• No results found

ACT-­‐R modeling to investigate the effect of multiple graphical representations on fraction learning

N/A
N/A
Protected

Academic year: 2021

Share "ACT-­‐R modeling to investigate the effect of multiple graphical representations on fraction learning"

Copied!
67
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

ACT-­‐R  modeling  to  investigate  the  effect   of  multiple  graphical  representations  on  

fraction  learning  

 

   

Margreet  Vogelzang  

1648497   July  2012  

 

   

Master's  Thesis  

Human-­‐Machine  Communication   University  of  Groningen,  the  Netherlands  

   

         

Internal  supervisor:  

Prof.  Dr.  Niels  Taatgen  (Artificial  Intelligence,  University  of  Groningen)    

External  supervisor:  

Dr.  Vincent  Aleven  (Carnegie  Mellon  University,  USA)  

 

(2)

Abstract  

To  improve  children's  understanding  of  fractions,  many  curricula  have  started  to   use   graphical   representations   (GRs).   These   would   help   children   to   relate   to   the   problem  more  than  when  only  a  symbolic  representation  is  shown.  Moyer  et  al.  

(2002)   state   that   the   use   of   GRs   can   be   especially   helpful   in   a   computer   tutor,   because  of  the  interactions  that  are  not  possible  on  paper.  The  Rational  Number   Project  (RNP,  Cramer  et  al.,  1997)  recommends  using  multiple  GRs  (MGRs)  in  one   curriculum:  potentially  children  could  then  combine  the  benefits  of  the  separate   GRs.  

 

Rau   et   al.   (in   press)   performed   a   classroom   study   with   an   intelligent   tutoring   system   for   fraction   learning   with   4th   and   5th   grade   students.   The   study   had   a   between-­‐subjects   design   with   one   single   GR   (SGR)   condition   and   multiple   MGR   conditions.  The  MGR  conditions  tested  which  pattern  of  presentation  (schedule  of   practice)  of  GRs  in  an  MGR  tutor  is  optimal  for  learning.  The  results  show  that  the   MGR  tutor  improves  children’s  knowledge  more  than  the  SGR  tutor.  Furthermore,   small  differences  between  the  MGR  conditions  were  found.    

 

This   project   used   the   data   from   the   experiment   of   Rau   et   al.   (in   press)   for   the   development   of   three   ACT-­‐R   models.   The   models   are   used   to   investigate   the   specificity  of  students'  knowledge  when  learning  fractions,  especially  when  using   MGRs.   It   is   expected   that   before   using   the   tutor   children   have   a   few   general   strategies   they   apply   to   many   different   problems,   and   after   the   tutor   children   learned   more   specific   strategies.   The   different   models   that   are   fit   to   the   data   represent  different  levels  and  types  of  specialization.  Based  on  students'  correct   strategies  and  error  strategies,  the  models  compare  whether  students  are  more   apt  to  use  specific  strategies  per  GR  or  per  problem  type.  The  results  show  that   the   tutor   increases   the   number   of   specific   strategies   children   use   per   problem   type.   Moreover,   students   in   the   SGR   tutor   condition   sometimes   generalize   different  from  students  in  the  MGR  conditions.  

 

Keywords:  Multiple   representations,   fractions,   cognitive   modeling,   model-­‐data   fit.

 

     

(3)

1.  Introduction  ...  4  

1.1  Graphical  representations  compared  ...  5  

1.2  Multiple  vs.  single  graphical  representations  ...  6  

1.3  MGR  patterns  of  presentation  ...  7  

1.4  Cognitive  models  ...  10  

2.  Research  questions  ...  13  

3.  Method  ...  15  

3.1  Data  analysis  ...  15  

3.1.1  Subject  selection  ...  15  

3.1.2  Strategy  identification  ...  15  

3.1.2.1  Examples  ...  16  

3.1.3  Final  data  ...  23  

3.2  ACT-­‐R  model  ...  25  

3.2.1  General  assumptions  ...  25  

3.2.2  Design  and  model  settings  ...  26  

3.2.3  Strategy  selection  ...  27  

3.3  Parameter  fitting  of  multiple  models  ...  28  

3.4  Information  criteria  ...  31  

4.  Results  ...  33  

4.1  How  to  compare  models  ...  33  

4.2  Relative  model  fits  ...  34  

4.2.1  All  problems  included  ...  34  

4.2.2  Pairwise  comparison  of  GRs  ...  36  

5.  Conclusion  ...  41  

6.  Discussion  and  Future  research  ...  44  

7.  Acknowledgements  ...  47  

8.  References  ...  47  

Appendices  ...  51  

Appendix  A:  Strategy  data  ...  51  

Appendix  B:  Example  test  ...  55  

Appendix  C:  Complete  relative  model  fits  ...  65  

(4)

4

1.  Introduction  

Children’s  knowledge  of  fractions  is  not  as  it  should  be;  research  assessing  the  achievement  of   elementary   and   secondary   students   in   the   United   States   showed   that   60%   of   the   4th   grade   students  (age  9  -­‐  10)  did  not  know  whether  1/4  was  greater  than  1/5  and  50%  of  the  8th  grade   students   (age   13   -­‐   14)   could   not   order   three   fractions   (NAEP,   2007).   To   improve   the   mathematical  knowledge  of  children,  including  their  understanding  of  fractions,  many  curricula   have   started   to   use   graphical   representations   (GRs).   Working   with   graphical   representations   provides  for  more  robust  learning,  as  they  provide  a  way  for  children  to  relate  to  the  problem   (e.g.   DeWindt-­‐King   &   Goldin,   2003;   Mack,   1995);   a   fraction   presented   graphically   can   seem   more  familiar  than  one  represented  symbolically.  Moreover,  by  using  a  GR,  important  aspects   of  the  learning  content  can  be  emphasized.  The  National  Council  of  Teachers  of  Mathematics   (NCTM)   wrote   that   using   GRs   to   depict   fractions   should   be   standard   in   any   school’s   mathematics  program  (NCTM,  2000).

   

 

Furthermore,  the  NCTM  encourages  schools  to  use  technology  to  teach  mathematics,  as  it  is   essential  and  encourages  students’  learning  (NCTM,  2000).  An  important  use  of  technology  in   children’s  mathematics  learning  is  the  use  of  computer  tutors.  Computer  tutors  are  computer-­‐

based  instructional  technologies  that  are  designed  to  aid  children  in  learning  a  specific  subject.  

