doi:10.1093/nar/gkw1030.

Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., et al. (2016). Uncovering Earth’s virome. Nature 536, 425–430. doi:10.1038/ nature19094.

Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N., and Kyrpides, N. C. (2017b). Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682. doi:10.1038/nprot.2017.063.

Pal, C., Maciá, M. D., Oliver, A., Schachar, I., and Buckling, A. (2007). Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081. doi:10.1038/ nature06350.

Patel, A., Noble, R. T., Steele, J. A., Schwalbach, M. S., Hewson, I., and Fuhrman, J. A. (2007). Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–277. doi:10.1038/nprot.2007.6. Paungfoo-Lonhienne, C., Lonhienne, T. G. A., Yeoh, Y. K., Webb, R. I., Lakshmanan, P., Chan, C. X.,

et al. (2014). A new species of Burkholderia isolated from sugarcane roots promotes plant

growth. Microb. Biotechnol. 7, 142–154. doi:10.1111/1751-7915.12105.

Pawluk, A., Davidson, A. R., and Maxwell, K. L. (2018). Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17. doi:10.1038/nrmicro.2017.120.

Pedulla, M. L., Ford, M. E., Houtz, J. M., Karthikeyan, T., Wadsworth, C., Lewis, J. A., et al. (2003). Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182. doi:10.1016/ S0092-8674(03)00233-2.

Pereira e Silva, M. C., Dias, A. C. F., van Elsas, J. D., and Salles, J. F. (2012). Spatial and temporal variation of archaeal, bacterial and fungal communities in agricultural soils. PLoS One 7. doi:10.1371/journal.pone.0051554.

Pereira e Silva, M. C., Dias, A. C. F., van Elsas, J. D., and Salles, J. F. (2012). Spatial and temporal variation of Archaeal, Bacterial and Fungal communities in agricultural soils. PLoS One 7. doi:10.1371/journal.pone.0051554.

(16)

Petrov, V. M., Ratnayaka, S., Nolan, J. M., Miller, E. S., and Karam, J. D. (2010). Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 7, 1–19. doi:10.1186/1743-422X-7-292.

Popa, O., Landan, G., and Dagan, T. (2017). Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 11, 543–554. doi:10.1038/ ismej.2016.116.

Prangishvili, D., Bamford, D. H., Forterre, P., Iranzo, J., Koonin, E. V., and Krupovic, M. (2017). The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739. doi:10.1038/ nrmicro.2017.125.

Pratama, A. A., and Elsas, J. D. Van (2017). The ‘neglected’ soil virome – potential role and impact. Trends Microbiol. xx, 1–14. doi:10.1016/j.tim.2017.12.004.

Pratama, A. A., and van Elsas, J. D. (2017). A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci. Rep. 7, 9156. doi:10.1038/s41598-017-09317-8.

Pratama, A. A., Haq, I. U., Nazir, R., Chaib De Mares, M., and van Elsas, J. D. (2017). Draft genome sequences of three fungal-interactive Paraburkholderia terrae strains, BS007, BS110 and BS437. Stand. Genomic Sci. 12, 81. doi:10.1186/s40793-017-0293-8.

Pratama, A. A., Mares, M. C. De, and Elsas, J. D. Van (2018). Evolutionary history of bacteriophages in the Genus Paraburkholderia. Front. Microbiol. 9, 853. doi:10.3389/fmicb.2018.00835. Price, M. N., Dehal, P. S., and Arkin, A. P. (2009). Fasttree: computing large minimum evolution

trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650. doi:10.1093/ molbev/msp077.

Prieto, M. A., Bühler, B., Jung, K., Witholt, B., and Kessler, B. (1999). PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181, 858–868.

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. doi:10.1093/nar/gkm864. Puschnik, A. S., Majzoub, K., Ooi, Y. S., and Carette, J. E. (2017). A CRISPR toolbox to study virus–

host interactions. Nat. Rev. Microbiol. doi:10.1038/nrmicro.2017.29.

Q

Quesada, J. M., Soriano, M. I., and Espinosa-Urgel, M. (2012). Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. Appl.

Environ. Microbiol. 78, 6963–6974. doi:10.1128/AEM.00901-12.

