• No results found

University of Groningen Carbonyl sulfide, a way to quantify photosynthesis Kooijmans, Linda Maria Johanna

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Carbonyl sulfide, a way to quantify photosynthesis Kooijmans, Linda Maria Johanna"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Carbonyl sulfide, a way to quantify photosynthesis

Kooijmans, Linda Maria Johanna

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Kooijmans, L. M. J. (2018). Carbonyl sulfide, a way to quantify photosynthesis. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Aalto, J., P. Kolari, P. Hari, V. . Kerminen, P. Schiestl-Aalto, H. Aaltonen, J. Levula, E. Siivola, M. Kulmala, and J. Bäck (2014). New foliage growth is a significant, unaccounted source for volatiles in boreal evergreen forests. Biogeosciences, 11(5):1331–1344. doi: 10.5194/bg-11-1331-2014.

Ahn, J., E. J. Brook, L. Mitchell, J. Rosen, J. R. McConnell, K. Taylor, D. Etheridge, and M. Rubino (2012). Atmospheric CO2 over the last 1000 years: A high-resolution record from the west antarctic ice sheet (WAIS) divide ice core. Global Biogeochem. Cy., 26(2). doi: 10.1029/2011GB004247.

Alekseychik, P., I. Mammarella, S. Launiainen, U. Rannik, and T. Vesala (2013). Evolution of the nocturnal decoupled layer in a pine forest canopy. Agr. Forest Meteorol., 174-175:15– 27.

Allan, D. (1987). Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE T. Ultrason. Ferr., 34(6):647–654. Altimir, N., P. Kolari, J. . Tuovinen, T. Vesala, J. Bäck, T. Suni, M. Kulmala, and P. Hari (2006).

Foliage surface ozone deposition: a role for surface moisture? Biogeosciences, 3:209–228. doi: 10.5194/bg-3-209-2006.

Asaf, D., E. Rotenberg, F. Tatarinov, U. Dicken, S. A. Montzka, and D. Yakir (2013). Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci., 6(3):186–190. doi: 10.1038/ngeo1730.

Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat (2001). Long term carbon dioxide exchange above a mixed forest in the belgian ardennes. Agr.

Forest Meteorol., 108(4):293–315. doi: 10.1016/S0168-1923(01)00244-1.

Aubinet, M., T. Vesala, and D. Papale (2012). Eddy Covariance: A Practical Guide to

Mea-surement and Data Analysis. Dordrecht Heidelberg London New York: Springer.

Aydin, M., M. B. Williams, C. Tatum, and E. S. Saltzman (2008). Carbonyl sulfide in air extracted from a south pole ice core: a 2000 year record. Atmos. Chem. Phys., 8(24):7533– 7542.

Bäck, J., J. Aalto, M. Henriksson, H. Hakola, Q. He, and M. Boy (2012). Chemodiversity of a scots pine stand and implications for terpene air concentrations. Biogeosciences, 9(2):689–702. doi: 10.5194/bg-9-689-2012.

Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rodenbeck, M. A. Arain, D. Baldocchi, G. B. Bonan, A. Bondeau, A. Cescatti, G. Lasslop, A. Lindroth, M. Lo-mas, S. Luyssaert, H. Margolis, K. W. Oleson, O. Roupsard, E. Veenendaal, N. Viovy, C. Williams, F. I. Woodward, and D. Papale (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993):834. doi: 10.1126/science.1184984.

Belviso, S., N. Mihalopoulos, and B. C. Nguyen (1987). The supersaturation of carbonyl sulfide (OCS) in rain waters. Atmos. Environ., 21(6):1363–1367. doi: 10.1016/0004-6981(67)90083-2.

Belviso, S., I. M. Reiter, B. Loubet, V. Gros, J. Lathiere, D. Montagne, M. Delmotte, M. Ra-monet, C. Kalogridis, B. Lebegue, N. Bonnaire, V. Kazan, T. Gauquelin, C. Fernandez, and

(3)

R

B. Genty (2016). A top-down approach of surface carbonyl sulfide exchange by a mediter-ranean oak forest ecosystem in southern france. Atmos. Chem. Phys., 16:14909–14909. doi: 10.5194/acp-16-14909-2016.

Belviso, S., M. Schmidt, C. Yver, M. Ramonet, V. Gros, and T. Launois (2013). Strong similarities between night-time deposition velocities of carbonyl sulphide and molecular hydrogen inferred from semi-continuous atmospheric observations in gif-sur-yvette, paris region. Tellus B, 65(20719). doi: 10.3402/tellusb.v65i0.20719.

Berkelhammer, M., D. Asaf, C. Still, S. Montzka, D. Noone, M. Gupta, R. Provencal, H. Chen, and D. Yakir (2014). Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide. Global Biogeochem. Cy., 28(2):161–179. doi: 10.1002/2013GB004644.

Berry, J., A. Wolf, J. E. Campbell, I. Baker, N. Blake, D. Blake, A. S. Denning, S. R. Kawa, S. A. Montzka, U. Seibt, K. Stimler, D. Yakir, and Z. Zhu (2013). A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. J.

Geophys. Res. Biogeo., 118(2):842–852. doi: 10.1002/jgrg.20068.

Billesbach, D. P., J. A. Berry, U. Seibt, K. Maseyk, M. S. Torn, M. L. Fischer, A. . Mohammad, and J. E. Campbell (2014). Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in southern great plains winter wheat. Agr. Forest Meteorol., 184:48–55.

Bindoff, N. L., P. A. Stott, K. M. AchutaRao, M. R. Allen, N. Gillett, D. Gutzler, K. Hansingo, G. Hegerl, Y. Hu, S. Jain, I. I. Mokhov, J. Overland, J. Perlwitz, R. Sebbari, and X. Zhang (2013). Detection and Attribution of Climate Change: from Global to Regional. In: Climate

Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Pp. 867–952.

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Blonquist, J. M., S. A. Montzka, J. W. Munger, D. Yakir, A. R. Desai, D. Dragoni, T. J. Griffis,

R. K. Monson, R. L. Scott, and D. R. Bowling (2011). The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites. J. Geophys. Res.-Biogeo., 116(G04019). doi: 10.1029/2011JG001723.

