• No results found

Consciousness during sleep and the effect on the appearance of dreaming

N/A
N/A
Protected

Academic year: 2021

Share "Consciousness during sleep and the effect on the appearance of dreaming"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

   

 

 

Consciousness  during  sleep  and   the  effect  on  the  appearance  of  

dreaming  

 

Bachelor  thesis  

   

Nathasja  Hartog    

Supervisor:  Prof.  Dr.  D.G.M.  Beersma  

Head  of  the  Department  of  Chronobiology  

Director  of  the  Center  for  Behavior  and  Neurosciences   University  of  Groningen  

 

(2)

 

Abstract    

This  study  focuses  on  sleep  and  consciousness  during  sleep  to  see  what  the  effect   of  consciousness  is  on  the  appearance  of  dreams  and  lucid  dreams.  Dreams  seem   to  be  experienced  the  most  during  REM  sleep,  but  they  also  appear  during  non-­‐

REM   sleep.   Thanks   to   neuroimaging,   the   activation   and   deactivation   of   brain   areas   during   REM   sleep   has   been   made   visible.   The   (de)activation   of   certain   areas  might  give  a  possible  explanation  of  some  of  the  features  of  dreams,  such   as  emotionality,  lack  of  control  and  visual  elements.  Consciousness  during  sleep   is  an  interesting  factor,  that  also  can  be  related  to  (de)activation  of  certain  brain   areas.   Lucid   dreaming   is   an   interesting   example   of   the   coherence   of   consciousness  and  dreaming.  

   

Keywords:  Sleep,  consciousness,  REM,  non-­‐REM,  dreaming,  lucid  dreaming,   neuroimaging

(3)

 

Table  of  Contents  

Abstract  ...  2  

Introduction  ...  4  

Sleep  ...  4  

Non-­‐REM  sleep  ...  5  

REM  sleep  ...  5  

Consciousness  during  sleep  ...  6  

Dreaming  ...  7  

History  of  dream  research  ...  8  

Dream  recall  ...  9  

Neuroimaging  of  REM  sleep  ...  10  

Neuroimaging  of  non-­‐REM  sleep  ...  11  

Lucid  Dreaming  ...  12  

Conclusion/Discussion  ...  13  

References  ...  15    

(4)

Introduction  

Sleep  and  dreaming  have  always  aroused  our  curiosity  and  theories  as  to  their   cause  and  function  have  been  described  since  the  beginning  of  recorded  history.  

In   general   people   don’t   remember   what   they   dreamt   of   and   this   might   be   important   for   sleep’s   functions.   There   are,   however,   people   that   do   remember   what  they  were  busy  with  during  their  sleep.  In  general  this  isn’t  a  problem,  but   sometimes  it  can  be  a  cause  of  sleeping  problems.  This  might  be  good  reasons  to   investigate  the  relation  between  consciousness  and  sleep  more  thorough.    

Within  this  thesis  sleep  and  its  components  will  be  discussed  together  with  the   component  of  consciousness  during  sleep.  Dreaming  is  an  interesting  component   of  sleep  and  within  this  review  it  will  be  discussed  together  with  the  history  of   dream  research,  the  possibility  to  recalling  dreams  and  the  neuroimaging  of  REM   and  non-­‐REM  sleep.  The  phenomenon  of  lucid  dreaming  will  also  be  discussed.  

All  of  these  components  form  an  interesting  topic  to  look  at,  in  my  opinion.    

I   think   that   sleep   research   can   give   interesting   points   of   view   regarding   the   appearance  of  dreaming;  not  only  when  looking  at  the  activation  of  brain  areas,   but  also  when  analyzing  dream  reports.  The  standard  features  of  dreaming  (the   components   a   dream   standard   consists   of)   are,   as   found,   equal   for   everyone;   I   think   that’s   an   interesting   point   to   look   at.   These   features,   however,   aren’t   researched  much  until  now.  

Sleep  

Sleep  is  a  behavior  that  is  displayed  every  day  for  a  considerable  amount  of  time.  

Apparently  sleep  is  important  for  us;  but  why  is  so  little  understood.    

Phenomenologically,   sleep   can   be   described   as   a   readily   reversible   state   of   reduced   responsiveness   to,   and  

interaction   with,   the   environment   (Bear  et  al.  2007,  Dang-­‐Vu  et  al.  2010,   Czisch   et   al.   2004).   It   is   known   that   sleep  consist  of  two  stages:  Rapid  Eye   Movement  sleep  (REM  sleep)  and  non-­‐

REM   sleep.   Non-­‐REM   sleep   is   further   classified  into  stages  1  (N1),  2  (N2),  3   (N3)   and   4   (N3)   according   to   the   degree  of  EEG  slowing  (Rechtschaffen   et   al.   1968).   These   differences   are   shown   in   figure   1.   In   the   figure   EEGs   during  waking,  during  REM  sleep  and   during   the   different   phases   of   non-­‐

REM   sleep   are   shown.   When   looking   at  sleep,  the  time  spent  in  a  state  can   also   be   quantified:   it   is   known   that   roughly   75%   of   total   sleep   time   is   spent   in   non-­‐REM   and   25%   in   REM.  

The   periodic   cycles   which   are   executed   during   the   night   last   for   about   90   minutes  (Bear  et  al.  2007,  Kajimura  et  al.  1999,  Hobson  2009).    

Figure  1:  EEG  rhythms  during  sleep  (Bear  et  al.  

2007)

 

(5)

The  periodic  cycles  thus  consist  of  two  states:  non-­‐REM  sleep  and  REM  sleep.  In   the   following   part   of   this   thesis   both   non-­‐REM   sleep   and   REM   sleep   will   be   further   defined   and   there   will   also   be   looked   at   the   phenomenon   of   consciousness  during  sleep.  