R

Råberg, L., Alacid, E., Garces, E., and Figueroa, R. (2014). The potential for arms race and red queen coevolution in a protist host-parasite system. Ecol. Evol. 4, 4775–4785. doi:10.1002/ ece3.1314.

Razali, N. M., and Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33. doi:doi:10.1515/bile-2015-0008.

(17)

Reanney, D. C., and Marsh, S. C. N. (1973). The ecology of viruses attacking Bacillus

strearothermophilus in soil. Soil Biol. Biochem. 5, 399–408.

Reavy, B., Swanson, M. M., Cock, P. J. A., Dawson, L., Freitag, T. E., Singh, B. K., et al. (2015). Distinct circular single-stranded DNA viruses exist in different soil types. Appl. Environ.

Microbiol. 81, 3934–3945. doi:10.1128/AEM.03878-14.

Refardt, D. (2012). Real-time quantitative PCR to discriminate and quantify lambdoid bacteriophages of Escherichia coli K-12. Bacteriophage 2, 98–104. doi:10.4161/bact.20092. Refardt, D., Bergmiller, T., and Kümmerli, R. (2013). Altruism can evolve when relatedness is

low: evidence from bacteria committing suicide upon phage infection. Proc. Biol. Sci. 280, 20123035. doi:10.1098/rspb.2012.3035.

Resch, A., Fehrenbacher, B., Eisele, K., Schaller, M., and Götz, F. (2005). Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol. Lett. 252, 89–96. doi:10.1016/j.femsle.2005.08.048.

Rice, S. A., Tan, C. H., Mikkelsen, P. J., Kung, V., Woo, J., Tay, M., et al. (2009). The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME

J. 3, 271–282. doi:10.1038/ismej.2008.109.

Richter, M., and Rossello-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131. doi:10.1073/pnas.0906412106. Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., and Peplies, J. (2015). JSpeciesWS: a web

server for prokaryotic species circumscription based on pairwise genome comparison.

Bioinformatics 32, 929–931. doi:10.1093/bioinformatics/btv681.

Rillig, M. C., Muller, L. A., and Lehmann, A. (2017). Soil aggregates as massively concurrent evolutionary incubators. ISME J., 1–6. doi:10.1038/ismej.2017.56.

Roberts, J. W., Roberts, C. W., and Craig, N. L. (1978). Escherichia coli recA gene product inactivates phage λ repressor. Biochemistry 75, 4714–4718. doi:10.1073/pnas.75.10.4714. Rohwer, F., and Edwards, R. (2002). The phage proteomic tree : a genome-based taxonomy for

phage. 184, 4529–4535. doi:10.1128/JB.184.16.4529.

Romig, W. R., and Bodetsky, A. M. (1961). Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J. Bacteriol. 82, 135–141.

Ronning, C. M., Losada, L., Brinkac, L., Inman, J., Ulrich, R. L., Schell, M., et al. (2010). Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements.

BMC Microbiol. 10, 202. doi:10.1186/1471-2180-10-202.

Roossinck, M. J. (2011). The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108. doi:10.1038/nrmicro2491.

Rose, R., Constantinides, B., Tapinos, A., Robertson, D. L., and Prosperi, M. (2016). Challenges in the analysis of viral metagenomes. Virus Evol. 2, vew022. doi:10.1093/ve/vew022. Rossmann, F. S., Racek, T., Wobser, D., Puchalka, J., Rabener, E. M., Reiger, M., et al. (2015).

Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog. 11, 1–17. doi:10.1371/journal.ppat.1004653.

Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016a). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693. doi:10.1038/nature19366.

(18)

Roux, S., Solonenko, N. E., Dang, V. T., Poulos, B. T., Schwenck, S. M., Goldsmith, D. B., et al. (2016b). Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4, e2777. doi:10.7717/peerj.2777.

Roux, S., Tournayre, J., Mahul, A., Debroas, D., and Enault, F. (2014). Metavir 2: New tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 76. doi:10.1186/1471-2105-15-76.