Bowling, D. R., P. P. Tans, and R. K. Monson (2001). Partitioning net ecosystem carbon ex-change with isotopic fluxes of CO2. Glob. Change Biol., 7(2):127–145. doi: 10.1046/j.1365-2486.2001.00400.x.

Brühl, C., J. Lelieveld, P. J. Crutzen, and H. Tost (2012). The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys., 12(3):1239–1253. doi: 10.5194/acp-12-1239-2012.

Buckley, T. N. (2017). Modeling stomatal conductance. Plant Physiology, 174(2):572. doi: 10.1104/pp.16.01772.

Bunk, R., B. Thomas, Y. Zhigang, M. O. Andreae, and J. Kesselmeier (2017). Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations.

J. Geophys. Res. Biogeo., 122(6):1343–1358. doi: 10.1002/2016JG003678.

Caird, M. A., J. H. Richards, and L. A. Donovan (2007). Nighttime stomatal conduc-tance and transpiration in C3 and C4 plants. Plant Physiol., 143(1):4–10. doi: 10.1104/pp.106.092940.

Campbell, J. E., J. A. Berry, U. Seibt, S. J. Smith, S. A. Montzka, T. Launois, S. Belviso, L. Bopp, and M. Laine (2017a). Large historical growth in global terrestrial gross primary production. Nature, 544:84. doi: 10.1038/nature22030.

(4)

R

Campbell, J. E., G. R. Carmichael, T. Chai, M. Mena-Carrasco, Y. Tang, D. R. Blake, N. J. Blake, S. A. Vay, G. J. Collatz, I. Baker, J. A. Berry, S. A. Montzka, C. Sweeney, J. L. Schnoor, and C. O. Stanier (2008). Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science, 322(5904):1085–1088. doi: 10.1126/science.1164015. Campbell, J. E., M. E. Whelan, J. A. Berry, T. W. Hilton, Z. A., S. J., L. Y., K. A., S. U., T. E.

Dawson, S. A. Montzka, I. T. Baker, K. S., W. Y., S. C. Herndon, M. S. Zahniser, C. R., and M. E. Loik (2017b). Plant uptake of atmospheric carbonyl sulfide in coast redwood forests. J. Geophys. Res. Biogeo., 122(12):3391–3404. doi: 10.1002/2016JG003703.

Campbell, J. E., M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry, and T. W. Hilton (2015). Atmo-spheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints. Geophys. Res. Lett., 42(8):3004–3010. doi: 10.1002/2015GL063445. Cen, Y. P. and R. F. Sage (2005). The regulation of rubisco activity in response to variation

in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol., 139(2):979–990. doi: 10.1104/pp.105.066233.

Chen, H., A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, A. Filges, T. Newberger, C. Sweeney, and P. P. Tans (2013). Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech., 6(4):1031–1040. doi: 10.5194/amt-6-1031-2013.

Chen, H., J. Winderlich, C. Gerbig, A. Hoefer, C. W. Rella, E. R. Crosson, A. D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B. C. Daube, E. W. Gottlieb, V. Y. Chow, G. W. Santoni, and S. C. Wofsy (2010). High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos.

Meas. Tech., 3(2):375–386. doi: 10.5194/amt-3-375-2010.

Chin, M. and D. Davis (1995). A reanalysis of carbonyl sulfide as a source of strato-spheric background sulfur aerosol. J. Geophys. Res.-Atmos., 100(D5):8993–9005. doi: 10.1029/95JD00275.

Commane, R., S. C. Herndon, M. S. Zahniser, B. M. Lerner, J. B. McManus, J. W. Munger, D. D. Nelson, and S. C. Wofsy (2013). Carbonyl sulfide in the planetary boundary layer: Coastal and continental influences. J. Geophys. Res.-Atmos., 118(14):8001–8009. doi: 10.1002/jgrd.50581.

Commane, R., L. K. Meredith, I. T. Baker, J. A. Berry, J. W. Munger, S. A. Montzka, P. H. Templer, S. M. Juice, M. S. Zahniser, and S. C. Wofsy (2015). Seasonal fluxes of car-bonyl sulfide in a midlatitude forest. P. Natl. Acad. Sci. USA, 112(46):14162–14167. doi: 10.1073/pnas.1504131112.

Cook, J., D. Nuccitelli, S. A. Green, M. Richardson, B. Winkler, R. Painting, R. Way, P. Jacobs, and A. Skuce (2013). Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett., 8(2):024024.

Cowan, I. R. and G. D. Farquhar (1977). Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol., 31:471–505.

Crutzen, P. J. (1976). The possible importance of CSO for the sulfate layer of the stratosphere.

Geophys. Res. Lett., 3(2):73–76. doi: 10.1029/GL003i002p00073.

Delaune, R. D., I. Devai, and C. W. Lindau (2002). Flux of reduced sulfur gases along a salinity gradient in louisiana coastal marshes. Estuar Coast Shelf S, 54(6):1003–1011. doi: 10.1006/ecss.2001.0871.

Devai, I. and R. D. Delaune (1995). Formation of volatile sulfur-compounds in salt-marsh sediment as influenced by soil redox condition. Organic Geochemistry, 23(4):283–287. doi: 10.1016/0146-6380(95)00024-9.

(5)

R

Farquhar, G. D. (1982). Stomatal conductance and photosynthesis. Annu. Rev. Plant

Physiol., 33:317–345. doi: 10.1146/annurev.pp.33.060182.001533.

Farquhar, G. D. and R. A. Richards (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol., 11(6):539–552. doi: 10.1071/PP9840539.

Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980). A biochemical model of photosyn-thetic CO2 assimilation in leaves of C3 species. Planta, 149:78. doi: 10.1007/BF00386231. Fassbinder, J. J., T. J. Griffis, and J. M. Baker (2012). Interannual, seasonal, and diel variabil-ity in the carbon isotope composition of respiration in a C3/C4 agricultural ecosystem.

Agr. Forest Meteorol., 153(Supplement C):144–153. doi: 10.1016/j.agrformet.2011.09.018.

Finkelstein, P. L. and P. F. Sims (2001). Sampling error in eddy correlation flux measurements.