 

Non-­‐REM  sleep  

Non-­‐REM   sleep   seems   to   be   the   period   of   sleep   for   rest.   Muscle   tension   throughout  the  body  is  reduced  and  movement  is  minimal,  but  during  non-­‐REM   sleep   muscles   are   not   paralyzed   (Bear   et  al.   2007,   Hobson   et  al.  2000).   During   non-­‐REM  sleep  consciousness  is  most  likely  to  fade  (Nir  et  al.  2010).  

Non-­‐REM  sleep  consists  of  compromising  stages  stage  1  (N1),  stage  2  (N2),  stage   3  and  4  (N3)  (slow  wave  or  delta  sleep).    

Stage   N1   is   characterized   as   the   stage   of   sleep   where   the   EEG   is   intermediate   between   wake   and   deep   sleep,   with   presence   of   theta   activity   (4-­‐7   Hz),   occasional  vertex  sharp  EEG  waves  and  slow  eye  movements  (figure  1).      

Stage  N2  sleep  occurs  throughout  the  night,  where  the  EEG  can  contain  spindles,   K-­‐complexes  and  occasional  slow  waves  (figure  1).  K-­‐complexes  represent  slow   biphasic  waves  of  high  voltage  (Czisch  et  al.  2004).    

Stage  N3  occurs  mostly  early  at  the  night  (Dang-­‐Vu  et  al.  2010,  Nir  et  al.  2010,   Bear  et  al.  2007)  and  it  is  characterized  by  spindles  and  slow  high-­‐voltage,  EEG   waves   hence   the   name   (Slow   Wave   Sleep)   due   to   synchronized   activity   of   neurons   (figure   1)   (Hobson   et   al.   2000,   Nir   et   al.   2010,   Hobson   2009,   Maquet   2000).    

Slow  waves  (Delta  waves)  are  oscillations  of  cortical  origin  that  have  frequencies   below  4  Hz;  spindles  are  waxing  and  waning  oscillations  of  thalamic  origin  that   have   frequencies   around   12-­‐15   Hz   (figure   1)   (Nir   et   al.   2010,   Dang-­‐Vu   et   al.  

2010,  Czisch  et  al.  2004).    

 

REM  sleep      

REM   sleep   has   been   discovered   in   1953   (Aserinsky   et   al.   1953)   and   it   is   also   known  as  ‘paradoxical’  sleep,  ‘active’  sleep  or  ‘desynchronized’  sleep  (Hobson  et   al.  2000).    

Contrary  to  non-­‐REM  sleep,  REM  sleep  is  considered  as  a  state  of  high  cerebral   and  low  physical  activation  that  would  provide  a  neurophysiological  marker  of   dreaming   (Desseilles   et   al.   2011,   Maquet   2000,   Hobson   2009,   Hobson   et   al.  

2000)   and   REM   sleep   is   also   related   to   the   homeostatic  control  of   body   temperature,  

including   the  

temperature   of   the   brain   (Hobson   et   al.  

2012).    

REM   sleep   occurs   mostly   late   at   night   and  it  seems  to  consist   of   an   active,  

hallucinating   brain   in   Figure  2:  REM  sleep  development.  (Hobson  2009)  

(6)

a   paralyzed   body,   which   is   characterized   by   movement   of   the   eyes,   fast   low-­‐

voltage   EEG   and   low   muscle   tone;   this   evoked   activity   propagates   much   like   it   does  during  wakefulness  (Nir  et  al.  2010,  Hobson  2009).  

REM   sleep   might   act   as   a   general   “virtual   rehearsal   mechanism”,   which   would   play  an  important  function  in  the  early  brain  development,  congruent  with  the   prominent   presence   of   REM   sleep   in   newborn   babies   and   infants   (figure   2)   (Desseilles  et  al.  2011,  Hobson  2009).      

Both   in   animals   and   humans,   REM   sleep   is   believed   to   be   generated   by   cholinergic   processes   arising   from   brainstem   structures   that   mediate   some   widespread   cortical   activation   via   a   ventral   pathway   innervating   the   basal   forebrain  and  a  dorsal  pathway  innervating  the  thalamus  (Steriade  et  al.  2005,   Maquet  2000).    

REM  sleep  has  been  studied  because  it  is  the  stage  during  which  intense  visual   dream   activity   is   most   prevalent   (Braun   et  al.   1998,   Hobson   2009).   REM   sleep   may   present   a   state   in   which   the   brain   engineers   selective   activation   of   an   interoceptive   network,   which   is   dissociated   from   primary   sensory   and   heteromodal  association  areas  at  either  end  of  the  visual  hierarchy  that  mediate   interactions  with  the  external  world  (Braun  et  al.  1998).    

 

Consciousness  during  sleep  

Since   primary   sensory   areas   are   connected   to   consciousness   and   REM   sleep   shows   a   dissociation   of   primary   sensory   areas,   how   can   consciousness   during   sleep   be   defined?   To   start   there   are   two   types   of   consciousness:   primary   consciousness  and  secondary  consciousness.    

Primary   consciousness   can   be   defined   as   simple   awareness   that   includes   perception  and  emotion,  where  perception  is  defined  as  detailed  visuomotor  and   other  sense  modality  information  that  constitutes  the  representational  structure   of   awareness.   Such   awareness   must   involve   the   interaction   and   integration   of   emotion  (Hobson  2009,  Hobson  et  al.  2012).    

Secondary   consciousness   depends   on   language   and   includes   such   features   as   self-­‐reflective  awareness,  abstract  thinking,  volition  and  metacognition  (Hobson   2009,  Hobson  et  al.  2012).    

An  interesting  point  of  view  might  be  that  homeothermy  may  be  necessary  for   normal   consciousness;   even   small   variations   of   brain   temperature   are   devastating  to  consciousness  (Hobson  et  al.  2012).  