Rudnick, M. B., van Veen, J. A., and de Boer, W. (2015). Baiting of rhizosphere bacteria with hyphae of common soil fungi reveals a diverse group of potentially mycophagous secondary consumers. Soil Biol. Biochem. 88, 73–82. doi:10.1016/j.soilbio.2015.04.015.

S

Sahl, J. W., Allender, C. J., Colman, R. E., Califf, K. J., Schupp, J. M., Currie, B. J., et al. (2015). Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence.

PLoS One 10, 1–18. doi:10.1371/journal.pone.0121052.

Salles, J. F., Souza, F. A. De, and Elsas, J. D. Van (2002). Molecular method to assess the diversity of of Burkholderia species in environmental samples. Appl. Environ. Microbiol. 68, 1595– 1603. doi:10.1128/AEM.68.4.1595.

Salmond, G. P. C., and Fineran, P. C. (2015). A century of the phage: past, present and future. Nat.

Rev. Microbiol. 13, 777–786. doi:10.1038/nrmicro3564.

Sambrook, J., and Russell, D. W. (2001). Molecular cloning: A laboratory manual. 3rd Edition. 3rd ed. New York: Cold Spring Harbor Laboratory Press doi:10.3724/SP.J.1141.2012.01075. Samson, J. E., Magadán, A. H., Sabri, M., and Moineau, S. (2013). Revenge of the phages: defeating

bacterial defences. Nat. Rev. Microbiol. 11, 675–687. doi:10.1038/nrmicro3096.

Santamaria, R. I., Bustos, P., Sepulveda-Robles, O., Luis Lozano, a C. R., Fernandez, J. L., Juarez, S., et al. (2014). Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl. Environ. Microbiol. 80, 446–454. doi:10.1128/AEM.02256-13. Sasso, F., Natalello, A., Castoldi, S., Lotti, M., Santambrogio, C., and Grandori, R. (2016).

Burkholderia cepacia lipase is a promising biocatalyst for biofuel production. Biotechnol. J.

11, 954–960. doi:10.1002/biot.201500305.

Sawana, A., Adeolu, M., and Gupta, R. S. (2014). Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus

Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov.

harboring environmental species. Front. Genet. 5, 1–22. doi:10.3389/fgene.2014.00429. Scanlan, P. D., Hall, A. R., Blackshields, G., Friman, V. P., Davis, M. R., Goldberg, J. B., et al. (2015).

Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol. Biol. Evol. 32, 1425–1435. doi:10.1093/ molbev/msv032.

Schuch, R., and Fischetti, V. A. (2009). The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 4. doi:10.1371/journal. pone.0006532.

Schurr, M. J. (2013). Which bacterial biofilm exopolysaccharide is preferred, psl or alginate? J.

(19)

Scola, V., Ramond, J.-B., Frossard, A., Zablocki, O., Adriaenssens, E. M., Johnson, R. M., et al. (2017). Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microb. Ecol. 1, 193–203. doi:10.1007/s00248-017-1009-8.

Secor, P. R., Sweere, J. M., Michaels, L. A., Malkovskiy, A. V., Lazzareschi, D., Katznelson, E., et al. (2015). Filamentous bacteriophage promote biofilm assembly and function. Cell Host

Microbe 18, 549–559. doi:10.1016/j.chom.2015.10.013.

Seed, K. D., and Dennis, J. J. (2005). Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol. Lett. 251, 273–280. doi:10.1016/j. femsle.2005.08.011.

Sekulovic, O., and Fortier, L. C. (2015). Global transcriptional response of Clostridium difficile carrying the CD38-2 prophage. Appl. Environ. Microbiol. 81, 1364–1374. doi:10.1128/ AEM.03656-14.

Shi, W., and Sun, H. (2002). Type IV pilus-dependent motility and its possible role in bacterial pathogenesis. Society 70, 1–4. doi:10.1128/IAI.70.1.1.

Shimizu, T., Ohta, Y., and Noda, M. (2009). Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms. Infect. Immun. 77, 2813–2823. doi:10.1128/IAI.00060-09.

Shin, J.-H., Papadimitriou, K., Lee, J., Barrangou, R., Hidalgo-Cantabrana, C., Crawley, A. B., et al. (2017). Characterization and exploitation of CRISPR loci in Bifidobacterium longum. Front.