J. Geophys. Res.-Atmos., 106(D4):3503–3509. doi: 10.1029/2000JD900731.

Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feed-backs. J. Climate, 27(2):511–526. doi: 10.1175/JCLI-D-12-00579.1.

Geng, C. and Y. Mu (2005). Carbonyl sulfide and dimethyl sulfide exchange be-tween trees and the atmosphere. Atmospheric Environment, 40(7):1373–1383. doi: 10.1016/j.atmosenv.2005.10.023.

Gerdel, K., F. M. Spielmann, A. Hammerle, and G. Wohlfahrt (2017). Eddy covariance car-bonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer.

Atmos. Meas. Tech., 10(9):3525–3537. doi: 10.5194/amt-10-3525-2017.

Gimeno, T., J. Ogée, J. Royles, Y. Gibon, J. West, R. Burlett, S. Jones, J. Sauze, S. Wohl, C. Benard, B. Genty, and L. Wingate (2017). Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light. New Phytol., 215(3):965–976. doi: 10.1111/nph.14584. Goldan, P. D., R. Fall, W. C. Kuster, and F. C. Fehsenfeld (1988). Uptake of COS by growing

vegetation: A major tropospheric sink. J. Geophys. Res.-Atmos., 93(D11):14186–14192. doi: 10.1029/JD093iD11p14186.

Gries, C., T. H. Nash, and J. Kesselmeier (1994). Exchange of reduced sulfur gases between lichens and the atmosphere. Biogeochemistry, 26(1):25–39.

Hari, P. and M. Kulmala (2005). Station for measuring ecosystem - atmosphere relations (SMEAR II). Boreal Environ. Res., 10:315–322.

Harnisch, J., R. Borchers, P. Fabian, and K. Kourtidis (1995). Aluminium production as a source of atmospheric carbonyl sulfide (cos). Environ. Sci. Pollut. Res., 2(3):161–162. doi: 10.1007/BF02987529.

Heskel, M. A., O. K. Atkin, M. H. Turnbull, and K. L. Griffin (2013). Bringing the Kok effect to light: A review on the integration of daytime respiration and net ecosystem exchange.

Ecosphere, 4(8):1–14. doi: 10.1890/ES13-00120.1.

Hilton, T. W., M. E. Whelan, A. Zumkehr, S. Kulkarni, J. A. Berry, I. T. Baker, S. A. Montzka, C. Sweeney, B. R. Miller, and J. Elliott C. (2017). Peak growing season gross uptake of carbon in north america is largest in the midwest USA. Nat. Clim. Change, 7:450. doi: 10.1038/nclimate3272.

Hoag, K. J., C. J. Still, I. Y. Fung, and K. A. Boering (2005). Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys.

Res. Lett., 32(2). doi: 10.1029/2004GL021011.

Huang, K., S. Wang, L. Zhou, H. Wang, J. Zhang, J. Yan, L. Zhao, Y. Wang, and P. Shi (2014). Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based

(6)

R

on eddy covariance observation in china. PLOS ONE, 9(1):e110988. doi: 10.1371/jour-nal.pone.0110988.

IPCC (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth

Assess-ment Report of the IntergovernAssess-mental Panel on Climate Change, P. 1535 pp. Cambridge

University Press, Cambridge, United Kingdom and New York, NY, USA.

Jones, P. D. and M. E. Mann (2004). Climate over past millennia. Rev. Geophys., 42(2). doi: 10.1029/2003RG000143.

Jung, M., M. Reichstein, H. Margolis, A. Cescatti, A. Richardson, M. Arain, and A. Arneth (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations.

J. Geophys. Res., 116(G3):G00J07. doi: 10.1029/2010JG001566.

Kaisermann, A., J. Ogée, J. Sauze, S. Wohl, S. P. Jones, A. Gutierrez, and L. Wingate (2018). Disentangling the rates of carbonyl sulphide (COS) production and consumption and their dependency with soil properties across biomes and land use types. Atmos. Chem.

Phys., 18:9425–9440. doi: 10.5194/acp-2017-1229.

Karstens, U., C. Schwingshackl, D. Schmithhüsen, and I. Levin (2015). A process-based 222radon flux map for europe and its comparison to long-term observations. Atmos.

Chem. Phys., 15(22):12845–12865. doi: 10.5194/acp-15-12845-2015.

Katayama, Y., Y. Narahara, Y. Inoue, F. Amano, T. Kanagawa, and H. Kuraishi (1992). A thiocyanate hydrolase of thiobacillus thioparus. a novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J. Biol. Chem., 267:9170–9175.

Kesselmeier, J., F. X. Meixner, U. Hofmann, A. . Ajavon, S. Leimbach, and M. O. Andreae (1993). Reduced sulfur compound exchange between the atmosphere and tropical tree species in southern cameroon. Biogeochemistry, 23(1):23–45. doi: 10.1007/BF00002921. Kesselmeier, J. and L. Merk (1993). Exchange of carbonyl sulfide (COS) between agricultural

plants and the atmosphere: Studies on the deposition of COS to peas, corn and rapeseed.

Biogeochemistry, 23(1):47–59. doi: 10.1007/BF00002922.

Kettle, A., U. Kuhn, M. von Hobe, J. Kesselmeier, and M. Andreae (2002). Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks. J. Geophys. Res.-Atmos., 107:4658. doi: 10.1029/2002JD002187.

Kitz, F., K. Gerdel, A. Hammerle, T. Laterza, F. M. Spielmann, and G. Wohlfahrt (2017). In situ soil COS exchange of a temperate mountain grassland under simulated drought.

Oecologia, 183(3):851–860. doi: 10.1007/s00442-016-3805-0.

KNMI (2015). KNMI’14 climate scenarios for the netherlands; a guide for professionals in climate adaptation, KNMI, Utrecht, the Netherlands.

Kolari, P., T. Chan, A. Porcar-Castell, J. Bäck, E. Nikinmaa, and E. Juurola (2014). Field and controlled environment measurements show strong seasonal acclimation in pho-tosynthesis and respiration potential in boreal scots pine. Front. Plant Sci., 5:717. doi: 10.3389/fpls.2014.00717.