A  specific  kind  of  a  computer  tutor  is  a  cognitive  tutor  (in  the  literature  also  referred  to  as  an   ITS,  an  intelligent  tutoring  system).  A  cognitive  tutor  is  a  computer-­‐based  tutor  in  which  the   instructions  displayed  are  based  on  a  cognitive  model  of  the  competence  of  the  student  using   it  (Anderson  et  al.,  1995).  It  has  been  shown  that  cognitive  tutors  can  have  advantages  over   traditional  methods  for  learning  in  numerous  areas  of  mathematics  (Ohlsson,  1991;  Anderson   et   al.,   1995;   Koedinger   &   Aleven,   2007;   Koedinger   &   Corbett,   2006).   These   tutors   have   the   advantage   of   providing   step-­‐by-­‐step   guidance,   allowing   children   to   work   at   their   own   pace,   and   the   advantage   that   they   can   adapt   to   each   individual   child:   The   level   of   the   posed   questions  can  be  adjusted  to  the  level  of  each  child.  Children  can  ‘learn  by  doing’  and  receive   feedback  on  their  mistakes,  even  at  an  intermediate  step  in  the  answer  process.  Because  of   this   immediate   feedback,   students   are   forced   to   evaluate   their   own   actions   and   answers   immediately.  This  includes  an  evaluation  of  the  actions  that  were  done  with  the  GRs  (Sarama  &  

Clements,  2009).    

 

Moyer  et  al.  (2002)  state  that  GRs  can  be  especially  useful  in  a  computer  tutor,  because  of  the   interactions  that  are  not  possible  on  paper  (dragging,  dropping,  automatic  updating  of  figures   etc.).  For  example,  Rau  et  al.  (2009)  used  a  cognitive  tutor  with  GRs  that  change  interactively,   so   that   children   learn   to   draw   parallels   between   their   own   actions   with   the   GRs   and   the   resulting  changes  in  the  symbolic  representations.  

 

This  paper  will  focus  on  the  specific  area  of  fraction  learning  with  GRs,  to  be  able  to  offer  more   detailed  insights  into  the  challenges  of  the  field.  

 

 

(5)

5 1.1  Graphical  representations  compared  

Although   there   is   a   general   consensus   about   the   use   of   GRs   to   help   children   understand   fractions   better,   it   is   not   clear   which   one   is   best.   Numerous   different   GRs   are   possible,   for   example,  area  models  (such  as  circles  and  rectangles),  linear  models  (such  as  number  lines),  or   discrete  models  (such  as  coins  or  other  sets  of  objects)  (Rau  et  al.,  2009).    

 

Different   GRs   have   different   advantages.   The   number   line   for   example   fits   the   theory   of   mathematics   learning   called   ’magnitude   representation’,   which   states   that   children   have   to   learn  to  understand  that  all  real  numbers  have  magnitudes  that  can  be  ordered  (Siegler  et  al.,   2011).   This   theory   suggests   that   a   number   line   would   be   the   most   useful   GR   for   teaching   children  fractions,  because  it  helps  to  view  fractions  as  numbers  with  magnitudes  which  can  be   assigned   to   specific   locations   on   the   number   line.   On   the   other   hand,   Cramer   et   al.   (2008)   found   that   children   performed   better   when   using   a   circle   representation   than   other   GRs   (including  a  number  line)  when  they  were  asked  to  compare  two  fractions  and  find  common   denominators.   Mack   (1995)   found   that   circle   representations   allow   children   to   link   their   existing  knowledge  of  dividing  and  sharing  to  fractions.  Partially  in  line  with  the  research  that   promotes   using   circles,   Caldwell   (1995)   found   that   area   models   in   general   promote   fraction   learning.    

 

By   contrast,   Hiebert   and   Tonnessen   (1978)   found   that   when   young   children   were   asked   to   divide   candy   amongst   some   stuffed   animals,   they   performed   better   with   a   discrete   set   of   candies  than  with  a  string  of  licorice  to  divide  up  or  a  circular  clay  pie.  Their  explanation  is  that   when   dealing   with   separate   pieces   of   something,   children   can   start   working   on   the   solution   without  seeing  the  set  as  a  ‘whole’  and  without  deciding  beforehand  how  large  the  parts  for   each  party  are  going  to  be  (no  division  is  needed).  This  however  would  cause  one  to  think  that,   even   though   the   task   was   performed   correctly,   the   child   still   does   not   have   a   conceptual   understanding   of   fractions.   Hiebert   and   Tonnessens   explanation   of   the   results   is   consistent   with  the  theory  of  Piaget  et  al.  (1960)  that  making  fourths  is  easier  than  making  thirds  in  e.g.  a   circle  representation,  because  fourths  can  be  solved  by  first  making  halves  and  dividing  those   up  again,  while  thirds  have  to  be  constructed  directly  from  the  whole.  

 

Besides  having  advantages,  different  GRs  also  have  different  disadvantages.  A  specific  aspect   of  number  line  estimations  is  that  children  do  not  always  display  a  feeling  for  linearity  when   using   a   number   line;   estimates   of   3-­‐   and   4-­‐year-­‐olds   for   the   numbers   0   to   10   follow   a   logarithmic  pattern,  while  the  estimates  of  5-­‐  and  6-­‐year-­‐olds  follow  a  linear  pattern  (Berteletti   et   al.,   2010).   Therefore,   area   models   such   as   circles   and   rectangles   could   make   it   easier   for   children  to  understand  that  all  sections  of  a  fraction  (a  GR  of  a  fraction)  should  have  the  same   size.  On  the  other  hand,  area  models  like  circles  could  have  the  downside  that  it  is  difficult  for   children  to  divide  them  up  into  pieces.  The  difficulties  that  children  have  with  circles  may  stem   from  their  informal  knowledge:  knowledge  formed  by  experiences  in  real-­‐life  (Mack,  2001).  In   daily  life  children  encounter  many  situations  with  sets  (e.g.  a  number  of  cookies)  that  need  to   be  divided,  not  with  one  cookie  that  needs  to  be  divided  in  a  number  of  pieces.  Therefore,  it   might  seem  unnatural  to  children  to  divide  up  one  ‘item’  into  more  than  two  parts  (two  parts   are  more  natural  because  halves  occur  frequently  in  daily  life).  