Microbiol. 8, 1–16. doi:10.3389/fmicb.2017.01851.

Shinya, S., Nishimura, S., Kitaoku, Y., Numata, T., Kimoto, H., Kusaoke, H., et al. (2016). Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase. Biochem. J. 473, 1085–1095. doi:10.1042/BCJ20160045. Shmakov, S. A., Sitnik, V., Makarova, K. S., Wolf, Y. I., Severinov, K. V., and Koonin, E. V. (2017).

The CRISPR spacer space is dominated by sequences from species-specific mobilomes.

MBio 8, 1–18. doi:10.1128/mBio.01397-17.

Simmonds, P., Adams, M. J., Benkő, M., Breitbart, M., Brister, J. R., Carstens, E. B., et al. (2017). Consensus statement: Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168. doi:10.1038/nrmicro.2016.177.

Solonenko, S. A., Ignacio-Espinoza, J., Alberti, A., Cruaud, C., Hallam, S., Konstantinidis, K., et al. (2013). Sequencing platform and library preparation choices impact viral metagenomes.

BMC Genomics 14, 320. doi:10.1186/1471-2164-14-320.

Srinivasiah, S., Bhavsar, J., Thapar, K., Liles, M., Schoenfeld, T., and Wommack, K. E. (2008). Phages across the biosphere: Contrasts of viruses in soil and aquatic environments. Res.

Microbiol. 159, 349–357. doi:10.1016/j.resmic.2008.04.010.

Srinivasiah, S., Lovett, J., Ghosh, D., Roy, K., Fuhrmann, J. J., Radosevich, M., et al. (2015). Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation. FEMS Microbiol. Ecol. 91, 1–12. doi:10.1093/femsec/fiv063. Stefanic, P., and Mandic-Mulec, I. (2009). Social interactions and distribution of Bacillus subtilis

pherotypes at microscale. J. Bacteriol. 191, 1756–1764. doi:10.1128/JB.01290-08.

Stern, A., and Sorek, R. (2011). The phage-host arms race: shaping the evolution of microbes.

BioEssays 33, 43–51. doi:10.1002/bies.201000071.

(20)

Stoyanova, M., Pavlina, I., Moncheva, P., and Bogatzevska, N. (2007). Biodiversity and incidence of Burkholderia species. Biotechnol. Biotechnol. Equip. 21, 306–310. doi:10.1080/1310281 8.2007.10817465.

Strauch, E., Hammerl, J. A., Konietzny, A., Schneiker-Bekel, S., Arnold, W., Goesmann, A., et al. (2008). Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7. Infect. Immun. 76, 5466–5477. doi:10.1128/ IAI.00875-08.

Sullivan, M. B., Lindell, D., Lee, J. A., Thompson, L. R., Bielawski, J. P., and Chisholm, S. W. (2006). Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, 1344–1357. doi:10.1371/journal.pbio.0040234.

Sullivan, M. J., Petty, N. K., and Beatson, S. A. (2011). Easyfig: a genome comparison visualizer.

Bioinformatics 27, 1009–1010. doi:10.1093/bioinformatics/btr039.

Summer, E. J., Gill, J. J., Upton, C., Gonzalez, C. F., and Young, R. (2007). Role of phages in the pathogenesis of Burkholderia or “where are the toxin genes in Burkholderia phages?” Curr

Opin Microbiol. 10, 410–417. doi:10.1016/j.mib.2007.05.016.

Summer, E. J., Gonzalez, C. F., Carlisle, T., Mebane, L. M., Cass, A. M., Savva, C. G., et al. (2004).

Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential

pathogenesis factors. J. Mol. Biol. 340, 49–65. doi:10.1016/j.jmb.2004.04.053.

Sun, C. L., Thomas, B. C., Barrangou, R., and Banfield, J. F. (2015). Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 10, 1–13. doi:10.1038/ ismej.2015.162.

Suttle, C. A. (2005). Viruses in the sea. Nature 437, 356–361. doi:10.1038/nature04160. Suttle, C. A. (2007). Marine viruses - major players in the global ecosystem. Nat. Rev. Microbiol.