Kolari, P., L. Kulmala, J. Pumpanen, S. Launiainen, H. Ilvesniemi, P. Hari, and E. Nikinmaa (2009). Co2exchange and component co2fluxes of a boreal scots pine forest. Boreal

Environ. Res., 14:761–783.

Kooijmans, L. M. J., K. Maseyk, U. Seibt, W. Sun, T. Vesala, I. Mammarella, P. Kolari, J. Aalto, A. Franchin, R. Vecchi, G. Valli, and H. Chen (2017). Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmos. Chem. Phys., 17:11453–11465. doi: 10.5194/acp-17-11453-2017.

(7)

R

Kooijmans, L. M. J., N. A. M. Uitslag, M. S. Zahniser, D. D. Nelson, S. A. Montzka, and H. Chen (2016). Continuous and high-precision atmospheric concentration measure-ments of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS).

Atmos. Meas. Tech., 9(11):5293–5314. doi: 10.5194/amt-9-5293-2016.

Kremser, S., N. B. Jones, M. Palm, B. Lejeune, Y. Wang, D. Smale, and N. M. Deutscher (2015). Positive trends in southern hemisphere carbonyl sulfide. Geophys. Res. Lett., 42(21):9473–9480. doi: 10.1002/2015GL065879.

Kuai, L., J. Worden, S. S. Kulawik, S. A. Montzka, and J. Liu (2014). Characterization of Aura TES carbonyl sulfide retrievals over ocean. Atmos. Meas. Tech., 7:163–172. doi: 10.5194/amt-7-163-2014.

Kuhn, U., C. Ammann, A. Wolf, F. X. Meixner, M. O. Andreae, and J. Kesselmeier (1999). Carbonyl sulfide exchange on an ecosystem scale: soil represents a dominant sink for atmospheric COS. Atmos. Environ., 33(6):995–1008. doi: 10.1016/S1352-2310(98)00211-8.

Kuhn, U. and J. Kesselmeier (2000). Environmental variables controlling the uptake of carbonyl sulfide by lichens. J. Geophys. Res. Atmos., 105:26783–26792. doi: 10.1029/2000JD900436.

LaFranchi, B., R. Bambha, P. Schrader, , and H. Michelsen (2015). Characterization of continuous OCS, CO and CO2 measurements at a tower site in livermore, CA USA. 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT), La Jolla, 13-17 September 2015, A10.

Launiainen, S., G. Katul, P. Kolari, T. Vesala, and P. Hari (2011). Empirical and optimal stomatal controls on leaf and ecosystem level co2 and h2o exchange rates. Agr. Forest

Meteorol., 151(12):1672–1689. doi: 10.5194/acp-15-2295-2015.

Launois, T., S. Belviso, L. Bopp, C. G. Fichot, and P. Peylin (2015a). A new model for the global biogeochemical cycle of carbonyl sulfide – part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model. Atmos.

Chem. Phys., 15(5):2295–2312. doi: 10.5194/acp-15-2295-2015.

Launois, T., P. Peylin, S. Belviso, and B. Poulter (2015b). A new model of the global biogeo-chemical cycle of carbonyl sulfide - part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models. Atmos. Chem. Phys., 15(16):9285– 9312. doi: 10.5194/acp-15-9285-2015.

Le Quéré, C., R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P. P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, C. E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, J. Hauck, V. Haverd, R. A. Houghton, C. W. Hunt, G. Hurtt, T. Ilyina, A. K. Jain, E. Kato, M. Kautz, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. . Nakaoka, Y. Nojiri, X. A. Padin, A. Peregon, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, J. Reimer, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, B. D. Stocker, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, A. J. Wiltshire, S. Zaehle, and D. Zhu (2018). Global carbon budget 2017. Earth Syst. Sci. Data, 10:405–448. doi: 10.5194/essd-10-405-2018.

Lejeune, B., E. Mahieu, M. K. Vollmer, S. Reimann, P. F. Bernath, C. D. Boone, K. A. Walker, and C. Servais (2017). Optimized approach to retrieve information on atmospheric

(8)

R

carbonyl sulfide (OCS) above the jungfraujoch station and change in its abundance since 1995. J. Quant. Spectrosc. Ra., 186(Supplement C):81–95. doi: 10.1016/j.jqsrt.2016.06.001. Lennartz, S. T., C. A. Marandino, M. von Hobe, P. Cortes, B. Quack, R. Simo, D. Booge, A. Pozzer, T. Steinhoff, D. L. Arevalo-Martinez, C. Kloss, A. Bracher, R. Rottgers, E. Atlas, and K. Kruger (2017). Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmos. Chem. Phys., 17(1):385–402. doi: 10.5194/acp-17-385-2017.

Lewis, S. L., J. Lloyd, S. Sitch, E. T. A. Mitchard, and W. F. Laurance (2009). Changing ecology of tropical forests: Evidence and drivers. Annu. Rev. Ecol. Evol. Syst., 40(1):529–549. doi: 10.1146/annurev.ecolsys.39.110707.173345.

Li, Z. G. (2013). Hydrogen sulfide: A multifunctional gaseous molecule in plants. Russian J.

Plant Phys., 60(6):733–740. doi: 10.1134/S1021443713060058.

Lopez, M., M. Schmidt, M. Delmotte, A. Colomb, V. Gros, C. Janssen, S. J. Lehman, D. Mon-delain, O. Perrussel, M. Ramonet, I. Xueref-Remy, and P. Bousquet (2013). CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in paris during winter 2010. Atmos. Chem. Phys., 13:7343–7358. doi: 10.5194/acp-13-7343-2013.

López-Coto, J., J. L. Mas, and J. P. Bolivar (2013). A 40-year retrospective european radon flux inventory including climatological variability. Atmos. Environ., 73:22–33. doi: 10.1016/j.atmosenv.2013.02.043.

Mammarella, I., P. Kolari, J. Rinne, P. Keronen, J. Pumpanen, and T. Vesala (2007). Deter-mining the contribution of vertical advection to the net ecosystem exchange at hyytiälä forest, finland. Tellus B, 59(5):900–909. doi: 10.1111/j.1600-0889.2007.00306.x.