The   level   and   nature   of   a   person’s   conscious   experience   varies   dramatically   during   sleep;   during   slow   wave   sleep   consciousness   can   nearly   vanish   despite   persistent  neural  activity  in  the  thalamocortical  system  (Nir  et  al.  2010,  Hobson   et   al.   2000).   It   is   useful   to   consider   both   similarities   and   differences   between   waking   consciousness   and   dreaming   consciousness   and   to   relate   these   differences  to  changes  in  brain  activity  and  organization  (Hobson  2009,  Nir  et  al.  

2010).  In  this  case,  the  differences  between  waking  consciousness  and  dreaming   consciousness  are  of  interest  the  most..  

Dreaming  consciousness  differs  from  waking  consciousness  by  showing  reduced   attention   and   voluntary   control,   lack   in   self-­‐awareness,   altered   reflective   thought,  occasional  hyper-­‐emotionality  and  impaired  memory  (Nir  et  al.  2010).  

Perhaps  the  most  striking  feature  of  conscious  experiences  during  sleep  is  how   similar  the  inner  world  of  dreams  is  to  the  real  world  of  wakefulness  (Hobson  et  

(7)

al.  2000,   Nir   et  al.   2010,   Hobson   2009).   The   most   obvious   difference   between   dreaming   and   waking   consciousness   is   the   profound   disconnection   of   the   dreamer  from  their  current  environment;  such  disconnection  is  a  key  feature  of   sleep   (it   is   also   known   as   ‘high   arousal   threshold’)   (Nir   et   al.   2010).   In   adult   humans,   dreams   have   features   of   primary   consciousness   but   do   not   strongly   evince  the  characteristics  of  secondary  consciousness  (Hobson  2009).  

Dreaming  

Dreaming:   a   phenomenon   almost   everybody   has   heard   and   one   that   everyone   has  experienced  at  least  once  in  his  or  her  live.  But  what  is  ‘dreaming’  and  what   is  a  ‘dream’?    

Dreaming  represents  a  major,  universal  facet  of  human  experience  that  offers  a   unique  view  of  consciousness  and  cognition  (Desseilles  et  al.  2011,  Hobson  et  al.  

2000,  Nir  et  al.  2010,  Hobson  2009,  Hobson  et  al.  2012).  In  the  early  decades  of   the   psychoanalytic   era,   dreaming   was   regarded   as   the   meaningful   reflection   of   unconscious  mental  functioning  (Palagini  et  al.  2011).  The  scientific  analysis  of   dreaming  is  made  somewhat  prohibitive  because  the  nature  of  the  dream-­‐state  is   highly  subjective  and  a  genuinely  personal  experience.  Several  theories  include   the  affirmation  that  dreaming  is  a  random  by-­‐product  of  REM  physiology,  which   could   possibly   be   related   to   some   “unlearning”   mechanisms   in   an   otherwise   overloaded  brain  (Desseilles  et  al.  2011,  Hobson  et  al.  2000).    

But  other  studies  include  that  dreaming  is  a  state  of  consciousness  characterized   by   internally   generated   sensory-­‐motor,   verbal,   cognitive   and   emotional   experiences,   which   may   unfold   in   actions   and   events   forming   imaginary   plots   (Desseilles  et  al.  2011,  Nir  et  al.  2010,  Hobson  2009,  Marzano  et  al.  2011,  Hobson   et  al.  2012).  Dreams,  similar  to  one’s  personality  in  general,  are  quite  stable  over   time  in  adulthood  and  they  might  share  many  characteristics  across  cultures  (Nir   et  al.  2010).  Emotional  experiences  in  dreams  are  frequent,  intense  and  possibly   biased   toward   negative   emotions.   Probably   all   the   categories   of   dream   experience   described   are   also   subject   to   many   alterations   and   distortions   that   are  unlikely  to  occur  in  real  waking  life  (Maquet  2000,  Desseilles  et  al.  2011,  Nir   et   al.   2010).   Dreaming,   especially   in   religious   contexts,   was   thought   to   be   a   supernatural  manifestation,  and  considered  premonitory  or  prophetic  (Palagini   et   al.   2011).   Dream   productive   activity   is   submitted   to   unconscious   and   conscious  processes  (Cicogna  et  al.  2001,  Hobson  et  al.  2012).  

Findings  suggest  that  REM  sleep  might  reasonably  be  considered  as  a  facilitating   neurophysiological   state   for   dreaming   to   occur,   even   though   dreams   are   not   exclusively  experienced  during  this  state  of  sleep  (Desseilles  et  al.  2011,  Nir  et  al.  

2010,  Hobson  et  al.  2012).  

More   recent   models   involve   that   dreams   echo   dynamic   functions   like   reactivation   and   further   consolidation   of   novel   and   individually-­‐relevant   features   encountered   during   previous   waking   experience   (Hobson   et   al.   2012,   Desseilles   et   al.   2011)   Such   models   of   dreaming   might   be   consistent   with   accumulating   evidence   showing   the   potential   benefit   of   reprocessing   freshly   encoded  information  for  long-­‐term  storage  (Hobson  et  al.  2012,  Desseilles  et  al.  

2011,  Hobson  et  al.  2000).  

 

(8)

In  REM  sleep,  dreaming  is  characterized  by  the  following  remarkably  consistent   set  of  features  (Hobson  et  al.  2000):    

ü Dreams   contain   formed   hallucinatory   perceptions,   especially   visual   and   motoric,  but  occasionally  in  any  and  all  sensory  modalities  

ü Dream  imagery  can  change  rapidly  and  is  often  bizarre  in  nature   ü Dreams  are  delusional  

ü Self-­‐reflection  in  dreams  is  generally  found  to  be  absent  relative  to  waking   and   it   often   involves   weak,   post   hoc   and   logically   flawed   explanations   of   improbable  or  impossible  events  and  plots  

ü Dreams  lack  orientational  stability  

ü Dreams  create  story  lines  to  explain  and  integrate  all  the  dream  elements  in   a  single  confabulatory  narrative  

ü Dreams  show  increased  and  intensified  emotions,  especially  fear  and  anxiety   ü Dreams  show  increased  incorporation  of  instinctual  programs  

ü Volitional  control  is  greatly  attenuated  in  dreams  

All   these   features   can   be   found   in   REM   dreams   and   most   dreams   during   REM   sleep   contain   a   majority   of   these   features   (Hobson   et   al.   2000).   Contrastingly,   these  features  are  rarely  found  in  non-­‐REM  dream  reports  (Hobson  et  al.  2000,   Maquet  2000,  Perogamvros  et  al.  2012).  

