• No results found

University of Groningen Visualization and exploration of multichannel EEG coherence networks Ji, Chengtao

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Visualization and exploration of multichannel EEG coherence networks Ji, Chengtao"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Visualization and exploration of multichannel EEG coherence networks

Ji, Chengtao

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Ji, C. (2018). Visualization and exploration of multichannel EEG coherence networks. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

[1] S. Achard. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1):63–72, 2006. doi 10.1523/ JNEUROSCI.3874-05.2006. url http://www.jneurosci.org/ cgi/doi/10.1523/JNEUROSCI.3874-05.2006.

[2] M. Ahmadlou and H. Adeli. Functional community analysis of brain: A new approach for EEG-based investigation of the brain pathology.NeuroImage, 58(2):401–408, 2011. doi 10.1016/j. neuroimage.2011.04.070. urlhttp://dx.doi.org/10.1016/j. neuroimage.2011.04.070.

[3] J. Ahn, C. Plaisant, and B. Shneiderman. A task taxonomy for network evolution analysis. IEEE Transactions on Visualization and Computer Graphics, 20(3):365–376, mar 2014. doi 10.1109/ tvcg.2013.238. urlhttps://doi.org/10.1109%2Ftvcg.2013. 238.

[4] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J. D. Fekete. Weighted graph comparison techniques for brain connectivity analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages 483–492, New York, NY, USA, 2013. ACM. isbn 978-1-4503-1899-0. doi 10.1145/2470654.2470724. urlhttp://doi.acm.org/10.1145/ 2470654.2470724.

[5] D. Archambault, H. Purchase, and B. Pinaud. Animation, small multiples, and the effect of mental map preservation in dynamic graphs.IEEE Transactions on Visualization and Computer Graph-ics, 17(4):539–552, 2011. doi 10.1109/TVCG.2010.78.

[6] B. Bach, N. Henry Riche, T. Dwyer, T. Madhyastha, J. D. Fekete, and T. Grabowski. Small MultiPiles: Piling Time to Explore Tem-poral Patterns in Dynamic Networks. Computer Graphics Fo-rum, 34(3):31–40, 2015. doi 10.1111/cgf.12615. urlhttp://doi. wiley.com/10.1111/cgf.12615.

[7] C. Büchel, C. Frith, and K. Friston. Functional integration: methods for assessing interactions among neuronal systems us-ing brain imagus-ing. In The Neurocognition of Language, pages 337–358. Oxford University Press, jul 2000. doi 10.1093/acprof: oso/9780198507932.003.0011. urlhttps://doi.org/10.1093% 2Facprof%3Aoso%2F9780198507932.003.0011.

(3)

[8] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The State of the Art in Visualizing Dynamic Graphs. InEuroVis - STARs, Swansea, Wales, UK, 2014. The Eurographics Association. isbn 978-3-03868-028-4. doi 10.2312/eurovisstar.20141174.

[9] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of dynamic graph visualization. Computer Graph-ics Forum, 36(1):133–159, jan 2016. doi 10.1111/cgf.12791. url

https://doi.org/10.1111%2Fcgf.12791.

[10] J. Blaas, C. Botha, B. Peters, F. Vos, and F. Post. Fast and repro-ducible fiber bundle selection in DTI visualization. InIEEE Visu-alization 2005 - (VIS'05). IEEE, 2005. doi 10.1109/vis.2005.40. url

https://doi.org/10.1109%2Fvis.2005.40.

[11] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks.Journal of Statistical Mechanics: Theory and Experiment, 10008(10):6, 2008. doi 10.1088/ 1742-5468/2008/10/P10008. urlhttp://arxiv.org/abs/0803. 0476.

[12] I. Boyandin, E. Bertini, and D. Lalanne. A qualitative study on the exploration of temporal changes in flow maps with animation and small-multiples. Computer Graphics Forum, 31(3pt2):1005– 1014, jun 2012. doi 10.1111/j.1467-8659.2012.03093.x. urlhttps: //doi.org/10.1111%2Fj.1467-8659.2012.03093.x.

[13] C. Bron and J. Kerbosch. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM, 16(9):575–577, 1973. doi 10.1145/362342.362367. url http://doi.acm.org/10.1145/ 362342.362367.

[14] A. Buja, D. F. SWAYNE, M. L. Littman, N. Dean, H. Hofmann, and L. Chen. Data Visualization with Multidimensional Scaling. Jour-nal of ComputatioJour-nal and Graphical Statistics, 17(2):444–472, 2008. doi DOI:10.1198/106186008X318440. urlhttp://citeseerx. ist.psu.edu/viewdoc/summary?doi=10.1.1.11.4365. [15] E. Bullmore and O. Sporns. Complex brain networks: graph

the-oretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(4):312–312, 2009. doi 10.1038/nrn2618. urlhttp://www.nature.com/doifinder/10.1038/nrn2618. [16] M. ten Caat, N. M. Maurits, and J. B. T. M. Roerdink. Functional

unit maps for data-driven visualization of high-density EEG co-herence. InProc. Eurographics/IEEE VGTC Symposium on Visual-ization (EuroVis), pages 259–266, 2007.

