• No results found

Exposure to acute hypoxia (48 hours of continuous exposure to 11% O

N/A
N/A
Protected

Academic year: 2021

Share "Exposure to acute hypoxia (48 hours of continuous exposure to 11% O"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

SUMMARY

The responses of central systems to oxygen deprivation have been well characterised while adaptations in peripheral systems, such as skeletal muscles, have presented confounding variations. Several reasons for these discrepancies are purported, amongst them being the duration of exposure to hypoxia and variations in fibre composition. Moreover, in real-life high altitude situations there may be a combination of factors which have the ability to modify or alter the effect of hypoxia. This study investigates the effect of short duration hypoxia per se on substrate utilisation in different types of skeletal muscles.

Muscles were selected for their different substrate utilisation capacity, the premise being that hypoxia might differentially effect aerobic and anaerobic biochemical pathways. I studied activities of phosphofructokinase (PFK) and lactate dehydrogenase (LDH) as indicators of the glycolytic pathway; citrate synthase (CS) as an index of total oxidative capacity of the muscle cell and hydroxyacyl dehydrogenase (HAD) as indicative of the capacity for fatty acid oxidation. Enzyme activity ratios were calculated to elucidate the degree of reliance on a particular substrate, be it aerobic or anaerobic, fat or carbohydrate.

Analysis of PFK and LDH enzymatic activity confirmed the status of extensor digitorum longus (EDL) as a fast muscle, reliant on glucose metabolism for normal energy requirements. Soleus muscle was least reliant on glucose for normal energetic requirements and, as determined by the LDH / HAD ratio, had a greater potential for fat utilisation than either gastrocnemius or EDL. Soleus also had a greater capacity for aerobic metabolism (LDH:CS) than the other muscles.

Exposure to acute hypoxia (48 hours of continuous exposure to 11% O

2

) did not favour a rapid adaptation for enhanced reliance on anaerobic glycolysis in any of the muscles, nor did it alter oxidative capacity. We therefore conclude that oxygen deprivation, of an acute nature and in a controlled laboratory environment, affected neither aerobic nor anaerobic metabolism in skeletal muscles regardless of fibre type, over the time course of the present study.

i

(2)

OPSOMMING

Alhoewel die aanpassing van kardiale spier op suurstof deprivasie kenmerkende karaktertrekke het, is bevindings omtrent adaptasies in die perifere skeletspiere, teenstrydig.

Verskeie redes vir hierdie variasies word aangegee, onder andere die tydsduur van blootstelling aan hipoksie en spierveseltipe. Bowendien, in normale situasies van blootstelling aan hoogte-bo-seespieel, mag daar ‘n kombinasie van faktore wees wat die vermoe het om die effek van hipoksie te varieer of te verander. Hierdie studie ondersoek die effek van korttermyn hipoksie per se op substraat verbruiking in onderskeie tipes skeletspiere.

Spesifike spiere is geselekteer omrede hulle kapasiteit vir substraat verbruiking kenmerkend verskil. Die vooropgestelde idée is dat aerobiese en anaerobiese biochemiese bane verskillend deur hipoksie beïnvloed mag word. Ons het die aktiwiteit van fosfofruktokinase (PFK) en laktaatdehidrogenase (LDH) as indikators van die glikolise baan bestudeer, sitraatsintase (CS) as 'n indeks van oksidatiewe kapasiteit van die spiersel en hidroksie-asiel- dehidrogenase (HAD) as indikatief van vetsuur oksidasie. Die ensiem aktiwiteits verhouding is bereken om lig te werp op die graad van vertroue op 'n spesifieke substraat - hetsy aerobies of anaerobies, vet of koolhidraat.

Die analise van PFK en LDH ensiem aktiwiteit bevestig die status van extensor digitorum longus (EDL) as a vinnige spier wat afhanklik is van glukose metabolisme vir normale energie verbruiking. Soleus spiere was die minste afhanklik van glukose vir normale energie verbruiking en het 'n vergrote kapasitieit, soos bepaald deur die LDH / HAD verhouding, vir die gebruik van vette as gastrocnemius of EDL. Soleus het egter ook 'n vermeerderde oksidatiewe vermoë (LDH:CS) as die ander spiere.