 

History  of  dream  research  

The  first  written  record  of  dream  interpretation  came  from  the  Egyptians  around   1275   B.C.   (Palagini   et   al.   2011).   The   first   steps   toward   modern   dream   interpretation  and  their  relationship  to  emotions  were  taken  in  the  5th  century   B.C.   when   the   Greek   philosopher   Heraclitus   suggested   that   a   person’s   dream   world  was  created  within  his  own  mind  (Palagini  et  al.  2011).    During  this  era   dreams  were  thought  to  have  prophetic  properties  (Palagini  et  al.  2011).    

During  medieval  times  theologians  practiced  a  more  careful,  and  to  some  extent   more   scientific,   study   of   sleep   and   dream   phenomena.   Their   interpretations,   however,   were   still   constrained   by   superstition   and   witchcraft   (Palagini   et   al.  

2011).  Towards  the  end  of  the  1800s  dream  interpretation  centered  on  the  new   psychological  approach  of  psychoanalysis  in  which  the  content  of  a  dream  was   analyzed  to  reveal  its  underlying  or  ‘latent’  meaning  about  the  dreamer’s  psyche   (Palagini  et  al.  2011).    

During   the   1950s   there   was   a   turning   point   for   the   science   of   dreaming;   an   objective   indicator   of   the   dreaming   state   was   discovered   and   a   new   cognitive   approach   to   the   phenomenology   of   dreams   was   developed   (Desseilles   et   al.  

2011).  Since  the  1970s  several  authors  have  shown  that  dreaming  may  promote   the   resolution   of   emotional   conflict   and   reduce   next-­‐day   negative   mood   (Desseilles   et   al.   2011,   Palagini   et   al.   2011).   Since   the   1990s   human   brain   imaging   became   a   key   player   in   the   field   of   sleep   research   (Desseilles   et   al.  

2011).   Most   modern   dream   research   tries   to   relate   neuronal   activity   retrospectively   to   dream   form   rather   than   to   dream   content;   they   focus   on   properties   of   all   dreams   rather   than   to   investigate   the   neural   correlate   of   a   particular  dream  (Nir  et  al.  2010).  

 

(9)

Dream  recall    

Because  of  the  development  of  brain  research,  it  is  now  possible  to  investigate   the  phenomenon  of  recalling  dreams.    

According  to  Fell  et  al.  2006,  the  quantity  of  dream  recall  was  found  to  correlate   with   functional   coupling   between   rhinal   and   hippocampal   cortices   They   measured  the  activity  within  these  cortices  during  dream  recall  and  looked  at  the   correlation.   They   found   that   the   coupling   between   these   cortices   led   to   better   dream  recall  (Fell  et  al.  2006).  Because  the  processing  of  declarative  memories   relies   on   these   structures   of   the   medial   temporal   lobe,   increased   interaction   between   those   structures   might   be   a   key   factor   in   determining   declarative   memory  formation  during  REM  sleep  and  thus  increase  dream  recall  (Desseilles   et   al.   2011,   Fell   et   al.   2006).   Memory   is   altered   for   the   dream   and   within   the   dream;  unless  the  dreamer  wakes  up,  most  dreams  will  be  lost  forever  (Nir  et  al.  

2010,  Fell  et  al.  2006).  Most  children  and  young  adults  remember  their  dreams   at   least   sometimes   (84%),   only   5%   reported   no   dream   recall   at   all   (Voss   et  al.  

2012).  It  seems  to  be  that  girls  have  a  slightly,  but  significantly,  higher  recall  of   their  dreams  (Voss  et  al.  2012).    

Dream   reports   contain   a   variety   of   sensations   across   different   modalities:   the   most  prevalent  are  vision  (nearly  100%  of  all  dreams  contain  at  least  one  visual   element)   and   audition   (40-­‐60%),   while   movements   and   tactile   sensation   (15-­‐

30%)  and  smell  and  taste  (less  than  1%)  are  less  frequent  (Desseilles  et  al.  2011,   Nir   et   al.   2010).   The   neurocognitive   model   claims   that   dreams   are   internal   narratives;   unless   internal   experiences   are   tied   to   external   cues   (i.e.   times   and   places)   they   are   bound   to   be   forgotten   (Nir   et   al.   2010).   Dream   recall   was   significantly  correlated  with  frequent  lucid  dreaming  (Voss  et  al.  2012).  

Not   only   after   awakening   from   REM   sleep,   but   also   after   awakening   from   non-­‐

REM  sleep  dream  recall  is  obtained,  with  some  differences  in  the  frequency  and   content  characteristics  (Marzano  et  al.  2011,  Hobson  et  al.  2000,  Maquet  2000).  

A  positive  relationship  of  both   word   count   and   subjectively   estimated   dream   duration   with   the   length   of   preceding   REM   sleep   exists   (Hobson   et   al.   2000).   Reports   from   REM   sleep   awakenings   are   longer,   more  perceptually  vivid,  more   motorically   animated,   more   emotionally   charged   and   less   related   to   waking   life   than   reports   from   non-­‐REM   awakenings   (Hobson   et   al.  