(4)

[17] M. ten Caat, N. M. Maurits, and J. B. T. M. Roerdink. Watershed-based visualization of high-density EEG coherence. In G. J. F. Banon, J. Barrera, and U. de Mendoca Braga-Neto, editors,Proc. 8th International Symposium on Mathematical Morphology, Rio de Janeiro, pages 289–300, Oct 10-13 2007.

[18] M. ten Caat. Fumaplab: multichannel EEG Matlab toolbox, 2008. http://www.cs.rug.nl/~roe/software/FuMapLab/ FuMapLab0-2.tgz.

[19] M. ten Caat, M. M. Lorist, E. Bezdan, J. B. T. M. Roerdink, and N. M. Maurits. High-density EEG coherence analysis using func-tional units applied to mental fatigue. Journal of Neuroscience Methods, 171(2):271–278, 2008. doi 10.1016/j.jneumeth.2008.03. 022. urlhttp://linkinghub.elsevier.com/retrieve/pii/ S0165027008002033.

[20] M. ten Caat, N. M. Maurits, and J. B. T. M. Roerdink. Data-driven visualization and group analysis of multichannel EEG coherence with functional units. IEEE Transactions on Visualization and Computer Graphics, 14(4):756–771, 2008. doi 10.1109/TVCG.2008. 21.

[21] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. IEEE transactions on pattern analysis and machine intelligence, 31(6):1048–1058, 2009.

[22] E. G. Christodoulou, V. Sakkalis, V. Tsiaras, and I. G. Tollis. Brain-NetVis: An open-access tool to effectively quantify and visual-ize brain networks. Computational Intelligence and Neuroscience, 2011:1–12, 2011. doi 10.1155/2011/747290. urlhttps://doi. org/10.1155%2F2011%2F747290.

[23] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization of complex networks: A survey of measure-ments. Advances in physics, 56(1):167–242, 2007.

[24] N. M. da Costa, D. Fürsinger, and K. A. Martin. The synaptic or-ganization of the claustral projection to the cat’s visual cortex. Journal of Neuroscience, 30(39):13166–13170, 2010.

[25] A. Crippa and J. B. T. M. Roerdink. Data-driven visualization of functional brain regions from resting state fMRI data. In P. Eisert, K. Polthier, and J. Hornegger, editors,Proceedings Vision, Model-ing and Visualization Workshop (VMV), 4-6 Oct, Berlin, 2011. doi http://dx.doi.org/10.2312/PE/VMV/VMV11/247-254. url http: //dx.doi.org/10.2312/PE/VMV/VMV11/247-254.

(5)

[26] A. Crippa, N. M. Maurits, M. M. Lorist, and J. B. T. M. Roerdink. Graph averaging as a means to compare multichannel EEG co-herence networks and its application to the study of mental fa-tigue and neurodegenerative disease. Computers & Graphics, 35 (2):265–274, apr 2011. doi 10.1016/j.cag.2010.12.008. urlhttps: //doi.org/10.1016%2Fj.cag.2010.12.008.

[27] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. Comparing community structure identification.Journal of Statistical Mechan-ics: Theory and Experiment, 2005(09):P09008–P09008, sep 2005. doi 10.1088/1742-5468/2005/09/p09008. urlhttps://doi.org/ 10.1088%2F1742-5468%2F2005%2F09%2Fp09008.

[28] G. B. Dantzig. Application of the Simplex Method to a Transporta-tion Problem - Ch XXIII, 1951. urlhttp://cowles.econ.yale. edu/P/cm/m13/m13-23.pdf.

[29] S. Diel, C. Görg, and A. Kerren. Preserving the Mental Map using Foresighted Layout. InEurographics / IEEE VGTC Symposium on Visualization, Ascona, Switzerland, 2001. The Eurographics As-sociation. isbn 3-211-83674-8. doi 10.2312/VisSym/VisSym01/ 175-184.

[30] E. van Diessen, T. Numan, E. van Dellen, A. van der Kooi, M. Boersma, D. Hofman, R. van Lutterveld, B. van Dijk, E. van Straaten, A. Hillebrand, and C. Stam. Opportunities and method-ological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126(8):1468– 1481, aug 2015. doi 10.1016/j.clinph.2014.11.018. url https: //doi.org/10.1016%2Fj.clinph.2014.11.018.

[31] M. B. Dillencourt, D. Eppstein, and M. T. Goodrich. Choosing col-ors for geometric graphs via color space embeddings. In Inter-national Symposium on Graph Drawing, pages 294–305. Springer, 2006.

[32] M. B. Dillencourt, D. Eppstein, and M. T. Goodrich. Choosing colors for geometric graphs via color space embeddings. In Graph Drawing, pages 294–305. Springer Berlin Heidelberg, 2007. doi 10.1007/978-3-540-70904-6_29. urlhttps://doi.org/10. 1007%2F978-3-540-70904-6_29.