 

In  addition  to  the  research  on  single  GRs  and  the  differences  between  them,  there  has  been   research  on  the  use  of  multiple  GRs  in  one  curriculum:  potentially  children  could  then  combine   the  benefits  of  the  separate  GRs  (e.g.  Rational  Number  Project  (RNP,  Cramer  et  al.,  1997)).  The   next  section  will  discuss  this  possibility.  

(6)

6

1.2  Multiple  vs.  single  graphical  representations

 

Research  suggests  the  use  of  multiple  graphical  representations  (MGRs)  in  learning  materials   can  improve  student  learning  when  compared  to  using  a  single  graphical  representation  (SGR)   in  complex  domains  (Schnotz  &  Bannert,  2003;  Ainsworth  et  al.,  2002).  However,  which  GRs   should  be  combined,  and  how  they  should  be  combined,  is  still  to  be  determined  for  many  task   domains.  What  is  clear  is  that  children  must  get  enough  practice  and  perform  different  tasks   with  the  representations  to  be  able  to  benefit  from  using  MGRs  (De  Jong  et  al.,  1998).  Practice   is  needed  for  children  to  find  a  link  between  the  GRs  and  therefore  learn  to  understand  the   deeper  concepts  (National  Mathematics  Advisory  Panel,  2008).  More  precisely,  students  have   to  conceptually  understand  each  one  of  the  representations  to  be  able  to  make  a  meaningful   connection  between  them  (Ainsworth,  2006).    

 

The  Rational  Numbers  Project  (RNP)  is  a  complete  fraction  learning  curriculum  that  uses  MGRs   and  focusses  on  making  connections  between  these  GRs,  to  be  able  to  gain  an  advantage  from   using   them   (Cramer   et   al.,   1997).   Cramer   at   al.   (2002)   compared   the   RNP   curriculum   to   commercial  curricula  that  were  used  at  schools  at  that  time.  In  a  number  of  specific  areas  of   fractions  (concepts,  order,  transfer  and  estimation),  4th  and  5th  grade  students  using  the  RNP   curriculum  outperformed  those  using  the  commercial  curricula.  

 

Rau,  Aleven  and  Rummel  (2009)  performed  a  study  focusing  on  the  difference  between  using   an   SGR   and   using   MGRs   in   a   computer   tutor.   Their   research   used   five   different   GRs,   each   chosen   to   suggest   a   certain   interpretation   of   fractions:   number   line,   circle   (pie   chart),   rectangle,   stack,   and   set   (from   Kaminski,   2002).   There   were   two   tutor   conditions:   an   SGR   condition  showing  only  a  number  line  representation  and  an  MGR  condition  using  all  five  GRs   consecutively  (each  problem  was  seen  once  with  each  GR).  The  study  was  done  with  6th  grade   students.  

 

Half  of  the  students  in  each  tutor  condition  group  were  asked  to  self-­‐explain  the  connection   between  the  GR  and  the  symbolic  representation.  The  students  were  provided  with  feedback   at  all  steps  of  the  tutor.  Rau,  Aleven  and  Rummel  (2009)  expected  that  using  the  MGR  tutor   would  lead  to  better  learning  than  the  SGR  tutor.  Because  the  MGR  tutor  required  linking  the   different   representations,   the   researchers   anticipated   that   students   in   the   MGR   condition   would  benefit  from  self-­‐explanation.    

 

The  results  show  that  the  MGR  condition  aids  learning,  but  only  when  students  are  asked  to   self-­‐explain.   One   explanation   for   this   result   is   that   when   a   child   is   taught   fractions   using   different  GRs,  he/she  will  learn  the  concepts  more  robustly,  because  there  is  a  greater  need  to   understand   the   underlying   concepts   when   switching   GRs.   This   is   especially   true   when   self-­‐

explaining,   because   the   link   between   the   GR   and   the   symbolic   representation   is   made   explicitly.   Note,   however,   that   students   in   the   MGR   condition   performed   worse   than   in   the   SGR   condition   when   no   self-­‐explanation   was   necessary.   This   indicates   that   MGRs   without   explicit  linkage  might  be  confusing  rather  than  helpful.  

 

Also  note  that  the  in  the  described  experiment  five  different  GRs  were  used,  which  might  be   too  many  and  therefore  the  link  between  the  GRs  might  be  more  difficult  to  make.  The  optimal   number  (and  type)  of  GRs  to  be  used  in  an  MGR  tutor  is  still  open  to  investigation.    

   

(7)

7 1.3  MGR  patterns  of  presentation  

In   order   to   get   closer   to   developing   the   optimal   fraction   tutor   system,   Rau   et   al.   (in   press)   investigated  which  pattern  of  presentation  of  the  GRs  in  an  MGR  tutor  would  be  optimal.  The   patterns  of  presentation  could  influence  how  well  children  understand  each  GR  and  how  well   they  can  find  a  link  between  them.  Prior  research  suggested  that  the  pattern  of  presentation   of   problem   types   influences   learning.   Interleaving   problem   types   seems   to   encourage   deep   processing  as  opposed  to  blocking  problem  types,  and  thus  improve  learning  (De  Croock  et  al.,   1998).  Interleaving  patterns  of  presentation  might  have  a  similar  effect.  In  an  earlier  study,  Rau   et   al.   (2010)   found   that   the   benefits   from   interleaving   problem   types   are   larger   than   the   benefits   of   interleaving   GRs,   but   the   question   remained   if   interleaving   GRs   in   addition   to   interleaving  problem  types  could  improve  children’s  learning  further.    

 

In  the   experiment   of   Rau   et   al.   (in   press)   290   4th   and  5th   grade   students   (age   9   -­‐   12)   used   a   cognitive  tutor  for  about  five  hours.  While  using  the  tutor,  the  children  were  presented  with   108  problems.  Each  of  these  problems  used  a  circle,  rectangle  or  number  line  representation,   but  only  one  representation  per  problem  was  shown.  Because  the  experiment  was  designed  to   investigate   the   influence   of   different   patterns   of   GRs   on   learning,   there   were   a   number   of   different  patterns  of  presentation  designed  to  control  the  changes  from  one  GR  to  another.  

