• No results found

The evolving velocity field around protostars Brinch, C.

N/A
N/A
Protected

Academic year: 2021

Share "The evolving velocity field around protostars Brinch, C."

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The evolving velocity field around protostars

Brinch, C.

Citation

Brinch, C. (2008, October 22). The evolving velocity field around protostars.

Retrieved from https://hdl.handle.net/1887/13155

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13155

Note: To cite this publication please use the final published version (if applicable).

(2)

The evolving velocity field around protostars

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden volgens besluit van het College voor Promoties

te verdedigen op woensdag 22 oktober 2008 klokke 16.15 uur

door

Christian Brinch

geboren te Rødovre (Kopenhagen), Denemarken in 1977

(3)

Promotiecommisie

Promotor: Prof. dr. E. F. van Dishoeck Co-promotor: Dr. M. R. Hogerheijde

Referent: Prof. dr. A. Burkert (Universitäts-Sternwarte München) Overige leden: Dr. C. P. Dullemond (Max-Planck-Institut für Astronomie)

Prof. dr. F. P. Israel Prof. dr. K. Kuijken Prof. dr. H. V. J. Linnartz

(4)

Table of contents

1 Introduction 1

1.1 The birth of stars . . . 1

1.2 The study of molecular emission lines . . . 4

1.2.1 Line formation . . . 5

1.2.2 Modeling of line profiles . . . 6

1.2.3 Submillimeter observations . . . 8

1.3 Thesis outline . . . 9

1.4 Conclusions . . . 11

2 Structure and dynamics of the Class I young stellar object L1489 IRS 15 2.1 Introduction . . . 16

2.2 Observations and model description . . . 17

2.2.1 Single-dish observations . . . 17

2.2.2 The model . . . 18

2.2.3 Molecular excitation and line radiative transfer . . . 23

2.2.4 Modeling the neighboring cloud core . . . 24

2.2.5 Optimizing the fit . . . 25

2.2.6 Error estimates . . . 27

2.3 Results . . . 29

2.3.1 Quality of the best fit . . . 32

2.3.2 Comparison to other observations . . . 34

2.4 Discussion . . . 38

2.5 Summary . . . 41

3 Characterizing the velocity field in a hydrodynamical simulation of low-mass star formation using spectral line profiles 45 3.1 Introduction . . . 46

3.2 Simulations and models . . . 47

3.2.1 Hydrodynamical collapse . . . 47 iii

(5)

Contents

3.2.2 Parameterized model . . . 51

3.2.3 Obtaining the best fit . . . 52

3.3 Line profiles and the velocity field . . . 54

3.3.1 Low resolution spectra . . . 59

3.3.2 High resolution spectra . . . 60

3.4 Results . . . 61

3.4.1 Single-dish simulations . . . 61

3.4.2 Interferometric simulations . . . 65

3.5 Discussion . . . 67

3.6 Conclusion . . . 70

4 A deeply embedded young protoplanetary disk around L1489 IRS ob- served by the Submillimeter Array 75 4.1 Introduction . . . 76

4.2 Observations and data reduction . . . 78

4.3 Results . . . 79

4.4 Analysis . . . 82

4.4.1 Introducing a disk model . . . 85

4.4.2 Modeling the continuum emission . . . 88

4.4.3 Modeling the HCO+emission . . . 89

4.5 Discussion . . . 93

4.6 Conclusion . . . 96

5 Time-dependent CO chemistry during the formation of protoplane- tary disks 99 5.1 Introduction . . . 100

5.2 Tracing chemistry during disk formation . . . 101

5.2.1 The physical model . . . 101

5.2.2 Freeze-out and evaporation . . . 104

5.3 Results . . . 106

5.3.1 Model 1: Drop abundance . . . 107

5.3.2 Model 2: Variable freeze-out . . . 109

5.3.3 Model 3: Dynamical evolution . . . 109

5.3.4 Cosmic ray desorption and increased binding energy . . . 112

5.3.5 Comparison to observations . . . 115

5.3.6 Emission lines . . . 118

5.4 Discussion . . . 121

5.5 Conclusion . . . 122

(6)

Contents

6 The kinematics of NGC1333-IRAS2A – a true Class 0 protostar 127

6.1 Introduction . . . 128

6.2 Observations . . . 129

6.3 Results . . . 130

6.4 Analysis . . . 133

6.4.1 Model fit . . . 134

6.4.2 Outflow . . . 138

6.5 Discussion . . . 139

6.6 Summary and outlook . . . 141

7 Advances in line radiation transfer modeling 143 7.1 Introduction . . . 143

7.2 Solution method . . . 144

7.2.1 The molecular level population equilibrium . . . 144

7.2.2 Photon transport . . . 145

7.2.3 Raytracing . . . 149

7.2.4 Interface . . . 150

7.3 Performance . . . 150

7.4 Examples . . . 152

7.4.1 Comparison toRATRAN . . . 152

7.4.2 Misaligned disk/envelope system . . . 154

7.4.3 Complex structured disks . . . 155

7.5 Outlook . . . 158

Nederlandse samenvatting 161

Curriculum vitae 165

Acknowledgements 167

v

(7)

Referenties

GERELATEERDE DOCUMENTEN

We perform a rigorous optimization of the model for L1489 IRS using all available single-dish line data, and test the model by comparing the interferometric obser- vations,

In Fig. 3.3 the radial and the azimuthal components of the velocity field in the disk mid-plane at a radius of 500 AU are plotted. Also shown in this plot are the free-fall and

On the other hand, including a disk inclined by 40 ◦ into the model of Chapter 2 does not alter the fit to the single-dish lines (Fig. 4.10): the geometry and the velocity field of

The drop abundance model and Model 3, including cosmic rays and a low binding energy, have too high gas-phase CO abundances (or too little depletion).. Unfortunately, our

The best fit model is seen to reproduce the features of the data well in terms of line intensities and emission distribution, while the model in panel b has too weak lines and the

The figure shows the number of grid cells used to describe the source model per dimension (grid points in the case of our code) versus the time it takes to converge on a solution..

Door een wiskundig model te bouwen kunnen lijnprofielen van dit model worden berekend en kunnen deze worden vergeleken met waarnemingen.. Als zij overeenkomen, is het model

During my last year in high- school I decided that physics, rater than computer science would be my topic at the university so after I graduated from high-school in 1996, I enrolled