[33] N. U. F. Dosenbach, B. Nardos, A. L. Cohen, D. A. Fair, J. D. Power, J. A. Church, S. M. Nelson, G. S. Wig, A. C. Vogel, C. N. Lessov-Schlaggar, K. A. Barnes, J. W. Dubis, E. Feczko, R. S. Coalson, J. R. Pruett, D. M. Barch, S. E. Petersen, and B. L. Schlaggar. Prediction of individual brain maturity using fMRI.Science, 329(5997):1358– 1361, sep 2010. doi 10.1126/science.1194144. urlhttps://doi. org/10.1126%2Fscience.1194144.

(6)

[34] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Dy-namic network visualization withExtended massive sequence views. IEEE Transactions on Visualization and Computer Graph-ics, 20(8):1087–1099, aug 2014. doi 10.1109/tvcg.2013.263. url

https://doi.org/10.1109%2Ftvcg.2013.263.

[35] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Re-ducing snapshots to points: A visual analytics approach to dy-namic network exploration. IEEE Transactions on Visualization and Computer Graphics, 22(1):1–10, jan 2016. doi 10.1109/tvcg. 2015.2468078. urlhttps://doi.org/10.1109%2Ftvcg.2015. 2468078.

[36] M. D. Fairchild. Color Appearance Models. John Wiley & Sons, Ltd, jun 2013. doi 10.1002/9781118653128. urlhttps://doi. org/10.1002%2F9781118653128.

[37] A. Ford and A. Roberts. Colour space conversions. Westminster University, London, 1998:1–31, 1998. urlhttps://poynton.ca/ PDFs/coloureq.pdf.

[38] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010. doi 10.1016/j.physrep.2009.11.002. [39] K. J. Friston, C. D. Frith, and R. S. J. Frackowiak. Time-dependent

changes in effective connectivity measured with PET. Human Brain Mapping, 1(1):69–79, 1993. doi 10.1002/hbm.460010108. urlhttps://doi.org/10.1002%2Fhbm.460010108.

[40] K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak. Func-tional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow & Metabolism, 13 (1):5–14, jan 1993. doi 10.1038/jcbfm.1993.4. urlhttps://doi. org/10.1038%2Fjcbfm.1993.4.

[41] K. J. Friston. Functional and effective connectivity in neuroimag-ing: A synthesis. Human Brain Mapping, 2(1-2):56–78, 1994. doi 10.1002/hbm.460020107. urlhttps://doi.org/10.1002% 2Fhbm.460020107.

[42] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and Experience, 21(11): 1129–1164, 1991. doi 10.1002/spe.4380211102.

[43] T. Fujiwara, J. K. Chou, A. M. McCullough, C. Ranganath, and K. L. Ma. A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE, apr 2017. doi 10.1109/pacificvis.2017.8031601. urlhttps://doi.org/10. 1109%2Fpacificvis.2017.8031601.

(7)

[44] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. InGraph Drawing, pages 239–250. Springer Berlin Heidelberg, 2005. doi 10.1007/978-3-540-31843-9_25. urlhttps: //doi.org/10.1007%2F978-3-540-31843-9_25.

[45] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance. Pattern Analysis and Applications, 13(1):113–129, 2010. doi 10. 1007/s10044-008-0141-y.

[46] S. Gerhard, A. Daducci, A. Lemkaddem, R. Meuli, J. P. Thiran, and P. Hagmann. The connectome viewer toolkit: An open source framework to manage, analyze, and visualize connectomes. Fron-tiers in Neuroinformatics, 5, 2011. doi 10.3389/fninf.2011.00003. urlhttps://doi.org/10.3389%2Ffninf.2011.00003. [47] M. Ghoniem, J. D. Fekete, and P. Castagliola. A comparison of

the readability of graphs using node-link and matrix-based rep-resentations. In IEEE Symposium on Information Visualization. IEEE, 2004. doi 10.1109/infvis.2004.1. urlhttps://doi.org/ 10.1109%2Finfvis.2004.1.

[48] M. Ghoniem, J. D. Fekete, and P. Castagliola. On the readability of graphs using node-link and matrix-based representations: A con-trolled experiment and statistical analysis.Information Visualiza-tion, 4(2):114–135, July 2005. doi 10.1057/palgrave.ivs.9500092. urlhttp://dx.doi.org/10.1057/palgrave.ivs.9500092. [49] A. Gisbrecht and B. Hammer. Data visualization by

nonlin-ear dimensionality reduction. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(2):51–73, feb 2015. doi 10.1002/widm.1147. url https://doi.org/10.1002%2Fwidm. 1147.

[50] T. E. Gladwin, J. P. Lindsen, and R. De Jong. Pre-stimulus EEG effects related to response speed, task switching and upcoming response hand. Biological Psychology, 72(1):15–34, 2006. doi 10. 1016/j.biopsycho.2005.05.005.

