• No results found

Cover Page The handle https://hdl.handle.net/1887/3158796

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle https://hdl.handle.net/1887/3158796"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle

https://hdl.handle.net/1887/3158796

holds various files of this Leiden

University dissertation.

Author: Concha Ramirez, F.A.

Title: Simulating the birth environment of circumstellar discs

Issue Date: 2021-04-06

(2)

Simulating the birth environment

of circumstellar discs

(3)
(4)

Simulating the birth environment of

circumstellar discs

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl,

volgens besluit van het college voor promoties te verdedigen op 6 april 2021

klokke 15.00 uur

door

Francisca Andrea Concha Ramírez

geboren te Temuco, Chile in 1988

(5)

Promotiecommissie

Promotor: Prof. dr. S.F. Portegies Zwart Co-promotor: Dr. M.R. Hogerheijde

Overige leden: Prof.dr. H.J.A. Röttgering University of Leiden Prof.dr. J.S. Kaastra University of Leiden Prof.dr. C.W.M. Fridlund University of Leiden Dr. E. Sellentin University of Leiden Prof.dr. C. Dominik University of Amsterdam Dr. E. Kokubo University of Tokyo Prof.dr. S. Pfalzner Forschungszentrum Jülich

Cover design by Francisca Concha-Ramírez.

The background colour of the cover is Cosmic Latte [#FFF8E7, RGB (255, 248, 231)], the average colour of the Universe (Baldry et al. 2002). This colour is obtained by averaging the light emitted by 20,000 galaxies from the 2dF Survey (Colless et al. 2001).

(6)

There is no thing as a single-issue struggle because we do not live single-issue lives.

(7)
(8)

1. Introduction 1

1.1. Star clusters . . . 3

1.1.1. Formation and evolution . . . 3

1.1.2. Evolutionary time scales and radii . . . 6

1.2. Circumstellar discs . . . 7

1.2.1. Formation and evolution . . . 8

1.2.2. Disc masses and sizes . . . 10

1.3. Effects of the environment on circumstellar disc evolution . . . 11

1.3.1. Dynamical truncations . . . 12

1.3.2. External photoevaporation . . . 13

1.3.3. Ram pressure stripping . . . 16

1.3.4. Supernovae . . . 17 1.4. Numerical simulations . . . 18 1.4.1. N-body codes . . . 18 1.4.2. Smoothed-particle hydrodynamics . . . 19 1.4.3. AMUSE . . . 19 1.5. This thesis . . . 20

2. Viscous evolution of circumstellar discs in young star clusters 25 2.1. Introduction . . . 26

2.2. Methods . . . 27

2.2.1. Evolution of isolated viscous discs . . . 27

2.2.2. Gas in the cluster . . . 29

2.2.3. Dynamical disc truncation . . . 30

2.2.4. Numerical implementation . . . 30

2.3. Results . . . 31

2.3.1. Initial conditions . . . 31

2.3.2. The effect of gas in the cluster . . . 33

2.3.3. Evolution of the circumstellar discs . . . 33

2.3.4. Comparison with observations . . . 34

2.4. Discussion . . . 38

2.5. Summary and conclusions . . . 41

3. External photoevaporation constrains time-scale for planet formation 43 3.1. Introduction . . . 44

3.2. Model . . . 46

3.2.1. Viscous growth of circumstellar discs . . . 46

3.2.2. Dynamical truncations . . . 47

3.2.3. External photoevaporation . . . 47

3.2.4. Initial conditions . . . 51

3.3. Results . . . 54

3.3.1. Disc mass loss in time . . . 54

3.3.2. Disc lifetimes . . . 57

3.4. Discussion . . . 60

3.4.1. Disc survival and consequences for planet formation . . . 60

3.4.2. Influence of initial conditions . . . 61

3.4.3. Model caveats . . . 62

3.5. Conclusions . . . 64

3.A. Resolution of the discs . . . 64 vii

(9)

4. Effects of stellar density on photoevaporation of circumstellar discs 67

4.1. Introduction . . . 68

4.2. Model . . . 69

4.2.1. Stars and circumstellar discs . . . 70

4.2.2. External photoevaporation . . . 70

4.2.3. Initial conditions . . . 71

4.2.4. Model caveats . . . 72

4.3. Results . . . 73

4.3.1. Disc fractions and lifetimes . . . 75

4.3.2. Disc masses . . . 77

4.4. Discussion . . . 80

4.5. Conclusions . . . 80

5. Evolution of circumstellar discs in young star-forming regions 83 5.1. Introduction . . . 84

5.2. Model . . . 86

5.2.1. Molecular cloud collapse and star formation . . . 86

5.2.2. Stellar dynamics and circumstellar discs . . . 87

5.2.3. Initial conditions . . . 91

5.3. Results . . . 91

5.3.1. Star formation and cluster evolution . . . 91

5.3.2. Disc masses . . . 96

5.4. Discussion . . . 100

5.5. Summary and conclusions . . . 103

Bibliography . . . 106 Bibliography 107 English summary 123 Nederlandse samenvatting 127 Resumen en español 131 List of publications 135 Curriculum Vitae 137 Acknowledgements 139

Referenties

GERELATEERDE DOCUMENTEN

The trends obtained in our simulations between disc mass and local stellar density are in agreement with dust mass measurements of discs in different observed regions: we compare

Our results show that, while photoevaporation is an important process for the depletion of disc masses, other factors such as the morphology of the star-forming regions and the

Title: Simulating the birth environment of circumstellar discs Issue Date: 2021-04-06... X., Portegies Zwart S.,

In particu- lar, external photoevaporation is efficient in quickly destroying circumstellar discs, and so it greatly limits the amount of material and time available to form

In deze regio’s hebben schijven immers al snel niet meer voldoende massa om nog planeten te kunnen vormen.. In Hoofdstuk 4 vertrekken we van hetzelfde model en simuleren we een

Esta tesis investiga cómo el ambiente generado por el proceso de formación estelar afecta la evolución de los discos circumestelares recién formados, con un enfoque en dos mecanis-

I would like to begin by thanking the teachers, professors, and mentors in my life that helped me get on the path of science in general, and astronomy and computer science

Studying the evolution of dust mass is necessary for constraining the time scales for planet formation (Chapter 5).. The location and time at which stars and discs form is crucial