Mammarella, I., S. Launiainen, T. Gronholm, P. Keronen, J. Pumpanen, U. Rannik, and T. Vesala (2009). Relative humidity effect on the high frequency attenuation of water vapour flux measured by a closed-path eddy covariance system. J. Atmos. Ocean. Tech., 26(9):1856–1866.

Mammarella, I., O. Peltola, A. Nordbo, L. Järvi, and U. Rannik (2016). Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems. Atmos. Meas. Tech., 9(10):4915–4933. doi: 10.5194/amt-9-4915-2016.

Mammarella, I., P. Werle, M. Pihlatie, W. Eugster, S. Haapanala, R. Kiese, T. Markkanen, U. Rannik, and T. Vesala (2010). A case study of eddy covariance flux of N2O measured within forest ecosystems: quality control and flux error analysis. Biogeosciences, 7:427– 440. doi: 10.5194/amt-9-4915-2016.

Manohar, S. N., H. A. J. Meijer, and M. A. Herber (2013). Radon flux maps for the netherlands and europe using terrestrial gamma radiation derived from soil radionuclides. Atmos.

Environ., 81:399–412. doi: 10.1016/j.atmosenv.2013.09.005.

Marcazzan, G. M., E. Caprioli, G. Valli, and R. Vecchi (2003). Temporal variation of 212Pb concentration in outdoor air of milan and a comparison with 214Bi. J. Environ. Radioact., 65(1):77–90. doi: 10.1016/S0265-931X(02)00089-9.

Maseyk, K., J. A. Berry, D. Billesbach, J. E. Campbell, M. S. Torn, M. Zahniser, and U. Seibt (2014). Sources and sinks of carbonyl sulfide in an agricultural field in the southern great plains. P. Natl. Acad. Sci. USA, 111(25):9064–9069. doi: 10.1073/pnas.1319132111. McManus, J. B., M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and

R. Wehr (2010). Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng., 49(11):111124. doi: 10.1117/1.3498782.

(9)

R

Meredith, L. K., R. Commane, J. W. Munger, A. Dunn, J. Tang, S. C. Wofsy, and R. G. Prinn (2014). Ecosystem fluxes of hydrogen: a comparison of flux-gradient methods. Atmos.

Meas. Tech., 7(9):2787–2805. doi: 10.5194/amt-7-2787-2014.

Miller, B. R., R. F. Weiss, P. K. Salameh, T. Tanhua, B. R. Greally, J. Muhle, and P. G. Simmonds (2008). Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds.

Anal. Chem., 80(5):1536–1545. doi: 10.1021/ac702084k.

Moene, A. and J. van Dam (2014). Transport in the Atmosphere–Vegetation–Soil Continuum. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Montzka, S., M. Aydin, M. Battle, J. Butler, E. Saltzman, B. Hall, A. Clarke, D. Mondeel,

and J. Elkins (2004). A 350-year atmospheric history for carbonyl sulfide inferred from antarctic firn air and air trapped in ice. J. Geophys. Res.-Atmos., 109(D22):D22302. doi: 10.1029/2004JD004686.

Montzka, S. A., P. Calvert, B. D. Hall, J. W. Elkins, T. J. Conway, P. P. Tans, and C. Sweeney (2007). On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res.-Atmos., 112(D9):D09302. doi: 10.1029/2006JD007665.

Mu, Y., C. Geng, M. Wang, H. Wu, X. Zhang, and G. Jiang (2004). Photochemical production of carbonyl sulfide in precipitation. J. Geophys. Res. Atmos., 109. doi: 10.1029/2003JD004206.

Nelson, D., B. McManus, S. Urbanski, S. Herndon, and M. Zahniser (2004). High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors. Spectrochim. Acta. A., 60(14):3325–3335. doi: 10.1016/j.saa.2004.01.033.

Neubert, R. E. M., L. L. Spijkervet, J. K. Schut, H. A. Been, and H. A. J. Meijer (2004). A computer-controlled continuous air drying and flask sampling system. J. Atmos. Ocean.

Tech., 21(4):651–659. doi: 10.1175/1520-0426(2004)021<0651:ACCADA>2.0.CO;2.

Nieminen, T., A. Asmi, M. Dal Maso, P. Aalto, P. Keronen, T. Petäjä, M. Kulmala, and V.-M. Kerminen (2014). Trends in atmospheric new-particle formation: 16 years of observations in a boreal-forest environment. Boreal Environ. Res., 19(B):191–214. Nobel, P. S. (2009). Physicochemical and environmental plant physiology. Academic Press.,

Oxford, UK.

Notni, J., S. Schenk, G. Protoschill-Krebs, J. Kesselmeier, and E. Anders (2007). The missing link in COS metabolism: A model study on the reactivation of carbonic anhydrase from its hydrosulfide analogue. ChemBioChem, 8(5):530–536. doi: 10.1002/cbic.200600436. Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W. Elkins (2003).

Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. J. Geophys.

Res.-Atmos., 108(D15). doi: 10.1029/2002JD003031.

Ogée, J., P. Peylin, P. Ciais, T. Bariac, Y. Brunet, P. Berbigier, C. Roche, P. Richard, G. Bardoux, and J. . Bonnefond (2003). Partitioning net ecosystem carbon exchange into net assimi-lation and respiration using 13CO2 measurements: A cost-effective sampling strategy.

Global Biogeochem. Cy., 17(2). doi: 10.1029/2002GB001995.

Ogée, J., J. Sauze, J. Kesselmeier, B. Genty, H. Van Diest, T. Launois, and L. Wingate (2016). A new mechanistic framework to predict OCS fluxes from soils. Biogeosciences, 13(8):2221– 2240. doi: 10.5194/bg-13-2221-2016.

Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir (2006). Towards a standardized processing

(10)

R

of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3(4):571–583. doi: 10.5194/bg-3-571-2006. Protoschill-Krebs, G., C. Wilhelm, and J. Kesselmeier (1992). Enzymatic pathways for the

consumption of carbonyl sulphide (COS) by higher plants*. Bot. Acta, 105(3):206–212. doi: 10.1111/j.1438-8677.1992.tb00288.x.