[51] D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of communities in dynamic social networks. InProceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, pages 176–183, Washington, DC, USA, 2010. IEEE Computer Society. isbn 978-0-7695-4138-9. doi 10.1109/ ASONAM.2010.17. urlhttp://dx.doi.org/10.1109/ASONAM. 2010.17.

[52] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns. Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7):e159, jul 2008. doi

(8)

10.1371/journal.pbio.0060159. urlhttps://doi.org/10.1371% 2Fjournal.pbio.0060159.

[53] D. Halliday, J. Rosenberg, A. Amjad, P. Breeze, B. Conway, and S. Farmer. A framework for the analysis of mixed time series/-point process data—theory and application to the study of phys-iological tremor, single motor unit discharges and electromyo-grams. Progress in Biophysics and Molecular Biology, 64(2):237– 278, 1995. doi 10.1016/s0079-6107(96)00009-0. urlhttps://doi. org/10.1016%2Fs0079-6107%2896%2900009-0.

[54] M. Harrower and C. A. Brewer. ColorBrewer.org: An online tool for selecting colour schemes for maps. The Cartographic Jour-nal, 40(1):27–37, jun 2003. doi 10.1179/000870403235002042. url

https://doi.org/10.1179%2F000870403235002042.

[55] M. Hassan, M. Shamas, M. Khalil, W. E. Falou, and F. Wendling. EEGNET: An open source tool for analyzing and visualizing M/EEG connectome.PLOS ONE, 10(9):e0138297, sep 2015. doi 10. 1371/journal.pone.0138297. url https://doi.org/10.1371% 2Fjournal.pone.0138297.

[56] N. Henry and J. D. Fekete. MatrixExplorer: a dual-representation system to explore social networks. IEEE Transactions on Visual-ization and Computer Graphics, 12(5):677–684, sep 2006. doi 10. 1109/tvcg.2006.160. url https://doi.org/10.1109%2Ftvcg. 2006.160.

[57] N. Henry and J. D. Fekete. MatLink: Enhanced matrix visual-ization for analyzing social networks. InLecture Notes in Com-puter Science, pages 288–302. Springer Berlin Heidelberg, 2007. doi 10.1007/978-3-540-74800-7_24. urlhttps://doi.org/10. 1007%2F978-3-540-74800-7_24.

[58] J. Holsheimer and B. W. A. Feenstra. Volume conduction andEEG measurements within the brain. a quantitative approach to the in-fluence of electrical spread on the linear relationship of activity measured at different locations.Electroencephalography and clin-ical neurophysiology, 43:52–58, 1977.

[59] C. J. Honey, R. Kotter, M. Breakspear, and O. Sporns. Net-work structure of cerebral cortex shapes functional connec-tivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24):10240–10245, 2007. doi 10.1073/ pnas.0701519104. url http://www.pnas.org/cgi/doi/10. 1073/pnas.0701519104.

[60] S. G. Hormuzdi, M. A. Filippov, G. Mitropoulou, H. Monyer, and R. Bruzzone. Electrical synapses: a dynamic signaling system

(9)

that shapes the activity of neuronal networks.Biochimica et Bio-physica Acta (BBA) - Biomembranes, 1662(1-2):113–137, mar 2004. doi 10.1016/j.bbamem.2003.10.023. urlhttps://doi.org/10. 1016%2Fj.bbamem.2003.10.023.

[61] Y. Hu, S. G. Kobourov, and S. Veeramoni. Embedding, cluster-ing and colorcluster-ing for dynamic maps. In 2012 IEEE Pacific Vi-sualization Symposium. IEEE, feb 2012. doi 10.1109/pacificvis. 2012.6183571. urlhttps://doi.org/10.1109%2Fpacificvis. 2012.6183571.

[62] C. Hurter, O. Ersoy, and A. Telea. Smooth bundling of large streaming and sequence graphs. In2013 IEEE Pacific Visualization Symposium (PacificVis). IEEE, feb 2013. doi 10.1109/pacificvis. 2013.6596126. urlhttps://doi.org/10.1109%2Fpacificvis. 2013.6596126.

[63] A. A. Ioannides. Dynamic functional connectivity.Current Opin-ion in Neurobiology, 17(2):161–170, apr 2007. doi 10.1016/j.conb. 2007.03.008. urlhttps://doi.org/10.1016%2Fj.conb.2007. 03.008.

[64] D. Jäckle, F. Fischer, T. Schreck, and D. A. Keim. Temporal MDS Plots for Analysis of Multivariate Data. IEEE Transactions on Visualization and Computer Graphics, 22(1):141–150, 2016. doi 10.1109/TVCG.2015.2467553.

[65] C. Ji. Dynamic coherence networks visualization demostration, 2017.https://DynCohNetVis.github.io/.

[66] C. Ji, J. J. van de Gronde, N. M. Maurits, and J. B. T. M. Roerdink. Tracking and Visualizing Dynamic Structures in Multichannel EEG Coherence Networks. In T. Isenberg and F. Sadlo, edi-tors,EuroVis 2016 - Posters. The Eurographics Association, 2016. isbn 978-3-03868-015-4. doi 10.2312/eurp.20161134. urlhttp: //dx.doi.org/10.2312/eurp.20161134.