The  experiment  used  five  experimental  conditions:  Blocked,  Moderate,  Interleaved,  Increased   and  SGR.  

 

In   the   Blocked   condition   children   saw   blocks   of   36   problems   with   the   same   GR,   before   changing  to  the  next.  Therefore,  there  were  a  total  of  three  blocks  of  36  problems,  and  no  GR   reoccurred   after   having   switched   to   another   GR.   The   Moderate   condition   showed   the   problems   in   blocks   of   six   with   one   GR,   before   switching   to   another   GR.   In   the   Interleaved   condition  the  GR  was  changed  after  each  problem.  The  Increased  condition  slowly  decreased   the  size  of  the  blocks  of  problems  with  one  GR,  starting  with  blocks  of  12  problems  per  GR,  and   ending  with  blocks  of  one.  Finally,  there  was  an  SGR  control  condition,  in  which  only  one  GR   was  used  (either  circle,  rectangle  or  number  line).  

 

As  in  the  tutor  of  Rau,  Aleven  and  Rummel  (2009),  this  tutor  gave  feedback  at  each  step  and   hints  were  available  if  children  needed  them.  The  GRs  were  interactive  and  could  be  modified   by  e.g.  selecting,  dragging  and  dropping  elements  of  the  GRs  and  clicking  partitioning  buttons.    

The  different  types  of  tutor  problems  required  different  reasoning  processes.  The  six  problem   types   were:   Identifying   fractions,   Making   representations,   Reconstructing   the   unit   from   proper,  unit  and  improper  fractions  and  Naming  improper  fractions.

 

These  were  presented  in   an   interleaved   manner,   in   which   after   each   6   problems   the   type   changed.   This   way   of   scheduling  problem  types  was  most  successful  in  the  study  of  Rau  et  al.  (2010).

 

 

The  students  were  tested  in  a  pre-­‐,  immediate  post-­‐  and  delayed  posttest.  These  tests  each   contained  25  questions,  which  also  varied  in  problem  type.  Each  type  of  question  that  used  a   GR  occurred  on  the  tests  three  times,  once  with  each  GR  (circle,  rectangle  and  number  line).  

Additionally,  there  were  questions  without  a  GR  that  contained  story  problems  with  fractions.  

An  example  test  is  given  in  Appendix  B.  

 

The  results  of  the  study  showed  that  students  improved  on  number  line  test  items  regardless   of  which  tutor  condition  they  were  in.  The  MGR  conditions  proved  to  be  better  than  the  SGR   condition  on  a  number  of  problems  types  (although  not  all)  and  students  retained  their  newly   gained  knowledge  longer:  the  students  in  the  MGR  condition  performed  better  on  number  line   and  area  model  items  on  resp.  the  posttest  and  the  delayed  posttest  than  students  in  the  SGR   condition  (see  Figures  1  and  2).  When  examining  the  difference  between  the  MGR  conditions  

(8)

8

all  three  types  of  interleaved  condition  performed  better  than  the  blocked  condition.  

   

Figure  1:  The  average  scores  on  area  model  items  (circle  and  rectangle)  in  the       MGR  and  SGR  conditions  on  the  three  tests  (error  bars  95%)  

 

Figure  2:  The  average  scores  on  number  line  items  in  the       MGR  and  SGR  conditions  on  the  three  tests  (error  bars  95%)  

 

Rau  et  al.  (in  press)  conclude  from  these  results  that  MGRs  can  aid  students’  learning,  even   when   the   tutor   has   only   been   used   for   a   short   amount   of   time.   These   benefits   will   still   be   present  one  week  after  the  tutor  usage,  when  the  delayed  posttest  was  taken.  

 

 

The  results  look  promising  because  the  MGR  tutor  improves  children’s  knowledge  more  than  

(9)

9

the  SGR  tutor.  As  stated  before,  it  is  generally  assumed  that  this  effect  occurs  because  MGRs   encourage   deep   processing   and   through   this   a   robust   understanding   of   the   concept   of   fractions  is  developed.  However,  these  terms  are  relatively  vague  and  it  remains  unclear  how   exactly  MGRs  affect  fraction  learning.  

   

(10)

10 1.4  Cognitive  models    

The   traditional   approach   for   testing   the   effect   of   tutors   has   been   to   perform   classroom   experiments.  These  experiments  have  been  very  informative  and  can  confirm  there  is  an  effect   of   using   MGRs,   but   this   approach   does   not   seem   to   give   an   answer   to   the   question   stated   above;   how   do   MGRs   affect   fraction   learning?   To   investigate   this   question,   an   alternative   approach  has  to  be  taken.  One  option  is  to  examine  problem  solving  with  cognitive  models.  A   cognitive  model  can  simulate  human  problem  solving  and  might  therefore  give  new  insights   into  how  students  learn  from  specific  problem.  

 

A  cognitive  architecture  that  can  be  used  for  modeling  the  solution  process  of  problems  such   as   fractions   is   ACT-­‐R   (Adaptive   Control   of   Thought-­‐Rational;   Anderson   et   al.,   2004).   This   architecture   is   a   useful   tool   to   model   and   explain   human   behavior   and   cognition.   It   ensures   psychological  plausibility  as  it  is  constructed  to  reflect  assumptions  about  human  cognition  and   is  based  on  experimental  data.  An  ACT-­‐R  model  is  a  process  model:  It  can  solve  problems  and,   on  the  basis  of  a  model,  predictions  can  be  made  about  the  solution  process:  which  choices   are  made,  and  how  (with  which  steps)  problems  are  solved.    

 

The  ACT-­‐R  architecture  has  a  number  of  elements  that  one  should  know  to  be  able  to  grasp   the   general   idea   of   a   model.   Based   on   human   cognition,   ACT-­‐R   has   two   basic   memory   modules:   the   declarative   memory   and   the   procedural   memory.   The   declarative   memory   contains  all  factual  knowledge,  while  the  procedural  memory  contains  productions;  knowledge   about   how   to   do   things.   The   ACT-­‐R   architecture   is   especially   useful   for   modeling   cognitive   tasks,   such   as   learning   and   understanding.   ACT-­‐R   models   have   been   used   for   modeling   and   investigating  numerous  types  of  problem  solving  and  learning  tasks,  e.g.  word  learning  tasks   (Pavlik  &  Anderson,  2008),  time  estimation  tasks  (Taatgen  et  al.,  2007)  and  mathematical  tasks   (Koedinger  &  McLaren,  1997).    