2000).   In   contrast   to   REM   sleep   reports,   non-­‐REM   sleep   reports   contain   thought-­‐like  

mentation   and  

representations   of   current   concerns   more   often   than   do   REM  sleep  reports  (Hobson  et   al.   2000).   In   figure   3,   the   tomographic   distribution   of   correlation   values   (rho  

Figure  3:  tomographic  distribution  of  brain  activity   (Marzano  et  al.  2011)  

(10)

values)  between  the  actual  number  of  dreams  recalled  after  morning  awakenings   with  the  amount  of  theta  activity  in  REM  sleep  (top  of  the  figure)  and  with  alpha   activity  in  stage  2  non-­‐REM  sleep  (bottom  of  the  figure)  are  shown  (Marzano  et   al.   2011).   The   values   are   expressed   in   terms   of   rho   values:   positive   rho   values   indicate   the   presence   of   a   positive   correlation   and   vice   versa.   The   maps   are   based   on   19   unipolar   EEG   derivations   of   the   international   10-­‐20   system   with   averaged  mastoid  reference  (Marzano  et  al.  2011).  

 

Neuroimaging  of  REM  sleep  

Neuroimaging  studies,  using  PET  and  fMRI,  have  shown  that  the  distribution  of   brain  activity  during  REM  sleep  is  not  homogeneous,  which  provides  important   insights   into   the   putative   cerebral   underpinnings   of   dreaming   (Desseilles   et  al.  

2011,  Hobson  et  al.  2000).  Unlike  PET,  fMRI  allows  repeated,  non-­‐invasive  and   high-­‐resolution   measurements   of   functional   changes   in   the   human   brain   (Desseilles   et   al.   2011).   An   advantage,   for   example,   is   that   with   help   of   fMRI   correlations  between  spontaneous  eye  movements  and  regional  cerebral  blood   flow   in   the   cortices   and   thalamus   have   been   found   (Desseilles   et   al.   2011).  

However,   fMRI   is   associated   with   some   constraints   that   make   this   method   relatively  complicated  for  sleep  studies  (Desseilles  et  al.  2011).  

Early   neuroimaging   data   confirmed   the   sustained   neuronal   activity   observed   with   EEG,   by   showing  a  high-­‐level   of   cerebral   energy   requirements   and   a   widespread   increase   of   cerebral   blood   flow   during   REM   sleep   (Desseilles   et   al.   2011,   Hobson   et   al.   2000).   Compared   to   wakefulness   and   non-­‐REM  sleep,  REM  

sleep   is  

characterized   by   a   specific   pattern   of  

brain  activation  (Desseilles  et  al.  2011).  

During  REM  sleep  in  humans,  compared  to  wakefulness,  a  significant  increase  in   regional   brain   activity   has   been   found   in   the   following   brain   areas:   Pontine   tegmentum,  Thalamus,  Basal  forebrain,  Anterior  cingulate  cortex  (ACC),  Limbic   and   paralimbic   structures,   including   Amygdaloid   complexes   and   Hippocampal   formation   (figure   4)   (Desseilles   et   al.   2011,   Braun   et   al.   1998,   Nir   et   al.   2010,   Marzano   et   al.   2011,   Dang-­‐Vu   et   al.   2010,   Hobson   et   al.   2000,   Maquet   2000).

Activation   of   these   regions   suggest   that   memory   consolidation   processes,   in   particular   emotional   memories,   may   occur   during   REM   sleep   (Desseilles   et   al.  

2011).  

Figure  4:  Functional  neuroanatomy  of  human  REM  sleep  (PET  study)     (Desseilles  et  al.  2011)  

(11)

Several  motor  regions  are  activated  during  REM  sleep,  including  primary  motor   and  premotor  cortices,  as  well  as  the  cerebellum  and  basal  ganglia.  These  results   are  in  line  with  the  motor  content  of  dreams  (Desseilles  et  al.  2011).  

Braun  et  al.  (1998)  found  that,  during  REM  sleep,  activation  within  the  temporo-­‐

occipital   regions   showed   some   functional   dissociation.   The   activation   of   the   extrastriate   cortex   (visual   association   areas)   significantly   correlated   with   the   deactivation   of   the   striate   cortex   (primary   visual   cortex)   during   REM   sleep   (Braun  et  al.  1998).    

The  correlation  between  these  regions  is  given  in  figure  5;  the  more  active  the   extrastriate  cortex  is,  the  less  active  the  striate  cortex  is.  In  figure  5A,  REM  sleep   is   compared   to   wakefulness;   within   this   figure   the   correlation   between   the   lateral   occipital   cortex   and   the   striate   cortex   is   given.  In  figure  5B,  REM  sleep  is  compared  to   Slow   Wave   Sleep;   within   this   figure   the   correlation   between   the   inferotemporal   cortex   and   the   striate   cortex   is   given   during   REM   sleep   compared   to   Slow   Wave   Sleep.  

Activity  in  both  regions  is  usually  found  to  be   positively   correlated   during   wakefulness   (Braun  et  al.  1998).  

Several   regions   are   significantly   hypoactive   during   REM   sleep   when   compared   to   wakefulness.   The   regions   that   are   significantly  hypoactive  are  in  particular:  the   Dorsolateral   prefrontal   cortex   (DLPFC),   Orbitofrontal   cortex,   Posterior   cingulate   gyrus,   Precuneus   and   the   Inferior   parietal   cortex   (figure   4)     (Desseilles   et   al.   2011,   Dang-­‐Vu   et   al.   2010,   Czisch   et   al.   2004,   Maquet  2000,  Hobson  et  al.  2000).  Besides  these  regions,  other  regions  also  are   hypoactive   compared   to   wakefulness,   but   not   this   significant.   Maybe   the   hypo-­‐

activity  of  these  brain  regions  play  an  important  role  in  dream  amnesia  (Nir  et  al.  

2010,  Maquet  2000).  