Protoschill-Krebs, G., C. Wilhelm, and J. Kesselmeier (1995). Consumption of carbonyl sul-phide by chlamydomonas reinhardtii with different activities of carbonic anhydrase (CA) induced by different CO2 growing regimes. Bot. Acta, 108(5):445–448. doi: 10.1111/j.1438-8677.1995.tb00519.x.

Protoschill-Krebs, G., C. Wilhelm, and J. Kesselmeier (1996). Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA). Atmos. Environ., 30(18):3151– 3156. doi: 10.1016/1352-2310(96)00026-X.

Rannik, U. (1998). On the surface layer similarity at a complex forest site. J. Geophys.

Res.-Atmos., 103(D8):8685–8697. doi: 10.1029/98JD00086.

Rannik, U., P. Keronen, P. Hari, and T. Vesala (2004). Estimation of forest—atmosphere CO2 exchange by eddy covariance and profile techniques. Agr. Forest Meteorol., 126:141–155. Rannik, U., O. Peltola, and I. Mammarella (2016). Random uncertainties of flux mea-surements by the eddy covariance technique. Atmos. Meas. Tech., 9:5163–5181. doi: 10.5194/amt-9-5163-2016.

Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grünwald, K. Havr’ankov’a, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm.

Glob. Change Biol., 11(9):1424–1439. doi: 10.1111/j.1365-2486.2005.001002.x.

Reicosky, D. C. (1997). Tillage-induced CO2 emission from soil. Nutr. Cycl. Agroecosys., 49(1):273–285. doi: 10.1023/A:1009766510274.

Rella, C. W., H. Chen, A. E. Andrews, A. Filges, C. Gerbig, J. Hatakka, A. Karion, N. L. Miles, S. J. Richardson, M. Steinbacher, C. Sweeney, B. Wastine, and C. Zellweger (2013). High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos. Meas. Tech., 6(3):837–860. doi: 10.5194/amt-6-837-2013.

Resco de Dios, V., J. Roy, J. P. Ferrio, J. G. Alday, D. Landais, A. Milcu, and A. Gessler (2015). Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Sci. Rep., 5:10975. doi: 10.1038/srep10975.

Rogelj, J., M. den Elzen, N. Hohne, T. Fransen, H. a. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, and M. Meinshausen (2016). Paris agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534(7609):631–639.

Rothman, L. S., I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. . Flaud, R. R. Gamache, J. J. Harrison, J. . Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner (2013). The HITRAN2012 molecular spectroscopic database. J. Quant.

(11)

R

Sandoval-Soto, L., M. Stanimirov, M. von Hobe, V. Schmitt, J. Valdes, A. Wild, and J. Kesselmeier (2005). Global uptake of carbonyl sulfide (COS) by terrestrial vegeta-tion: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2). Biogeosciences, 2(2):125–132.

Santoni, G. W., B. H. Lee, J. P. Goodrich, R. K. Varner, P. M. Crill, J. B. McManus, D. D. Nelson, M. S. Zahniser, and S. C. Wofsy (2012). Mass fluxes and isofluxes of methane (CH4) at a new hampshire fen measured by a continuous wave quantum cascade laser spectrometer. J. Geophys. Res.-Atmos., 117:D10301. doi: 10.1029/2011JD016960. Schmidt, M., R. Graul, H. Sartorius, and I. Levin (1996). Carbon dioxide and methane in

continental europe: a climatology, and 222Radon-based emission estimates. Tellus B, 48B:457–473.

Schwarz, W. and A. Leisewitz (1999). Emissions and reduction potentials of hydrofluo-rocarbons, perfluorocarbons and sulphur hexafluoride in germany, report from Öko-recherche, büro für umweltforschung und -beratung gmbh frankfurt am main, germany, 1999.

Seibt, U., J. Kesselmeier, L. Sandoval-Soto, U. Kuhn, and J. A. Berry (2010). A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation. Biogeosciences, 7(1):333–341. doi: 10.5194/bg-7-333-2010.

Sesana, L., E. Caprioli, and G. M. Marcazzan (2003). Long period study of outdoor radon concentration in milan and correlation between its temporal variations and dispersion properties of atmosphere. J. Environ. Radioact., 65(2):147–160. doi: 10.1016/S0265-931X(02)00093-0.

Snyder, C. W. (2016). Evolution of global temperature over the past two million years.

Nature, 538(7624):226–228.

Steinbacher, M., H. G. Bingemer, and U. Schmidt (2004). Measurements of the ex-change of carbonyl sulfide (OCS) and carbon disulfide (CS2) between soil and atmo-sphere in a spruce forest in central germany. Atmos. Environ., 38(35):6043–6052. doi: 10.1016/j.atmosenv.2004.06.022.

Stimler, K., J. A. Berry, S. A. Montzka, and D. Yakir (2011). Association between carbonyl sulfide uptake and (18)Delta during gas exchange in C-3 and C-4 leaves. Plant Physiol., 157(1):509–517. doi: 10.1104/pp.111.176578.

Stimler, K., J. A. Berry, and D. Yakir (2012). Effects of carbonyl sulfide and car-bonic anhydrase on stomatal conductance. Plant Physiol., 158(1):524–530. doi: 10.1104/pp.111.185926.

Stimler, K., S. A. Montzka, J. A. Berry, Y. Rudich, and D. Yakir (2010a). Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol., 186(4):869–878. doi: 10.1111/j.1469-8137.2010.03218.x.

Stimler, K., D. Nelson, and D. Yakir (2010b). High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide using mid-IR quantum cas-cade laser. Glob. Change Biol., 16(9):2496–2503. doi: 10.1111/j.1365-2486.2009.02088.x. Sun, W., L. M. J. Kooijmans, K. Maseyk, H. Chen, I. Mammarella, T. Vesala, J. Levula, H. Keskinen, and U. Seibt (2018a). Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern finland,. Atmos. Chem. Phys., 18:1363– 1378. doi: 10.5194/acp-18-1363-2018.

Sun, W., K. Maseyk, C. Lett, and U. Seibt (2015). A soil diffusion–reaction model for surface COS flux: COSSM v1. Geosci. Model Dev., 8(10):3055–3070. doi: 10.5194/gmd-8-3055-2015.