[67] C. Ji, J. J. van de Gronde, N. M. Maurits, and J. B. T. M. Roerdink. Exploration of Complex Dynamic Structures in Multichannel EEG Coherence Networks via Information Visualization Tech-niques. InCCS 2016 - Posters, 2016.

[68] C. Ji, J. J. van de Gronde, N. M. Maurits, and J. B. T. M. Roerdink. Visualizing and Exploring Dynamic Multichannel EEG Coher-ence Networks. In S. Bruckner, A. Hennemuth, B. Kainz, I. Hotz, D. Merhof, and C. Rieder, editors,Eurographics Workshop on Vi-sual Computing for Biology and Medicine (VCBM). The Eurograph-ics Association, 2017. isbn 978-3-03868-036-9. doi 10.2312/vcbm. 20171238. urlhttp://dx.doi.org/10.2312/vcbm.20171238.

(10)

[69] C. Ji, N. M. Maurits, and J. B. T. M. Roerdink. Visualization of mul-tichannel EEG coherence networks based on community struc-ture analysis. In Studies in Computational Intelligence, pages 583–594. Springer International Publishing, Nov 2017. isbn 978-3-319-72150-7. doi 10.1007/978-3-319-72150-7_47. urlhttps: //doi.org/10.1007%2F978-3-319-72150-7_47.

[70] R. Jianu, A. Rusu, A. J. Fabian, and D. H. Laidlaw. A coloring solution to the edge crossing problem. InInformation visualisa-tion, 2009 13th international conference, pages 691–696. IEEE, 2009. isbn 9780769537337. doi 10.1109/IV.2009.66.

[71] M. Kaminski, K. Blinowska, and W. Szclenberger. Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness.Electroencephalography and Clinical Neu-rophysiology, 102(3):216–227, 1997. doi 10.1016/S0013-4694(96) 95721-5. urlhttp://dx.doi.org/10.1016/S0013-4694(96) 95721-5.

[72] S. Kaski and J. Peltonen. Dimensionality reduction for data visual-ization [applications corner].IEEE Signal Processing Magazine, 28 (2):100–104, 2011. doi https://doi.org/10.1109/MSP.2010.940003. [73] A. Kirschner, J. W. Y. Kam, T. C. Handy, and L. M. Ward.

Differ-ential synchronization in default and task-specific networks of the human brain. Frontiers in Human Neuroscience, 6, 2012. doi 10.3389/fnhum.2012.00139. url https://doi.org/10.3389% 2Ffnhum.2012.00139.

[74] J. P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela. Measur-ing phase synchrony in brain signals. Human Brain Mapping, 8(4):194–208, 1999. doi 10.1002/(SICI)1097-0193(1999)8:4<194:: AID-HBM4>3.0.CO;2-C.

[75] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk, J. D. Fekete, and D. Fellner. Visual analysis of large graphs: State-of-the-art and future research challenges. Com-puter Graphics Forum, 30(6):1719–1749, apr 2011. doi 10.1111/j. 1467-8659.2011.01898.x. urlhttps://doi.org/10.1111%2Fj. 1467-8659.2011.01898.x.

[76] K. Li, L. Guo, C. Faraco, D. Zhu, H. Chen, Y. Yuan, J. Lv, F. Deng, X. Jiang, T. Zhang, et al. Visual analytics of brain net-works.NeuroImage, 61(1):82–97, 2012. doi http://doi.org/10.1016/ j.neuroimage.2012.02.075.

[77] G. A. Light, L. E. Williams, F. Minow, J. Sprock, A. Rissling, R. Sharp, N. R. Swerdlow, and D. L. Braff. Electroencephalography (eeg) and event-related potentials (erps) with human participants. Current protocols in neuroscience, pages 6–25, 2011.

(11)

[78] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. StoryFlow: Tracking the evolution of stories. IEEE Transactions on Visualization and Computer Graphics, 19(12):2436–2445, 2013. doi 10.1109/TVCG. 2013.196.

[79] L. Livi and A. Rizzi. The graph matching problem. Pattern Analysis and Applications, 16(3):253–283, 2013. doi 10.1007/ s10044-012-0284-8.

[80] M. M. Lorist, E. Bezdan, M. ten Caat, M. M. Span, J. B. T. M. Roerdink, and N. M. Maurits. The influence of mental fatigue and motivation on neural network dynamics; an EEG coher-ence study. Brain Research, 1270:95–106, 2009. doi 10.1016/j. brainres.2009.03.015. urlhttp://linkinghub.elsevier.com/ retrieve/pii/S0006899309005162.

[81] S. J. Luck. An Introduction to the Event-Related Potential Tech-nique. Monographs of the Society for Research in Child Develop-ment, 78(3):388, 2005. doi 10.1118/1.4736938.