 

Neuroimaging  of  non-­‐REM  sleep  

Neuroimaging  studies  also  strongly  support  a  distinction  between  REM  and  non-­‐

REM  sleep  as  states  whose  differing  neuroanatomical  activation  patterns  predict   their   observed   phenomenological   differences   (Hobson   et   al.   2000).   Several   studies  on  cerebral  metabolism  during  sleep  have  indicated  that  global  cerebral   energy  metabolism  is  decreased  during  non-­‐REM  sleep  (Andersson  et  al.  1998,   Hobson  et  al.  2000);  global  blood  flow  compared  to  wakefulness,  however,  didn’t   seem   to   be   affected   by   sleep   (Andersson   et   al.   1998).   PET   and   fMRI   have   consistently   found   a   drop   of   brain   activity   during   non-­‐REM   sleep   when   its   activity  is  compared  to  wakefulness;  this  decrease  has  been  estimated  at  around   40%   during   slow   wave   sleep   compared   to   wakefulness   (Dang-­‐Vu   et   al.   2010,   Palagini   et   al.   2011).   The   reductions   in   activity   were   located   in   subcortical   regions   (the   brainstem,   thalamus,   hippocampus,   basal   ganglia   and   basal  

Figure  5:  Correlation  between   extrastriate  cortex  and  striate  cortex.  

A  shows  REM  sleep  compared  to  wake,   B  shows  REM  sleep  compared  to  SWS   (Braun  et  al.  1998)  

(12)

forebrain)   and   cortical   regions   (the   prefrontal   cortex,   anterior   cingulate   cortex   and   precuneus)   (Hobson   et   al.   2000,   Palagini   et   al.   2011,   Dang-­‐Vu   et   al.   2010,   Andersson  et  al.  1998).  

Lucid  Dreaming  

Since   this   thesis   is   about   the   consciousness   during   sleep   and   the   effect   on   the   appearance   of   dreaming,   lucid   dreaming   is   an   extremely   interesting   kind   of   dreaming.  

Lucid  dreaming  is  the  experience  in  which  the  dreamer  is  conscious  of  being  in  a   dream  (Cicogna  et  al.  2001,  Voss  et  al.  2009,  Hobson  2009,  Voss  et  al.  2012)  and,   to  some  extent,  capable  of  modifying  the  content  of  the  ongoing  dream  (Voss  et   al.   2009,   Voss   et   al.   2012).   The   occurrence   of   lucid   dreaming   in   adulthood   is   rather   rare   and   difficult   to   maintain   (Voss   et   al.   2012).   Several   authors   have   reported   an   inverse   relationship   of   age   and   frequency   of   lucid   dreaming:   lucid   dreaming  occurs  primarily  in  childhood  and  puberty  (Voss  et  al.  2012).  Frequent   lucid   dreaming   occurs   most   often   before   the   age   of   17   years,   incidence   rates   seem   to   remain   at   similar   levels   until   the   age   of   13   years,   after   which   it   steadily   declines.   Older   students   (ages   17-­‐19   years)   appear   to   experience   lucid   dreams   only   very   infrequently   (Voss   et   al.   2012).   EEG   findings   indicate   that   lucid   dreaming   might   correspond  to  a  hybrid  state  of  consciousness,   with   some   EEG   features   similar   to   wakefulness  and  some  to  REM  sleep;  with  the   rare   but   instructive   co-­‐activation   of   both   primary  and  secondary  consciousness  circuits   (Voss  et  al.  2009,  Hobson  2009).  Some  studies   have   shown   that   it   is   possible   to   let   the   participants   signal   lucidity   by   horizontal   eye   movements   (Voss   et   al.   2009).   As   shown   in   figure  6,  the  eye  movement  signals  (EOG)  are   recorded   for   three   different   states:   Waking   with  Eyes  Closed  (WEC),  Lucid  and  REM  sleep.  

The  EOG  refers  to  two  channels,  one  for  each   eye  as  indicated  by  the  separate  colors.  

Eye   movements   in   lucid   dreaming   are   systematic,   repetitive   and   more   pronounced   than   in   REM   sleep   (Voss   et   al.   2009).   Low   EMG   (figure   6)   is   found   in   lucid   dreaming   and   REM   sleep,   highlighting   the   muscle   relaxation   common   to   both   states  (Voss  et  al.  2009).  

Quantitative  EEG  studies  comparing  brain  activity  during  waking,  lucid  dreaming   and  REM  sleep  show  a  difference  in  activity  of  the  brain.  Frontal  areas  are  highly   activated   during   waking   but   show   deactivation   during   REM   sleep   (figure   7).  

During   lucid   dreaming   there   is   an   increase   in   40   Hz   power   and   coherence   in   frontal  areas  compared  with  non-­‐lucid  REM  sleep/  In  lucid  dreaming  additional   electrical   activation   of   the   brain   is   needed   to   activate   the   dreamer’s   forebrain  

Figure  6:  Signaling  lucidity  (Voss  et  al.  

2009)  

(13)

enough   to   recognize   the   true   state   without   causing  

waking   and   thus  

terminating   the   dream  

(Hobson   2009).  

Differentiated   regional   activation   (figure   7)   may  

underlie   the  

phenomenological  

distinction   between   the  

states   REM   sleep,   lucid   dreaming   and   waking;   scale   bars   indicate   standardized   power  based  on  scale  potentials  (Hobson  2009).  

 

Conclusion/Discussion  

When  looking  at  all  the  components  of  sleep,  consciousness  and  dreaming  there   can  be  concluded  that  all  of  these  show  a  clear  coherence.  Sleep  is  a  phenomenon   that,  in  general,  everybody  experiences  every  night.  Consciousness  and  dreaming   seem  to  be  related  to  each  other,  but  the  exact  relationship  between  these  two   components   is   not   yet   clear.   Lucid   dreaming   is   an   interesting   example   of   the   coherence  of  consciousness  and  dreaming,  but  also  in  this  case  still  a  lot  has  to  be   done.  