(12)

R

Sun, W., K. Maseyk, C. Lett, and U. Seibt (2018b). Stomatal control of leaf fluxes of car-bonyl sulfide and CO2 in a typha freshwater marsh. Biogeosciences, 15:3277–3291. doi: 10.5194/bg-15-3277-2018.

Sun, Y., C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Kohler, B. Evans, and K. Yuen (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360). doi: 10.1126/science.aam5747. Suni, T., F. Berninger, T. Vesala, T. Markkanen, P. Hari, A. Mäkelä, H. Ilvesniemi, H. Hänninen,

E. Nikinmaa, T. Huttula, T. Laurila, M. Aurela, A. Grelle, A. Lindroth, A. Arneth, O. Shibis-tova, and J. Lloyd (2003). Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol., 9:1410–1426. doi: 10.1046/j.1365-2486.2003.00597.x.

Super, I., H. A. C. Denier van der Gon, A. J. H. Visschedijk, M. M. Moerman, H. Chen, M. K. van der Molen, and W. Peters (2017). Interpreting continuous in-situ observations of carbon dioxide and carbon monoxide in the urban port area of rotterdam. Atmos. Pollut.

Res., 8(1):174–187. doi: 10.1016/j.apr.2016.08.008.

Szegvary, T., F. Conen, and P. Ciais (2009). European 222Rn inventory for applied atmo-spheric studies. Atmos. Environ., 43:1536–1539. doi: 10.1016/j.atmosenv.2008.11.025. Szegvary, T., M. C. Leuenberger, and F. Conen (2007). Predicting terrestrial 222Rn

flux using gamma dose rate as a proxy. Atmos. Chem. Phys., 7(11):2789–2795. doi: 10.1016/j.atmosenv.2008.11.025.

Thoning, K. W., P. P. Tans, and W. D. Komhyr (1989). Atmospheric carbon dioxide at Mauna Loa observatory: 2. analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. Atmos., 94:8549–8565. doi: 10.1029/JD094iD06p08549.

Turnbull, J., P. Rayner, J. Miller, T. Naegler, P. Ciais, and A. Cozic (2009). On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model. J. Geophys. Res.-Atmos., 114:D22302. doi: 10.1029/2009JD012308.

Van der Laan, S., U. Karstens, R. E. M. Neubert, I. T. Van der Laan-Luijkx, and H. A. J. Meijer (2010). Observation-based estimates of fossil fuel-derived CO2 emissions in the netherlands using Delta 14C, CO and 222Radon. Tellus B, 62(5):389–402. doi: 10.1111/j.1600-0889.2010.00493.x.

Van der Laan, S., S. Manohar, A. Vermeulen, F. Bosveld, H. Meijer, A. Manning, M. Van der Molen, and L. Van der Laan-Luijkx (2016). Inferring 222Rn soil fluxes from ambi-ent 222Rn activity and eddy covariance measuremambi-ents of CO2. Atmos. Meas. Tech., 9(11):5523–5533. doi: 10.5194/amt-9-5523-2016.

Van der Laan, S., R. E. M. Neubert, and H. A. J. Meijer (2009a). Methane and nitrous oxide emissions in the netherlands: ambient measurements support the national inventories.

Atmos. Chem. Phys., 9(24):9369–9379. doi: 10.5194/acp-9-9369-2009.

Van der Laan, S., R. E. M. Neubert, and H. A. J. Meijer (2009b). A single gas chromatograph for accurate atmospheric mixing ratio measurements of CO2, CH4, N2O, SF6 and CO.

Atmos. Meas. Tech., 2:549–559. doi: 10.5194/amtd-2-1321-2009.

Van der Laan-Luijkx, I. T., R. E. M. Neubert, S. Van der Laan, and H. A. J. Meijer (2010). Continuous measurements of atmospheric oxygen and carbon dioxide on a north sea gas platform. Atmos. Meas. Tech., 3(1):113–125.

Van der Sleen, P., P. Groenendijk, M. Vlam, N. P. R. Anten, A. Boom, F. Bongers, T. L. Pons, G. Terburg, and P. A. Zuidema (2014). No growth stimulation of tropical trees by 150

(13)

R

years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 8:24. doi: 10.1038/ngeo2313.

Van der Werf, G., J. Randerson, G. Collatz, and L. Giglio (2003). Carbon emissions from fires in tropical and subtropical ecosystems. Glob. Change Biol., 9:547–562. doi: 10.1046/j.1365-2486.2003.00604.x.

Van Leeuwen, C. (2015). Highly precise atmospheric oxygen measurements as a tool to detect

leaks of carbon dioxide from Carbon Capture and Storage sites. PhD thesis, University of

Groningen, the Netherlands.

Vickers, D. and L. Mahrt (1997). Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Tech., 14:512–526.

Vincent, R. A. and A. Dudhia (2017). Fast retrievals of tropospheric carbonyl sulfide with IASI. Atmos. Chem. Phys., 17:2981–3000. doi: 10.5194/acp-17-2981-2017.

Vogel, F. R., S. Hammer, A. Steinhof, B. Kromer, and I. Levin (2010). Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moder-ately polluted site in southwestern germany. Tellus B, 62(5):512–520. doi: 10.1111/j.1600-0889.2010.00477.x.

Wang, K. and R. E. Dickinson (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys., 50(2). doi: 10.1029/2011RG000373.

Watts, S. F. (2000). The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ., 34(5):761–779.

Wehr, R., R. Commane, J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, S. R. Saleska, and S. C. Wofsy (2017). Dynamics of canopy stomatal conductance, transpi-ration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences, 14(2):389–401. doi: 10.5194/bg-14-389-2017.

Wehr, R., J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, and S. R. Saleska (2016). Seasonality of temperate forest photosynthesis and daytime respiration. Nature, 534:680–683. doi: 10.1038/nature17966.

Wehr, R. and S. R. Saleska (2015). An improved isotopic method for partitioning net ecosys-tem–atmosphere CO2 exchange. Agr. Forest Meteorol., 214-215(Supplement C):515–531. doi: 10.1016/j.agrformet.2015.09.009.