 

Models   in   ACT-­‐R   can   be   built   up   in   numerous   ways,   depending   on   the   task   at   hand.   In   this   research,  the  process  of  solving  fraction  problems  will  be  modeled.  But  even  for  this  specific   problem   there   are   multiple   ways   to   construct   a   model.   An   important   part   of   building   a   problem  solving  model  is  to  determine  how  decisions  are  made:  are  they  made  at  a  set  point   in   time   or   along   the   way?   In   our   models,   we   make   the   assumption   that   solving   a   fraction   problem  starts  with  a  decision  as  to  what  solution  strategy  one  is  going  to  (attempt  to)  apply.  

This  decision  of  which  solution  strategy  is  going  to  be  used  can  be  modeled  in  ACT-­‐R  in  more   than  one  way.  The  main  two  options  are  based  on  activation  and  utility,  and  will  be  discussed   below.    

 

Activation-­‐based   selection   is   done   as   follows:   A   chunk   is   a   piece   of   knowledge   in   the   declarative  memory  (DM),  the  memory  that  contains  factual  knowledge.  In  the  case  of  strategy   selection,   each   strategy   is   represented   by   a   chunk.   Every   chunk   has   an   activation   that   represents   an   estimation   of   how   relevant   that   piece   of   knowledge   is   in   the   current   context.  

When  searching  for  a  solution  strategy  to  apply  to  a  problem,  a  retrieval  request  is  made  to   the   DM   to   retrieve   a   chunk   (strategy)   that   fits   the   specifications   of   the   problem.   The   chunk   with   the   highest   activation   will   be   retrieved   from   the   DM   and   is   used   by   the   model.   The   activation  is  influenced  by  a  noise  component,  so  that  not  always  the  same  chunk  is  retrieved,   but   still   chunks   with   higher   activations   have   a   higher   chance   of   being   used.   The   base-­‐level   activation  (activation  without  noise)  of  a  chunk  increases  every  time  it  is  encountered  (seen  in   the   world   or   retrieved   from   memory).   The   activation   of   a   chunk   decreases   if   it   is   not   encountered  for  a  while.  Furthermore,  the  base-­‐level  activation  of  a  chunk  increases  if  a  chunk   that  is  encountered  is  associated  with  it.  This  effectively  means  that  not  only  the  activation  of   the  encountered  chunk  in  increased,  but  also  the  activation  of  chunks  that  are  related  to  it  and  

(11)

11

that   are   related   to   the   current   context.   The   strength   of   the   association   between   the   encountered  and  the  related  chunk  determines  how  much  the  activation  of  the  related  chunk   is  increased.  

 

Activation-­‐based  strategy  selection  has  the  upside  of  being  relatively  simple,  but  the  downside   that  it  is  difficult  to  include  the  effect  of  feedback;  once  a  chunk  is  retrieved  its  activation  will   increase,  regardless  of  the  outcome  of  the  application  of  this  strategy.  So,  to  select  the  correct   strategy   with   activation-­‐based   selection,   the   model   will   have   to   be   presented   with   many   examples  of  this  strategy;  it  is  based  primarily  on  repetition.    

 

Utility-­‐based  selection  means  the  selection  of  production  rules.  Production  rules  are  rules  that   are  executed  in  order  to  get  to  a  solution  to  a  problem.  These  production  rules  are  assigned   with  a  utility.  This  utility  can  be  updated;  every  time  feedback  on  a  solution  is  given,  the  utility   of  all  previously  used  production  rules  is  adjusted  (positively  or  negatively,  depending  on  the   correctness  of  the  solution).  Therefore,  utility-­‐based  selection  does  not  depend  on  repetition,   but  on  feedback:  It  does  not  necessarily  need  examples  of  the  correct  strategy  to  update  its   knowledge;  it  can  use  a  penalty  for  the  wrong  strategies  (resembling  reinforcement  learning).        

 

So,  the  type  of  strategy  selection  would  depend  on  the  task  at  hand  and  the  way  in  which  this   task   is   approached.   The   choice   between   activation-­‐based   learning   and   utility-­‐based   learning   will   have   consequences   when   making   tutors:   is   repetition   or   feedback   the   key   to   learning   correct  strategies?      

 

An  example  of  a  cognitive  model  of  early  algebra  problem  solving  is  given  by  Koedinger  and   McLaren  (1997).  They  built  two  types  of  models.  First  a  model  they  call  type  I,  which  decides   on  the  strategy  to  apply  through  production  rules  and  utility.  In  this  model,  each  strategy  has   its   own   production   rule   and   the   utility   of   the   production   rules   directly   determines   which   strategy   gets   executed.   However,   a   strategy   in   which   a   miscalculation   is   made   has   to   be   included  as  a  separate  strategy  in  this  model,  while  in  reality  the  error  might  be  made  halfway   through  executing  a  correct  strategy.        

 

Secondly,  Koedinger  and  McLaren  (1997)  built  a  model  type  II,  in  which  not  every  strategy  was   explicitly  represented  by  a  production  rule,  but  the  execution  of  production  rules  in  a  certain   sequence  led  to  the  completion  of  a  strategy;  different  strategies  had  overlapping  production   rules  and  errors  could  be  made  during  the  process  of  solving  a  problem,  instead  of  explicitly   deciding   which   strategy   (including   faulty   strategies)   is   going   to   be   applied   beforehand.   This   model   is   therefore   more   realistic   and,   as   their   results   show,   performs   equally   well   when   compared  to  experimental  data  as  the  type  I  model.  

 

The   type   model   II   supports   the   notion   of   implicit   rather   than   explicit   knowledge   and   errors   (through  implicit  strategy  selection).  To  be  able  to  draw  this  conclusion,  the  ACT-­‐R  modeling   was   particularly   useful,   as   it   gave   insight   into   the   solution   process   itself   rather   than   just   analyzing  the  outcome  (the  answers  of  the  students).  Koedinger  and  McLaren  (1997)  conclude   that  their  results  support  the  notion  that  the  algebraic  knowledge  that  was  tested  is  acquired   by  doing  more  than  by  directly  communicating  strategies  (by  e.g.  a  teacher).