Dreams  seem  to  be  experienced  the  most  during  REM  sleep,  but  they  also  appear   during  non-­‐REM  sleep.  Thanks  to  neuroimaging,  the  activation  and  deactivation   of   brain   areas   during   REM   sleep   has   been   made   visible.   The   (de)activation   of   certain  areas  might  give  a  possible  explanation  of  some  of  the  features  of  dreams,   such  as  emotionality,  lack  of  control  and  visual  elements.  

The   secondary   aspects   of   consciousness   rarely   appear   during   dreams.   And   if   they  appear,  it  will  most  likely  be  in  the  dream  of  a  child;  lucid  dreaming  is  an   example   of   this.   The   appearance   of   secondary   consciousness   during   dreaming   (e.g.  being  aware  of  dreaming)  might  be  artifacts  that  only  appear  under  special   conditions,  e.g.  brain  development  in  children.  If  this  were  true,  the  absence  of   secondary   consciousness   during   sleep   would   be   a   normal,   healthy   situation.  

Consciousness   would   be   active   again   during   wakefulness,   when   sensory   information  begins  to  play  a  role  again.    

When   looking   at   brain   activity,   certain   brain   areas   have   to   be   active   when   waking  but  not/less  active  during  sleep.  The  interpretation  of  what  happens  in   the  brain  and  the  behavioral  reactions  that  would  appear  when  wake,  have  to  be   diminished.  If  this  were  not  the  case,  one  would  jump  out  of  his/her  bed  for  even   the   slightest   thing.   This   means   that   is   would   almost   be   necessary   not   to   know   what  you  think  during  your  sleep  to  have  a  good  night  rest.  

 

When  looking  at  all  of  the  authors  and  studies  I  have  used,  I  think  I  have  seen  a   lot  of  different  views  regarding  sleep,  consciousness  and  dreaming.    

Allan  Hobson  seems  to  be  an  important  person  within  the  dream  research,  but  I   do  think  that  some  of  his  claims  are  a  little  odd.  Sometimes  he  tries  to  convince   his   readers   of   the   necessity   of   dreaming.   If   dreaming   really   was   necessary,   I   think   also   adults   should   remember   what   they   dreamt   of.   Children   often   do  

Figure  7:  Comparison  of  activity  during  different  stages   (Hobson  2009)  

(14)

remember   what   they   dreamt   of,   but   they   don’t   seem   to   rate   this   at   high   importance.  

The   studies   of   Ursula   Voss,   I   really   liked,   because   they   double-­‐checked   everything.   For   example   with   the   questionnaires,   students   executed   them   with   the   children   that   participated,   because   students   are   ‘closer’   to   children   than   professors   are.   Besides   this   they   also   used   antipodal   questions;   if   a   child   answered  ‘yes’  on  the  first  question,  it  had  to  answer  ‘no’  on  the  next  one.  

Voss  et  al.  used  large  experimental  groups,  so  outliers  wouldn’t  conflict  the  data   too  much.  

I   also   used   some   reviews;   these   articles   gave   an   overview   of   a   big   number   of   studies.  I  think  the  reviews  were  a  good  source  of  information,  because  it  gave  a   good  overview  without  a  too  obvious  opinion  in  it.  

I  found  two  types  of  researchers:  the  ones  with  a  clear  view  that  will  use  all  the   date  they  can  to  proof  they’re  right  and  the  ones  that  are  curious  and  willing  to   change  their  view  for  a  different  one  of  the  data  need  them  to  do  so.  

I  think  that  Hobson  is  an  example  of  the  first  type  of  researches  and  Voss  of  the   second  type.  

 

(15)

References  

-­‐ Andersson   JLR,   Onoe   H,   Hetta   J,   Lidström   K,   Valind   S,   Lilja   A,   Sundin   A,   Fasth   KJ,   Westerberg   G,   Broman   JE,   Watanabe   Y,   Långström   B   (1998)   Brain   Networks   Affected   by   Synchronized   Sleep   Visualized   by   Positron   Emission   Tomography.   Journal   of   Cerebral   Blood   Flow   and   Metabolism   18(7):  701-­‐715  

-­‐ Aserinsky  E,  Kleitman  N  (1953)  Regularly  occurring  periods  of  eye   motility,  and  concomitant  phenomena,  during  sleep  Science  118(3062):

273-­‐274  

-­‐ Bear  MF,  Connors  BW,  Paradiso  MA  (2007)  Neuroscience;  Exploring  the   Brain.  Lippincott  Williams  &  Wilkins  (ISBN-­‐10:  0-­‐7817-­‐6003-­‐8  /  ISBN-­‐13:  

978-­‐0-­‐7817-­‐6003-­‐4)  585-­‐616    

-­‐ Braun   AR,   Balkin   TJ,   Wesensten   NJ,   Gwadry   F,   Carson   RE,   Varga   M,   Baldwin   P,   Belenky   G,   Herscovitch   P   (1998)   Dissociated   Pattern   of   Activity  in  Visual  Cortices  and  Their  Projections  During  Human  Rapid  Eye   Movement  Sleep.  Science  279:  91-­‐95  

-­‐ Cicogna   PC,   Bosinelli   M   (2001)   Consciousness   during   dreams.  

Consciousness  and  Cognition  10:  26-­‐41  

-­‐ Czisch   M,   Wehrle   R,   Kaufmann   C,   Wetter   TC,   Holsboer   F,   Pollmächer   T,   Auer  DP  (2004)  Functional  MRI  during  sleep:  BOLD  signal  decreases  and   their  electrophysiological  correlates.  European  Journal  of  Neuroscience  20:  

566-­‐574  

-­‐ Dang-­‐Vu  TT,  Schabus  M,  Desseilles  M,  Sterpenich  V,  Bonjean  M,  Maquet  P   (2010)   Functional   Neuroimaging   Insights   into   the   Physiology   of   Human   Sleep.  Sleep  33(12):  1589-­‐1603  

-­‐ Desseilles  M,  Dang-­‐Vu  TT,  Sterpenich  V,  Schwartz  S  (2011)  Cognitive  and   emotional   processes   during   dreaming;   A   neuroimaging   view.  