[82] S. J. Luck.An Introduction to the Event-related Potential Technique. An Introduction to the Event-related Potential Technique. MIT Press, 2005. isbn 9780262621960. urlhttps://books.google. nl/books?id=r-BqAAAAMAAJ.

[83] C. Ma, R. V. Kenyon, A. G. Forbes, T. Berger-Wolf, B. J. Slater, and D. A. Llano. Visualizing Dynamic Brain Networks Using an Animated Dual-Representation. In E. Bertini, J. Kennedy, and E. Puppo, editors,Eurographics Conference on Visualization (Eu-roVis) - Short Papers. The Eurographics Association, 2015. doi 10.2312/eurovisshort.20151128. url http://dx.doi.org/10. 2312/eurovisshort.20151128.

[84] L. V. D. Maaten, G. Hinton, and H. G. van der Maaten L. Visualiz-ing data usVisualiz-ing t-SNE.J. Mach. Learn. Res., 9:2579–2605, 2008. doi 10.1007/s10479-011-0841-3.

[85] O. Macindoe and W. Richards. Graph Comparison Using Fine Structure Analysis.2010 IEEE Second International Conference on Social Computing, pages 193–200, 2010. doi 10.1109/SocialCom. 2010.35. urlhttp://ieeexplore.ieee.org/lpdocs/epic03/ wrapper.htm?arnumber=5590440.

[86] N. M. Maurits, R. Scheeringa, J. H. van der Hoeven, and R. de Jong. EEG coherence obtained from an auditory oddball task increases with age. Journal of clinical neurophysiology, 23(5):395–403, 2006. doi 10.1097/01.wnp.0000219410.97922.4e. urlhttp://www. ncbi.nlm.nih.gov/pubmed/17016149.

(12)

[87] A. Mheich, M. Hassan, V. Gripon, M. Khalil, C. Berrou, O. Dufor, and F. Wendling. A novel algorithm for measuring graph similar-ity: Application to brain networks.International IEEE/EMBS Con-ference on Neural Engineering, NER, 2015-July:1068–1071, 2015. doi 10.1109/NER.2015.7146812.

[88] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout Adjustment and the Mental Map. Journal of Visual Lan-guages & Computing, 6(2):183–210, 1995. doi 10.1006/jvlc. 1995.1010. url http://www.sciencedirect.com/science/ article/pii/S1045926X85710105.

[89] S. Mori, B. J. Crain, V. P. Chacko, and P. C. Van Zijl. Three-dimensional tracking of axonal projections in the brain by mag-netic resonance imaging. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 45(2):265–269, 1999.

[90] T. Munzner. Visualization Analysis and Design. New York: A K Peters/CRC Press., dec 2014. doi 10.1201/b17511. urlhttps: //doi.org/10.1201%2Fb17511.

[91] T. Munzner. A nested model for visualization design and vali-dation. IEEE Transactions on Visualization and Computer Graph-ics, 15(6):921–928, nov 2009. doi 10.1109/tvcg.2009.111. url

https://doi.org/10.1109%2Ftvcg.2009.111.

[92] S. M. Nelson, A. L. Cohen, J. D. Power, G. S. Wig, M. Francis, M. E. Wheeler, K. Velanova, D. I. Donaldson, S. Jeffrey, B. L. Schlaggar, S. E. Petersen, R. F. Trial, L. S. Fuchs, S. R. Powell, C. L. Hamlett, D. Fuchs, P. T. Cirino, and J. M. Fletcher. A parcellation scheme for human left lateral parietal cortex. Research in Education, 67 (1):156–170, 2011. doi 10.1016/j.neuron.2010.05.025.A.

[93] M. E. J. Newman. Fast algorithm for detecting community struc-ture in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69(6 2):1–5, 2004. doi 10.1103/PhysRevE.69. 066133.

[94] M. E. J. Newman. Finding community structure in networks us-ing the eigenvectors of matrices. Physical Review E - Statisti-cal, Nonlinear, and Soft Matter Physics, 74(3):1–19, 2006. doi 10.1103/PhysRevE.74.036104.

[95] M. E. J. Newman and M. Girvan. Finding and evaluating commu-nity structure in networks.Physical Review E, 69(2), feb 2004. doi 10.1103/physreve.69.026113. urlhttps://doi.org/10.1103% 2Fphysreve.69.026113.

(13)

[96] P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B. Silberstein, and P. J. Cadusch. EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Elec-troencephalography and Clinical Neurophysiology, 103(5):499–515, 1997. doi 10.1016/S0013-4694(97)00066-7.

[97] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil. Intrinsic signal changes accompa-nying sensory stimulation: functional brain mapping with mag-netic resonance imaging.Proceedings of the National Academy of Sciences, 89(13):5951–5955, jul 1992. doi 10.1073/pnas.89.13.5951. urlhttps://doi.org/10.1073%2Fpnas.89.13.5951.

[98] R. Oostenveld and P. Praamstra. The five percent elec-trode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4):713–719, 2001. doi 10.1016/ S1388-2457(00)00527-7.