5, 801–812. doi:10.1038/nrmicro1750.

Swanson, M. M., Fraser, G., Daniell, T. J., Torrance, L., Gregory, P. J., and Taliansky, M. (2009). Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann. Appl. Biol. 155, 51–60. doi:10.1111/j.1744-7348.2009.00319.x.

T

Talavera, G., Castresana, J., Kjer, K., Page, R., and Sullivan, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577. doi:10.1080/10635150701472164.

Taylor, M. J., and Thorne, C. B. (1963). Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86, 452–461.

Tellier, A., Moreno-Gámez, S., and Stephan, W. (2014). Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics.

Evolution. 68, 2211–2224. doi:10.1111/evo.12427.

Thurber, R. V., Payet, J. P., Thurber, A. R., and Correa, A. M. S. (2017). Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216. doi:10.1038/ nrmicro.2016.176.

Tomaru, Y., Toyoda, K., Suzuki, H., Nagumo, T., Kimura, K., and Takao, Y. (2013). New single-stranded DNA virus with a unique genomic structure that infects marine diatom Chaetoceros setoensis. Sci. Rep. 3, 3337. doi:10.1038/srep03337.

(21)

Torsvik, V., Goksøyr, J., Daae, F. L., Torsvik, V., Goksyr, J., and Daae, F. L. (1990). High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787.

Touchon, M., Bernheim, A., and Rocha, E. P. (2016). Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754. doi:10.1038/ ismej.2016.47.

Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., et al. (2009). Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths.

PLoS Genet. 5. doi:10.1371/journal.pgen.1000344.

Touchon, M., Moura de Sousa, J. A., and Rocha, E. P. (2017). Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer.

Curr. Opin. Microbiol. 38, 66–73. doi:10.1016/j.mib.2017.04.010.

Trivedi, P., Delgado-Baquerizo, M., Anderson, I. C., and Singh, B. K. (2016). Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 7, 1–13. doi:10.3389/fpls.2016.00990.

Trubl, G., Solonenko, N., Chittick, L., Solonenko, S. A., Rich, V. I., and Sullivan, M. B. (2016). Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ 4, e1999. doi:10.7717/peerj.1999.

Twort, F. W. (1915). An investigation on the nature of ultra-microscopic viruses. Lancet 186, 1241–1243. doi:10.1016/S0140-6736(01)20383-3.

V

Vale, P. F., and Little, T. J. (2010). CRISPR-mediated phage resistance and the ghost of coevolution past. Proc. R. Soc. B Biol. Sci. 277, 2097–2103. doi:10.1098/rspb.2010.0055.

Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, S., Lajus, A., et al. (2013). MicroScope - An integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41, 636–647. doi:10.1093/nar/gks1194.

Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, S., Lajus, A., et al. (2013). MicroScope - an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res. 41, 636–647. doi:10.1093/nar/gks1194.

van Elsas, J. D., and Penido, E. G. C. (1982). Characterization of a new Bacillus megaterium bacteriophage, MJ-1, from tropical soil. Antonie Van Leeuwenhoek 48, 365–371. doi:10.1007/ BF00418289.

van Elsas, J. D., and Pereira, M. T. P. R. . (1987). Characteristics of a soil-isolated Bacillus subtillis phage, GS1 and GS1- mediated plasmid transduction. Zentral. Mikrobiol. 142, 63–70. van Elsas, J. D., Dijkstra, A. F., Govaert, J. M., and van Veen, J. A. (1986). Survival of Pseudomonas

fluorescens and Bacillus subtilis introduced into two soils of different texture in field

microplots. FEMS Microbiol. Lett. 38, 151–160. doi:10.1016/0378-1097(86)90046-7. van Elsas, J. D., Sarah, T., and Bailey, M. J. (2003). Horizontal gene transfer in the phytosphere.

New Phytol. 157, 525–537. doi:10.1046/j.1469-8137.2003.00697.x.

van Elsas, J. D., Trevors, J. T., and Starodub, M. E. (1988). Bacterial conjugation between

Pseudomonas in the rhizosphere of wheat. FEMS Microbiol. Lett. 53, 299–306.