Blootstelling aan akute hipoksie (11% O

2

onafgebroke vir 48 uur) het nie 'n vinnige adaptasie ten gunste van afhanklikheid aan anaerobiese glikolise in enige van die spiere begunstig nie, en daarmee saam ook nie die oksidatiewe kapasiteit verander nie. Ons gevolgtrekking is dus dat akute suurstof deprivasie in 'n gekontroleerde labaratorium omgewing nie, oor die tydperk van die huidige eksperiment, aerobiese of anerobies metabolisme in skeletspiere affekteer nie, ongeag die spierveseltipe.

ii

(3)

ACKNOWLEDGEMENTS

I thank my supervisors. Dr. Faadiel Essop (Cape Heart Centre, UCT) is acknowledged with appreciation, for his consistent motivation, his knowledgeable input and his enthusiastic support of my study. I thank him for the time he afforded to discussion and proofreading.

Professor Kathy Myburgh (Department of Physiological Sciences, US) is acknowledged for her sustained interest and her patience in supporting this project.

I am much obliged to Dr. Sedick Isaacs (Department of BioInformatics, Groote Schuur Hospital) who offered valued assistance with statistical analysis and information. Tertius Kohn shared his knowledge and technical experience of enzyme analysis.

I could not have concluded the experimentation were it not for Musa Mabandla who carefully and expertly euthenased the animals; I thank him for this. Anna Chan assisted with animal handling and care; many thanks to her for her smiling, happy presence in the laboratory. Noel Markgraaff bred and supplied test animals.

The work was performed in the laboratories of the Cape Heart Centre, University of Cape Town and of the Department of Physiological Sciences, University of Stellenbosch.

iii

(4)

CONTENTS

Pages

Declaration

Summary/ Opsomming i - ii

Acknowledgements iii

Contents Table iv

Introduction 1 - 5

Experimental Methods 6 – 14

Animal Experimentation 6

Preparation of Muscle Tissue 7

Enzymatic Reactions 9

Analysis by Fluorometry 12

Statistical Analysis 14

Results 15 - 25

Maximal Enzyme Activities 15 - 19 Metabolic Potentials 20 - 23 Table: comparative analyses 24 Effects of Food on Enzyme Activity 25

Discussion 26 - 33

Conclusion 34

References 35 - 37

Appendices 38 - 52

Anatomy of Rat Hindlimb 38 Reagents and Protocols 39 - 40 Assessment of Assay Reliability 41 - 43

Statistical Analyses 44 - 51

Effect of Food on Enzyme Activity 52

iv

Referenties

GERELATEERDE DOCUMENTEN

Deze streek werd 10 jaar geleden voor het laatst door een WTKG excursie aangedaan. Een voorexcursie was dan ook

For an active noise control system in a room it is shown that the technique leads to improved performance in terms of robustness and the amount of reduction of the error signals..

The high retention of Ag in the cellular debris fraction was also observed in Glycine max after bulk, nanoparticle and ionic Ag exposure ( Quah et al., 2015 ). In order to address

Tenslotte, in hoofdstuk 10, bediscussieerden we onderwerpen die relevant waren in een of meer individuele hoofdstukken van dit proefschrift, namelijk (1) somatische screening

A distinction which is made, is between weak and strong implicatures (Clark, 2013). How this works is shown on one of Clark’s examples in 25. Example 26 shows how the system

The main question in this research was “What is the association between the evolution of the house prices and the evolution of wealth inequality in the years 2003-2018?” Based on the

The South African government has produced a number of policy documents (i.e. the New Growth Path, the National Development Plan and the Industrial Policy Action Plan) that seek to

(Expertisenetwerk) Hieronder lichten we deze onderdelen en medewerking die we daarbij vragen toe. Onderzoek naar indicatoren voor goede kwaliteit van ondersteuning bij Levensvragen