[99] G. A. Pavlopoulos, A. L. Wegener, and R. Schneider. A survey of visualization tools for biological network analysis. BioData Mining, 1(1), nov 2008. doi 10.1186/1756-0381-1-12. urlhttps: //doi.org/10.1186%2F1756-0381-1-12.

[100] H. Pfister, V. Kaynig, C. P. Botha, S. Bruckner, V. J. Dercksen, H. C. Hege, and J. B. T. M. Roerdink. Visualization in connectomics. InMathematics and Visualization, pages 221–245. Springer Lon-don, 2014. doi 10.1007/978-1-4471-6497-5_21. urlhttps://doi. org/10.1007%2F978-1-4471-6497-5_21.

[101] D. Phan, L. Xiao, R. B. Yeh, P. Hanrahan, and T. Winograd. Flow map layout. InIEEE Symposium on Information Visual-ization (InfoVis 2005), 23-25 October 2005, Minneapolis, MN, USA, page 29, 2005. doi 10.1109/INFOVIS.2005.13. urlhttp://doi. ieeecomputersociety.org/10.1109/INFOVIS.2005.13. [102] T. W. Picton. The p300 wave of the human event-related potential.

Journal of Clinical Neurophysiology, 9(4):456–479, Oct 1992. doi 10.1097/00004691-199210000-00002. urlhttps://doi.org/10. 1097%2F00004691-199210000-00002.

[103] P. E. Rauber, A. X. Falcão, and A. C. Telea. Visualizing time-dependent data using dynamic t-sne. InProceedings of the Eu-rographics / IEEE VGTC Conference on Visualization: Short Papers, EuroVis ’16, pages 73–77, Goslar Germany, Germany, 2016. Eu-rographics Association. doi 10.2312/eurovisshort.20161164. url

(14)

[104] K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf. Visualizing the evolution of community struc-tures in dynamic social networks. Computer Graphics Forum, 30(3):1061–1070, jun 2011. doi 10.1111/j.1467-8659.2011.01955. x. url https://doi.org/10.1111%2Fj.1467-8659.2011. 01955.x.

[105] P. Riehmann, M. Hanfler, and B. Froehlich. Interactive Sankey diagrams. In IEEE Symposium on Information Visualiza-tion (InfoVis 2005), 23-25 October 2005, Minneapolis, MN, USA, page 31, 2005. doi 10.1109/INFOVIS.2005.21. urlhttp://doi. ieeecomputersociety.org/10.1109/INFOVIS.2005.21. [106] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko.

Effec-tiveness of animation in trend visualization.IEEE Transactions on Visualization and Computer Graphics, 14(6):1325–1332, 2008. doi 10.1109/TVCG.2008.125.

[107] M. Rubinov and O. Sporns. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3):1059– 1069, 2010. doi 10.1016/j.neuroimage.2009.10.003. urlhttp:// dx.doi.org/10.1016/j.neuroimage.2009.10.003.

[108] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distribu-tions with applicadistribu-tions to image databases. Computer Vision, 1998. Sixth International Conference on, pages 59–66, 1998. doi 10.1109/ICCV.1998.710701.

[109] V. Sakkalis. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Computers in Biology and Medicine, 41(12):1110–1117, dec 2011. doi 10.1016/j. compbiomed.2011.06.020. urlhttps://doi.org/10.1016%2Fj. compbiomed.2011.06.020.

[110] A. Sallaberry, C. Muelder, and K. L. Ma. Clustering, visualiz-ing, and navigating for large dynamic graphs. In W. Didimo and M. Patrignani, editors, Graph Drawing: 20th International Symposium, GD 2012, Redmond, WA, USA, September 19-21, 2012, Revised Selected Papers, pages 487–498. Springer Berlin Heidel-berg, Berlin, HeidelHeidel-berg, 2013. isbn 978-3-642-36763-2. doi 10.1007/978-3-642-36763-2_43. url http://dx.doi.org/10. 1007/978-3-642-36763-2_43.

[111] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1): 27–64, 2007. doi 10.1016/j.cosrev.2007.05.001.

[112] J. Sorger, K. Bühler, F. Schulze, T. Liu, and B. Dickson. neu-roMAP - interactive graph-visualization of the fruit fly’s neural circuit. In Biological Data Visualization (BioVis), 2013

(15)

IEEE Symposium on, pages 73–80. IEEE, Oct 2013. url

https://www.cg.tuwien.ac.at/research/publications/ 2013/sorger-2013-neuromap/.

[113] Y. Sun, B. Danila, K. Josić, and K. E. Bassler. Improved com-munity structure detection using a modified fine-tuning strat-egy. EPL (Europhysics Letters), 86(2):28004, apr 2009. doi 10.1209/0295-5075/86/28004. urlhttps://doi.org/10.1209% 2F0295-5075%2F86%2F28004.

[114] A. Telea and D. Auber. Code flows: Visualizing structural evo-lution of source code. Computer Graphics Forum, 27(3):831–838, may 2008. doi 10.1111/j.1467-8659.2008.01214.x. url https: //doi.org/10.1111%2Fj.1467-8659.2008.01214.x.