(22)

Vargas-Straube, M. J., Cámara, B., Tello, M., Montero-Silva, F., Cárdenas, F., and Seeger, M. (2016). Genetic and functional analysis of the biosynthesis of a non-ribosomal peptide siderophore in Burkholderia xenovorans LB400. PLoS One 11, 1–23. doi:10.1371/journal.pone.0151273. Vary, P. S., and Halsey, W. F. (1980). Host-range and partial characterization of several

new bacteriophages for Bacillus megaterium QM b1551. J. Gen. Virol. 51, 137–146. doi:10.1099/0022-1317-51-1-137.

Vernikos, G. S., and Parkhill, J. (2006). Interpolated variable order motifs for identification of horizontally acquired DNA: Revisiting the Salmonella pathogenicity islands. Bioinformatics 22, 2196–2203. doi:10.1093/bioinformatics/btl369.

Vos, M., Wolf, A. B., Jennings, S. J., and Kowalchuk, G. A. (2013). Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol. Rev. 37, 936–954. doi:10.1111/1574-6976.12023.

W

Waack, S., Keller, O., Asper, R., Brodag, T., Damm, C., Fricke, W., et al. (2006). Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC

Bioinformatics 7, 142. doi:10.1186/1471-2105-7-142.

Wang, J., Ma, J., Cheng, Z., Meng, X., You, L., Wang, M., et al. (2016). A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res. 26, 1165–1168. doi:10.1038/cr.2016.103.

Wang, X., Kim, Y., and Wood, T. K. (2009). Control and benefits of CP4-57 prophage excision in

Escherichia coli biofilms. ISME J. 3, 1164–1179. doi:10.1038/ismej.2009.59.

Wang, X., Kim, Y., Ma, Q., Hong, S. H., Pokusaeva, K., Sturino, J. M., et al. (2010). Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 147. doi:10.1038/ ncomms1146.

Wang, Y., Coleman-Derr, D., Chen, G., and Gu, Y. Q. (2015). OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic

Acids Res. 43, W78–W84. doi:10.1093/nar/gkv487.

Warmink, J. A., and van Elsas, J. D. (2008). Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J. 2, 887–900. doi:10.1038/ ismej.2008.41.

Warmink, J. A., and van Elsas, J. D. (2008). Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J. 2, 887–900. doi:10.1038/ ismej.2008.41.

Warmink, J. A., and Van Elsas, J. D. (2009). Migratory response of soil bacteria to Lyophyllum sp. strain Karsten In soil microcosms. Appl. Environ. Microbiol. 75, 2820–2830. doi:10.1128/ AEM.02110-08.

Warmink, J. A., Nazir, R., Corten, B., and van Elsas ., J. D. (2011). Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biol. Biochem. 43, 760–765. doi:10.1016/j.soilbio.2010.12.009.

Webb, J. S., Givskov, M., and Kjelleberg, S. (2003). Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol. 6, 578–585. doi:10.1016/j.mib.2003.10.014.

Weissman, J. L., Fagan, W. F., and Johnson, P. L. F. (2017). Is having more than one CRISPR array adaptive ? bioRxiv 10, 23–44. doi:10.1101/148544.

Referenties

GERELATEERDE DOCUMENTEN

Most studies that generate genomic data sets from marine mammal species and populations take advantage of the vast amounts of data generated to obtain more precise estimates

• Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen,

Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands.

The research reported in this thesis was carried out at the Microbial Ecology cluster, which is part of the Genomics Research in Ecology and Evolution in Nature (GREEN)

(5) How diverse is the soil virome of a Paraburkholderia community selected from the mycosphere and to what extent did they contribute to host ecology and evolution. Scope of

Secondary metabolite analyses showed that the three strains contain 14, 16 and 17 gene clusters encoding these (strain BS007, BS110 and BS437, respectively; Supplementary Table

The genome analyses showed that the genomes of the three type strains contain genes or operons for diverse metabolic capacities (Supplementary Table 3.5 and Supplementary Table

After a description of the selective forces exerted on the host organisms in marine versus soil settings, we examine our current understanding of the abundance, diversity,