 

     

Goldstein  and  Gigerenzer  (2002)  performed  an  experiment  in  which  American  students  had  to   estimate  which  of  the  two  given  German  cities  was  bigger.  They  found  that  if  students  are  only   familiar  with  one  of  the  cities  (only  one  is  available  in  memory),  they  tended  to  choose  this  one   as   being   bigger   (recognition   heuristic).   This   heuristic   shows   better   results   than   when   both   cities  are  familiar  and  a  choice  has  to  be  made.  So,  the  availability  of  cities  in  memory  plays  a  

(12)

12

large   role   in   this   decision   process.   The   heuristic   shows   that   the   idea   of   activation   and   availability  in  memory  that  is  used  in  ACT-­‐R  is  supported  by  experimental  data;  it  is  a  widely   accepted  idea  in  (cognitive)  science.    

 

Schooler  and  Hertwig  (2005)  used  data  of  the  time  and  frequency  with  which  German  cities   were  mentioned  in  a  specific  newspaper.  They  made  an  ACT-­‐R  model  and  gave  the  data  of  the   cities  as  input,  shaping  the  DM  of  the  model.  When  letting  the  model  do  the  same  task  as  the   students  did  (determine  which  city  is  bigger),  the  activation  of  a  chunk  (city)  in  the  DM  of  the   model  is  a  predictor  of  the  chance  that  a  student  will  recognize  a  city.  The  model  fit  the  data   well,  which  is  a  confirmation  of  the  way  memory  and  activation  are  used  in  ACT-­‐R.  

 

Another  example  of  activation-­‐based  decision  making  is  described  by  West  et  al.  (2005);  the   game  of  rock-­‐paper-­‐scissors.  When  deciding  what  to  do,  a  prediction  can  be  made  about  what   the  opponent  is  going  to  do,  based  on  the  sequences  of  actions  he/she  has  shown  before.  In   their   model,   West   et   al.   (2005)   represent   these   sequences   by   chunks,   and   so   the   base-­‐level   activation  of  the  sequence  most  likely  to  be  used  (the  one  that  has  been  used  most  before),   will  be  highest  and  will  therefore  be  retrieved.  This  way,  the  model  predicts  the  moves  of  the   opponent  and  responds  accordingly.  

     

The   studies   described   above   give   an   impression   of   the   different   possibilities   of   investigating   data   with   cognitive   models   and   the   additional   information   that   can   be   gained   through   a   cognitive  model  as  opposed  to  an  experiment.  Cognitive  models  could  also  be  applied  to  the   field  of  fractions,  in  order  to  investigate  the  question  of  how  MGRs  affect  fraction  learning.  

(13)

13

2.  Research  questions  

This   project   investigates   the   influence   of   different   GRs   on   children’s   understanding   of   fractions.     Children   generally   perform   better   after   working   with   multiple   graphical   representations   than   with   a   single   one.   Why   is   this?   What   influence   do   the   MGRs   have   on   children’s   understanding   of   fractions?   We   are   specifically   interested   in   finding   out   whether   children’s  knowledge  and  solution  strategies  are  general  or  specific:  do  children  know  how  to   apply  one  solution  strategy  to  multiple  problems  of  the  same  type  but  with  a  different  GR,  or   do   they   develop   a   different   solution   strategy   for   each   problem   with   a   different   GR?   Does   a   tutor  influence  the  development  of  specific  or  general  solution  strategies?  

 

So,  the  project  also  investigates  the  generality  of  strategies  used  on  different  GR;  how  well  do   children   generalize   over   GRs?   Are   there   two   GRs   that   children   generalize   over   more   than   others?  If  children  know  the  correct  way  to  answer  a  fraction  problem  with  a  circle,  can  they   apply  the  same  solution  strategy  to  the  same  problem  with  a  rectangle,  or  do  they  not  see  the   similarities   between   the   problems.   The   project   investigates   three   GRs:   circle,   rectangle   and   number   line.   Are   the   area   models   more   alike   (like   suggested   in   the   Introduction),   and   therefore  easier  to  generalize  over  than  the  number  line?  

Finding  answers  to  these  questions  will  provide  insight  into  the  effect  that  MGR  tutors  have  on   children   when   learning   fractions.   Understanding   why   MGR   tutors   aid   learning   could   help   to   improve  future  tutors.  Understanding  which  GRs  children  can  generalize  over  and  which  not   can  be  useful  information  when  designing  a  tutor  or  educational  system,  as  one  can  account   better  for  what  children  will  generally  understand  and  what  not.    

To  investigate  the  raised  questions,  we  will  take  a  closer  look  at  the  previously  discussed  data   of  Rau  et  al.’s  (in  press)  tutor  experiment  though  a  cognitive  model.  The  original  experiment   consisted  of  a  pretest,  a  tutor,  a  posttest  and  a  delayed  posttest.  Modeling  children  working   with   the   tutor   itself   is   complicated   and,   since   we   are   interested   in   the   effects   of   the   tutor,   looking  at  the  pre-­‐  and  posttest  data  will  suffice  for  this  project.  From  the  data,  information   was  extracted  that  helped  shape  the  cognitive  models;  what  types  of  errors  do  children  make?  

How  frequent  are  these  error  types?    

 

Three   ACT-­‐R   models   were   constructed   to   simulate   a   child   solving   the   fraction   problems   presented  in  the  pre-­‐  and  posttest.  A  model-­‐based  analysis  was  done  to  test  the  specificity  of   children’s   incorrect   and   correct   solution   strategies   that   were   extracted   from   the   data.    

Specifically,   the   models   were   used   to   investigate   the   generality/specificity   of   the   strategies   that   children   use  to   solve  the  fraction  problems.  The   models   focus   on   a   number   of   possible   specifications   of   knowledge   that   children   may   know   and   use:   if   there   are   no   specific,   only   general,  strategies  known,  children  apply  the  same  strategy  to  many  different  problems.  This  is   an  overgeneralization,  which  leads  to  many  incorrect  answers.  If  there  are  specific  strategies   known  per  GR,  then  the  same  strategy  will  be  applied  to  different  problems  using  the  same   GR.  This  will  also  lead  to  many  incorrect  answers,  as  the  different  problem  types  often  need   different  strategies  to  be  solved,  even  though  the  same  GR  is  used.  If  children  know  a  specific   strategy  for  each  problem  type,  the  same  strategies  are  applied  to  different  questions  with  the   same   problem   type,   even   though   the   problems   use   different   GRs.   This   type   of   strategy   specialization   is   most   useful,   as   problems   of   the   same   type   need   the   same   strategy   to   be   solved.  