[115] C. Turkay, J. Parulek, N. Reuter, and H. Hauser. Interactive vi-sual analysis of temporal cluster structures. Computer Graph-ics Forum, 30(3):711–720, jun 2011. doi 10.1111/j.1467-8659.2011. 01920.x. url https://doi.org/10.1111%2Fj.1467-8659. 2011.01920.x.

[116] S. Van Den Elzen, D. Holten, J. Blaas, and J. J. Van Wijk. Re-ducing Snapshots to Points: A Visual Analytics Approach to Dy-namic Network Exploration. IEEE Transactions on Visualization and Computer Graphics, 22(1):1–10, 2016. doi 10.1109/TVCG.2015. 2468078.

[117] L. J. P. Van Der Maaten, E. O. Postma, and H. J. Van Den Herik. Dimensionality Reduction: A Comparative Review. Journal of Machine Learning Research, 10:1–41, 2009. doi 10.1080/ 13506280444000102.

[118] C. Vehlow, F. Beck, P. Auwärter, and D. Weiskopf. Visualizing the evolution of communities in dynamic graphs.Computer Graphics Forum, 34(1):277–288, 2015. doi 10.1111/cgf.12512. urlhttp: //dx.doi.org/10.1111/cgf.12512.

[119] A. Von Stein and J. Sarnthein. Different frequencies for different scales of cortical integration: From local gamma to long range al-pha/theta synchronization. International Journal of Psychophysi-ology, 38(3):301–313, 2000. doi 10.1016/S0167-8760(00)00172-0. [120] J. Wang, L. Wang, Y. Zang, H. Yang, H. Tang, Q. Gong, Z. Chen,

C. Zhu, and Y. He. Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5):1511–1523, may 2009. doi 10.1002/hbm.20623. urlhttps://doi.org/10.1002%2Fhbm.20623.

(16)

[121] M. Wichterich, A. M. Ivanescu, and T. Seidl. Feature-based graph similarity with co-occurrence histograms and the earth mover’s distance. InBTW, pages 135–146, 2011.

[122] K. J. Worsley, J. I. Chen, J. Lerch, and A. C. Evans. Comparing functional connectivity via thresholding correlations and singu-lar value decomposition. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457):913–920, may 2005. doi 10. 1098/rstb.2005.1637. url https://doi.org/10.1098%2Frstb. 2005.1637.

[123] M. Xia, J. Wang, and Y. He. BrainNet viewer: A network visu-alization tool for human brain connectomics. PLoS ONE, 8(7): e68910, jul 2013. doi 10.1371/journal.pone.0068910. urlhttps: //doi.org/10.1371%2Fjournal.pone.0068910.

[124] K. S. Xu, M. Kliger, and A. O. Hero III. Visualizing the Tem-poral Evolution of Dynamic Networks. Proc. 9th Work-shop on Mining and Learning with Graphs, page 2, 2011. url http://web.eecs.umich.edu/~hero/Preprints/Xu_ visualization_MLG_2011.pdf.

[125] K. S. Xu, M. Kliger, and A. O. Hero. A regularized graph lay-out framework for dynamic network visualization. Data Min-ing and Knowledge Discovery, 27(1):84–116, aug 2012. doi 10.1007/s10618-012-0286-6. url https://doi.org/10.1007% 2Fs10618-012-0286-6.

[126] J. S. Yi, N. Elmqvist, and S. Lee. Timematrix: Analyzing tempo-ral social networks using interactive matrix-based visualizations. International Journal of Human-Computer Interaction, 26(11-12): 1031–1051, 2010. doi 10.1080/10447318.2010.516722.

(17)

Referenties

GERELATEERDE DOCUMENTEN

For a given dynamic co- herence graph with the derived dynamic FUs and a given color space, we embed the dynamic FUs at each time step into the specified color space using the

However, such methods are not suitable to compare brain networks since they ignore the spatial information; for example, two graphs with connections between different brain regions

In Chapter 3 we improved upon this approach by propos- ing a method based on dimension reduction techniques to explore the evolution patterns of dynamic FUs.. On the basis of

They are: Bin Jiang, Bin Liu, Fan Yang, Gang Ye, Haigen Fu, Hao Guo, Huala Wu, Huimin Ke, Jin- feng Shao, Jingjing Zhang, Jiuling Li, Juan Shan, Keni Yang, Liang Xu, Liangming

In Chapter 2, we in- troduced an interactive visualization methodology for the analysis of dynamic connectivity structures in multichannel EEG coherence net- works as an

Visualization provides a visual representation of the data to help people carry out analysis tasks effectively; it happens at an early state in the process, usually before a

It is often of great interest to extract the common information present in a given set of signals or multichannel recording. This is possible by going to the subspace representation

In general, networks are rarely static; they are dynamic, meaning that the structure and/or associated multivariate data change over time. All networks mentioned in the