Consciousness  and  Cognition  20:  998-­‐1008  

-­‐ Fell  J,  Fernandez  G,  Lutz  MT,  Kockelmann  E,  Burr  W,  Schaller  C,  Elger  CE,   Helmstaedter   C   (2006)   Rhinal-­‐hippocampal   connectivity   determines   memory  formation  during  sleep.  Brain  129:  108-­‐114  

-­‐ Hobson   JA   (2009)   REM   sleep   and   dreaming:   towards   a   theory   of   protoconsciousness.  Nature  reviews  Neuroscience  10:  803-­‐813  

-­‐ Hobson   JA,   Friston   KJ   (2012)   Waking   and   Dreaming   consciousness:  

Neurobiological   and   functional   considerations.   Progress   in   Neurobiology   98:  82-­‐98  

-­‐ Hobson   JA,   Pace-­‐Schott   EF,   Stickgold   R   (2000)   Dreaming   and   the   brain:  

Toward  a  cognitive  neuroscience  of  conscious  states.  Behavioral  and  brain   sciences  23(6):  793-­‐1121,    

-­‐ Kajimura   N,   Uchiyama   M,   Takayama   Y,   Uchida   S   Uema   T,   Kato   M,   Sekimoto   M,   Watanabe   T,   Nakajima   T,   Horikoshi   S,   Ogawa   K,   Nishikawa   M,  Hiroki  M,  Kudo  Y,  Matsuda  H,  Okawa  M,  Takahashi  K  (1999)  Activity  of   Midbrain   Reticular   Formation   and   Neocprtex   during   the   Progression   of   Human  Non-­‐Rapid  Eye  Movement  Sleep.  Journal  of  Neuroscience  19(22):  

10065-­‐10073  

-­‐ Maquet   P   (2000)   Functional   neuroimaging   of   normal   human   sleep   by   positron  emission  tomography.  Journal  of  Sleep  Research  9:  207-­‐231  

(16)

-­‐ Marzano  C,  Ferrara  M,  Mauro  F,  Moroni  F,  Gorgoni  M,  Tempesta  D,  Cipolli   C,   De   Gennaro   L   (2011)   Recalling   and   Forgetting   Dreams:   Theta   and   Alpha  Oscillations  during  Sleep  Predict  Subsequent  Dream  Recall.    Journal   of  Neuroscience  31(18):  6674-­‐6683  

-­‐ Nir  Y,  Tononi  G  (2010)  Dreaming  and  the  brain:  from  phenomenology  to   neurophysiology.  Trends  in  Cognitive  Sciences  14(2):  88-­‐100  

-­‐ Palagini   L,   Rosenlicht   N   (2011)   Sleep,   dreaming   and   mental   health:   A   review   of   historical   and   neurobiological   perspectives.   Sleep   Medicine   Reviews  15:  179-­‐186  

-­‐ Perogamvros   L,   Schwartz   S   (2012)   The   roles   of   the   reward   system   in   sleep   and   dreaming.   Neuroscience   and   Biobehavioral   Reviews   xxx-­‐xxx   (article  in  press,  accepted  25  May  2012,  published  by  Elsevier  Ltd.)  

-­‐ Rechtschaffen   A,   Kales   A   (1968)  A   Manual   of   Standardized   Terminology   Techniques  and  Scoring  System  for  Sleep  Stages  of  Human  Subjects  Brain   Information  Service,  UCLA  

-­‐ Steriade  M,  McCarley  RW  (2005)  Brain  control  of  wakefulness  and  sleep.  

New  York:  Springer  

-­‐ Voss  U,  Frenzel  C,  Koppehele-­‐Gossel  J,  Hobson  JA  (2012)  Lucid  dreaming:  

an  age-­‐dependent  brain  dissociation.  Journal  of  Sleep  Research  April:  1-­‐9   DOI:  10.1111/j.1365-­‐2869.2012,01022.x  

-­‐ Voss  U,  Holzmann  R,  Tuin  I,  Hobson  JA  (2009)  Lucid  Dreaming:  A  State  of   Consciousness   with   Features   of   Both   Waking   and   Non-­‐Lucid   Dreaming.  

Sleep  32(9):  1191-­‐1200  

Referenties

GERELATEERDE DOCUMENTEN

The, Saffron, Wave:, Democracy, and, Hindu, Nationalism, in, Modern,India!(Princeton,!New!Jersey:!Princeton!University!Press,!1999).!.

In 2000, a study [12] in which the effects of total sleep deprivation, REM sleep and SWS interruption and sleep recovery on mechanical and thermal pain sensitivity

Firstly, the internal market clause E-Commerce Directive opposes restrictions that make the service of an information society service subject to requirements that target

Daarom worden steeds meer smart grids aangelegd, waarbij lokale duurzame energie slim wordt opgewekt en gedistribueerd, bijvoorbeeld door de overtollige zonne-energie van

Stanford_NER and AIDA disambiguation system as a competitor to our ex- traction and disambiguation system. For a combined extraction and disam- biguation evaluation, we consider

Arosha Bandara The Open University, UK Mark Burgess Oslo University College, Norway Olivier Festor INRIA Nancy - Grand Est, France David Hausheer University of Zurich, Switzerland

The transmissibility of an infection can be quantified by its basic reproductive number , defined as the mean number of secondary infections seeded by a typical infective into

7RHYRHJHQYDQZDDUGH • +RHNXQQHQHLJHQVFKDSSHQYDQSURGXFWHQSURFHVWRWZDDUGHZRUGHQJHEUDFKW" • :DWLVGHUROYDQLQIRUPDWLHPDQDJHPHQWLQKHWWRHYRHJHQYDQZDDUGH"