Which  type  of  specialization  do  children  use?  And  does  the  difference  in  performance  between  

(14)

14

the   posttests   of   the   SGR   and   MGR-­‐condition   groups   stem   from   a   difference   in   the   use   of   specific  strategies?  Do  children  know  more  specific  strategies  per  problem  type  after  working   with  MGRs  in  the  tutor?  A  child  with  little  experience  with  fractions  might  have  few  strategies   and  apply  those  generally.  The  goal  of  an  MGR  tutor  is  to  teach  children  specific  problems  per   problem   type.   However,   if   the   emphasis   of   the   tutor   is   wrong   or   children   misunderstand   it,   they  might  learn  specific  strategies  per  GR.  

       

We  expect  to  see  a  difference  in  specialization  between  children  in  the  SGR  and  children  in  the   MGR   tutor   conditions.   The   children   in   the   MGR   conditions   are   expected   to   develop   a   more   robust   understanding   of   fractions,   and   more   knowledge   of   strategies   that   can   be   applied   to   different  GRs,  and  therefore  specify  more  per  problem  type.  This  specialization  does  not  only   include   correct   strategies,   but   also   incorrect   strategies   that   are   used   to   solve   problems.   If   children   use   the   same   incorrect   strategies   for   problems   with   the   same   problem   type   but   different  GRs,  the  generalization  they  learned  to  make  is  good,  but  the  strategy  they  use  is  not.  

Still,  this  type  of  specialization  is  seen  as  a  good  thing,  as  children  did  learn  to  generalize  over   GRs.    

 

Children   in   the   SGR   condition   are   expected   to   specify   more   per   GR,   using   one   strategy   for   multiple  problem  types  with  one  GR.  They  are  expected  answer  most  of  the  questions  with  the   practiced   GR   correct.   However,   they   will   not   apply   the   same   strategies   to   problems   with   unpracticed   GRs,   as   they   did   not   learn   to   make   a   connection   between   the   practiced   and   unpracticed  GRs.  

 

Furthermore,  both  the  circle  and  the  rectangle  are  area  model  items  so  we  expect  children  to   apply  the  same  strategy  to  circle  and  rectangle  problems  more  often  than  to  one  of  those  GRs   and  the  number  line.  This  would  be  because  the  circle  and  rectangle  are  graphically  more  alike,   and  because  the  strategies  that  are  needed  to  solve  circle  and  rectangle  problems  are  more   similar  to  each  other  than  to  strategies  needed  to  solve  number  line  problems.  

(15)

15

3.  Method  

3.1  Data  analysis  

The   original   data   of   Rau   et   al.   (in   press)   consisted   of   a   pretest,   tutor,   posttest   and   delayed   posttest  with  587  4th-­‐  and  5th-­‐grade  students.  In  their  paper,  this  number  was  reduced  to  290   students,  excluding  students  who  missed  at  least  one  test  day  and  who  completed  less  than   67%  of  all  tutor  problems.  The  current  analysis  however,  because  it  does  not  look  at  individual   learning,   but   at   the   average   performance   over   participants,   did   not   exclude   students   who   missed  one  or  more  test  days.  This  way  more  data  remained  for  analysis.    

 

Three  different  test  forms  (with  isomorphic  problems)  were  used  in  the  original  experiment;  

each  child  saw  each  test  once  (pre-­‐,  post-­‐  and  delayed  posttest).  The  order  of  the  test  forms   was  counterbalanced  over  the  subjects  across  pre-­‐,  post-­‐  and  delayed  posttest.    

 

The  data  that  were  used  in  this  project  were  only  the  data  from  the  pre-­‐  and  posttest.  These   data  were  used  to  analyze  the  influence  of  the  tutor  conditions,  without  looking  at  the  logged   data  from  the  tutor  itself.  The  pre-­‐  and  posttest  originally  consisted  of  25  questions  (problems)   each.  Most,  but  not  all,  of  these  problems  used  a  GR  which  was  circle,  a  rectangle  or  a  number   line.  Every  type  of  problem  that  used  one  GR  also  occurred  with  the  other  GRs;  these  problems   occurred   in   groups   of   three,   each   of   the   same   problem   type   but   with   a   different   GR.   This   means  all  children  saw  all  GRs  the  same  number  of  times  in  the  pre-­‐  and  posttest.    

 

From  the  pre-­‐  and  posttest  15  problems  were  selected  for  further  analysis;  10  problems  from   the  original  tests  were  excluded.  These  were  problems  that  did  not  involve  any  GR  at  all  and   problems   that   were   too   different   from   the   other   problems   to   be   able   to   investigate   if   the   solution   strategies   for   that   problem   were   also   used   for   other   problems.   Examples   of   the   original   25   problems   are   shown   in   Appendix   B.   The   problem   numbers   that   were   used   for   further   analysis   can   be   found   in   the   table   in   Appendix   A.   The   five   problem   types   of   these   problems  are:  Identifying  fractions,  Making  representations  and  Reconstructing  the  unit  from  a   proper,  a  unit  and  an  improper  fraction.  

 

3.1.1  Subject  selection  

As  described  before,  the  experiment  of  Rau  et  al.  (in  press)  used  5  experimental  conditions:  

Blocked   (BL),   Moderate   (MO),   Interleaved   (INT),   Increased   (INC)   and   single   graphical   representation  (SGR).  For  the  models,  a  stratified  random  subset  of  the  data  from  the  pre-­‐  and   posttest   was   used:   27   subjects   were   randomly   selected   in   each   condition   to   be   evaluated   further.   This   means   27   pretests   and   27   posttests   in   the   MGR   conditions,   and   9   pre-­‐   and   posttests  of  each  of  the  three  SGRs  in  the  SGR  condition  (circle,  rectangle  and  number  line),  as   they  were  treated  in  the  experiment  as  one  condition,  but  this  way  an  equal  contribution  from   each   of   the   different   GRs   is   ensured.   However,   because   it   is   interesting   to   also   look   at   the   differences   between   the   SGRs   and   just   9   tests   is   a   very   small   number,   27   pre   and   posttests   were  selected  in  each  SGR  as  well;  the  extra  18  tests  per  SGR  were  not  used  when  comparing   overall  (MGR+SGR)  effects.    