Whelan, M. E., T. W. Hilton, J. A. Berry, M. Berkelhammer, A. R. Desai, and J. E. Campbell (2016). Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake. Atmos. Chem. Phys., 16(6):3711–3726. doi: 10.5194/acp-16-3711-2016.

Whelan, M. E., S. T. Lennartz, T. E. Gimeno, R. Wehr, G. Wohlfahrt, Y. Wang, L. M. J. Kooij-mans, T. W. Hilton, S. Belviso, P. Peylin, R. Commane, W. Sun, H. Chen, L. Kuai, I. Mam-marella, K. Maseyk, M. Berkelhammer, K. . Li, D. Yakir, A. Zumkehr, Y. Katayama, J. Ogée, F. M. Spielmann, F. Kitz, B. Rastogi, J. Kesselmeier, J. Marshall, K. . Erkkilä, L. Wingate, L. K. Meredith, W. He, R. Bunk, T. Launois, T. Vesala, J. A. Schmidt, C. G. Fichot, U. Seibt, S. Saleska, E. S. Saltzman, S. A. Montzka, J. A. Berry, and J. E. Campbell (2018). Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles.

Biogeosciences, 15:3625–3657. doi: 10.5194/bg-15-3625-2018.

Whelan, M. E., D.-H. Min, and R. C. Rhew (2013). Salt marsh vegetation as a car-bonyl sulfide (COS) source to the atmosphere. Atmos. Environ., 17:131–137. doi: 10.1016/j.atmosenv.2013.02.048.

(14)

and photodegradation of soil organic matter from wheat field substrate. J. Geophys.

Res.-Biogeo., 120(1):54–62. doi: 10.1002/2014JG002661.

White, M. L., Y. Zhou, R. S. Russo, H. Mao, R. Talbot, R. K. Varner, and B. C. Sive (2010). Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2. Atmos. Chem. Phys., 10(2):547–561. doi: 10.5194/acp-10-547-2010. Whittlestone, S. and W. Zahorowski (1998). Baseline radon detectors for shipboard use:

Development and deployment in the first aerosol characterization experiment (ACE 1).

J. Geophys. Res. Atmos., 103:16743–16751. doi: 10.1029/98JD00687.

Wilkman, E., D. Zona, Y. Tang, B. Gioli, D. Lipson, and W. Oechel (2018). Temperature response of respiration across the heterogeneous landscape of the alaskan arctic tundra.

J. Geophys. Res.-Biogeo, 123(7):2287–2302. doi: 10.1029/2017JG004227.

Winderlich, J., C. Gerbig, O. Kolle, and M. Heimann (2014). Inferences from CO2 and CH4 concentration profiles at the zotino tall tower observatory (ZOTTO) on regional summertime ecosystem fluxes. Biogeosciences, 11(7):2055–2068. doi: 10.5194/bg-11-2055-2014.

Windnagel, A., M. Brandt, F. Fetterer, and W. Meier (2017). Sea ice index version 3 analysis. NSIDC special report 19. Technical report, NSIDC.

Wohlfahrt, G. (2017). Bi-directional COS exchange in bryophytes challenges its use as a tracer for gross primary productivity. New Phytol., 215(3):923–925. doi: 10.1111/nph.14658.

Wohlfahrt, G., F. Brilli, L. Hoertnagl, X. Xu, H. Bingemer, A. Hansel, and F. Loreto (2012). Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stom-atal conductance: potential and limitations. Plant Cell Environ., 35(4):657–667. doi: 10.1111/j.1365-3040.2011.02451.x.

Xiang, B., D. D. Nelson, J. B. McManus, M. S. Zahniser, R. A. Wehr, and S. C. Wofsy (2014). Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer. Atmos. Meas. Tech., 7(12):4445–4453. doi: 10.5194/amt-7-4445-2014. Yakir, D. and X.-F. Wang (1996). Fluxes of CO2 and water between terrestrial vegetation

and the atmosphere estimated from isotope measurements. Nature, 380:515–517. doi: 10.1038/380515a0.

Yang, F., R. Qubaja, F. Tatarinov, E. Rotenberg, and D. Yakir (2018). Assessing canopy performance using carbonyl sulfide measurements. Glob. Change Biol., 24(8):3486–3498. doi: 10.1111/gcb.14145.

Zhao, C. L. and P. P. Tans (2006). Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. J. Geophys. Res.-Atmos., 111(D08S09). doi: 10.1029/2005JD006003. Zhao, F. and N. Zeng (2014). Continued increase in atmospheric CO2 seasonal amplitude

in the 21st century projected by the CMIP5 earth system models. Earth Syst. Dynam., 5(2):423–439. doi: 10.5194/esd-5-423-2014.

Zumkehr, A., T. Hilton, M. Whelan, S. Smith, L. Kuai, J. Worden, and J. Campbell (2018). Global gridded anthropogenic emissions inventory of carbonyl sulfide. Atmos. Environ., 183:11–19. doi: 10.1016/j.atmosenv.2018.03.063.

(15)

Referenties

GERELATEERDE DOCUMENTEN

York: Macmillan.. Twelve American plays: New York: C h arles Scribner's sons. Kunst en letteren. Die drama as speelstuk. World enough and time: An approach to tempo

The work described in this thesis was performed at the Centre for Isotope Research (CIO), which is part of the Energy and Sustainability Research Institute Groningen (ESRIG) of

At the ecosystem scale, the emissions of COS from ocean and anthropogenic sources are typically well separated from the vegetative uptake in natural areas such as forests, grasslands

To test this, we re-analyzed calibration measurements in different ways: (1) with response from the two NOAA/ESRL calibration standards and the curve forced through a zero point,

The nighttime uptake is 33–38 % of the average daytime fluxes (defined as when sun elevation is above 20°) and 21 % of the total daily COS uptake (obtained from gap-filled data)..

For the months May–July we find that the time-integrated ratio of COS and CO 2 deposition velocities (based on branch measurements) is 1.6 (daytime only); including the

The nighttime drawdown of COS mole fractions that is larger in the spring and summer months is consistent with larger nighttime COS uptake by the ecosystem in those months in

( 2017 ) observed were increasing with temperature and light intensity. When COS consumption and production by the leaf happen concurrently, the separate fluxes cannot be detected