 

3.1.2  Strategy  identification  

All  answers  on  the  pre-­‐  and  posttest  were  categorized.  The  answers  given  by  the  children  were   written  answers  to  questions  such  as  ‘where  is  ⅚  on  the  number  line?’.  After  examining  the  

(16)

16

answers  given  by  the  children,  correct  and  error  categories  were  determined  per  problem.  This   was  done  on  the  basis  of  the  analysis  done  by  Rau  et  al.  (in  press),  and  by  determining  what   the  most  frequent  answers  were.  The  categorization  in  this  research  was  done  by  one  grader,   although  the  categories  were  loosely  based  on  the  previous  work  of  Rau  et  al.  (in  press).  This   means   no   inter-­‐rater   reliability   score   can   be   computed,   and   it   cannot   be   stated   that   the   categorization  was  done  truly  objective.  However,  at  a  later  time  a  second  grader  could  still   review  the  data  and  a  reliability  score  could  be  computed  retroactively.  

 

All  given  answers  were  placed  in  a  category.  After  the  categorization,  each  problem  had  two  to   seven  categories,  of  which  one  correct,  one  called  ‘other’  that  included  all  answers  that  did  not   fit  into  any  of  the  other  categories,  and  a  number  of  error  categories.  Categories  overlapped   between   different   problems   where   possible,   so   that   later   the   specialization   could   be   examined.    

 

Finally,  the  answer  categories  were  translated  back  to  strategies,  as  it  is  not  so  much  the  final   answer  that  is  important  as  the  strategy  that  was  used  to  get  there.  This  makes  it  easier  to  find   the  common  strategy  used  for  e.g.  circle  and  number  line  answers,  because  the  answers  are   not   the   same   but   the   reasoning   that   was   used   to   get   to   the   answer   was.   From   now   on,   categories   will   be   referred   to   as   strategies.   This   notion   encompasses   both   correct   and   incorrect  strategies.  Examples  of  some  answer  strategies  are  presented  in  the  next  section.  An   overview  of  all  strategies  can  be  found  in  Tables  6a  and  6b,  at  the  end  of  the  next  section.    

3.1.2.1  Examples  

This  section  discusses  some  examples  of  presented  problems  and  their  answers,  to  get  a  better   idea   of   what   the   data   look   like.   From   every   group   of   three   problems   of   the   same   type   with   different  GRs  one  will  be  discussed.  All  examples  are  of  a  different  problem  type.  Underneath   each  example  a  small  table  is  given  with  an  overview  of  the  strategies  used  for  that  problem   and  how  often  they  were  used  in  the  pre-­‐  and  posttest.  A  complete  overview  of  all  strategies   per  problem  can  be  found  in  Appendix  A.  

   

           

Figure  3:  An  example  of  a  problem  of  the  type  ‘Identifying  fractions’    

 

The  first  type  of  problem  was  a  relatively  easy  one,  answered  correctly  by  most  children,  of  the   type   ‘identifying   fractions’,   in   which   a   graphically   displayed   unit   fraction   had   to   be   named   (Figure  3).  

 

The  wrong  answers  given  were  mostly  children  that  counted  the  sections  wrong.  However,  this   was   such   a   small   percentage   that   the   incorrect   answers   were   all   classified   in   the   ‘other’  

strategy.  

 

(17)

17

Problem  

no.  

GR   Problem  type   Strategy   pretest   posttest  

2   Rectangle   Identifying  fractions   correct  identify   98.5   99.3  

      Other   1.5   0.7  

 

Table  1:  Strategy  data  for  problem  number  2      

             

Figure  4:  An  example  of  a  problem  of  the  type  ‘Making  representations’  

 

Figure  4  is  an  example  of  a  problem  of  the  type  ‘making  representations’,  in  which  the  child  is   asked  to  draw  a  fraction  given  a  unit  such  as  a  circle,  rectangle,  or  a  number  line  with  point  “1”  

marked   (the   fractions   are   2/3,   3/4   and   5/6).   In   this   problem   two   types   of   errors   were   commonly   made.   The   first   one   is   a   size   error,   in   which   a   child   does   not   understand   that   all   sections   of   a   fraction   should   have   the   same   size.   An   example   of   such   an   error   is   shown   in   Figure  5,  where  a  child  was  trying  to  draw  5/6.  The  second  frequently  made  error  is  to  take  the   figure  as  being  one  section  (figure  as  section  error),  and  draw  multiple  of  these  sections.  An   example  of  this  is  shown  in  Figure  6,  where  5/6  was  being  drawn  as  well.    

     

       

   

Figure  5:  An  example  of  a  ‘size’  error  

 

Figure  6:  An  example  of  a  ‘figure  as  section’  error    

Referenties

GERELATEERDE DOCUMENTEN

Hypothesis%3:% The% maturity% of% the% market% is% positively% related% to% the% inward% FDI,% where% developed% markets% attract% relatively% more% FDI% than% emerging% markets,%

Furthermore, BGGM is the only package for confirmatory testing and comparing graphical models with the methods described in Williams et

These models were built upon a Sustained Attention to Re- spond (SART) ACT-R model, used to study mind wandering during the SART task.. (van Vugt, Taatgen, Sackur, Bastian, Borst,

Now far ahead the Road has gone, And I must follow, if I can, Pursuing it with eager feet, Until it joins some larger way?. Where many paths and

Reminding, that age enhances strategic change, innovation such as R&D investments is of high strategic importance and that R&D is a risky investment, directors need

These methods include variance dispersion graphs, fraction of de- sign space plots and quantile plots which can assist in choosing between a catalogue of candidate

Thirdly, we showed a preliminary method for up-scaling building spatial level models onto a continental level by the following steps: (1) Classification of buildings; (2) simulation

prijzen winnen. Gedacht wordt aan een schoolreis naar een attractiepark. Per school worden door een coordinator op school aile gegevens tot een hestand samengevoegd en per e-mail