• No results found

Water on well-defined platinum surfaces : an ultra high vacuum and electrochemical study Niet, M.J.T.C. van der

N/A
N/A
Protected

Academic year: 2021

Share "Water on well-defined platinum surfaces : an ultra high vacuum and electrochemical study Niet, M.J.T.C. van der"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Water on well-defined platinum surfaces : an ultra high vacuum and electrochemical study

Niet, M.J.T.C. van der

Citation

Niet, M. J. T. C. van der. (2010, October 14). Water on well-defined platinum

surfaces : an ultra high vacuum and electrochemical study. Retrieved from

https://hdl.handle.net/1887/16035

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16035

Note: To cite this publication please use the final published version (if

applicable).

(2)

WATER ON WELL-DEFINED PLATINUM SURFACES:

AN ULTRA HIGH VACUUM AND ELECTROCHEMICAL STUDY

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op donderdag 14 oktober 2010 klokke 11.15 uur

door

Maria Johanna Theresia Cornelia (Janneke) van der Niet

geboren te Leiden in 1981

(3)

Promotiecommissie

Promotor: Prof. dr. M. T. M. Koper Co-promotor: Dr. L. B. F. Juurlink

overige leden: Prof. dr. M. Bonn (AMOLF/Universiteit van Amsterdam) Prof. dr. J. Brouwer

Prof. dr. B. E. Hayden (University of Southampton, UK) Dr. G. Held (University of Reading, UK)

Prof. dr. G. J. Kroes

Prof. dr. B. E. Nieuwenhuys

The research described in this thesis has been supported financially by NWO (Nether- lands Organization for Scientific Research), under project number 700-55-441.

Printed by F&N Boekservice ISBN 978-90-7867-595-2

(4)

Die Wissenschaft kann die letzten Rätsel der Natur nicht lösen. Und das ist so, weil wir letztlich selbst ein Teil des Rätsels sind, das wir zu lösen versuchen.

MAXPLANCK(1858–1947)

(5)
(6)

Table of Contents

1 Introduction 1

1.1 Heterogeneous catalysis . . . 1

1.2 Fuel cells . . . 2

1.3 Ultra high vacuum modeling . . . 3

1.4 Model catalysts . . . 3

1.5 Scope of this thesis . . . 4

1.6 Literature overview . . . 5

1.6.1 Water on platinum . . . 5

1.6.2 Oxygen on platinum . . . 6

1.6.3 Hydrogen on platinum . . . 7

1.6.4 Co-adsorption of H2O and Oadon platinum . . . 8

1.6.5 Co-adsorption of H2O and Hadon platinum . . . 9

1.6.6 Electrochemistry . . . 10

2 Experimental techniques and set-up 11 2.1 Ultra high vacuum . . . 11

2.1.1 Temperature programmed desorption . . . 11

2.1.2 Low energy electron diffraction . . . 12

2.1.3 Reflection absorption infrared spectroscopy . . . 13

2.1.4 Apparatus . . . 13

2.1.5 General procedures . . . 15

2.2 Electrochemistry . . . 17

2.2.1 Electrochemical cell . . . 17

2.2.2 Cyclic voltammetry . . . 18

2.2.3 Electochemical impedance spectroscopy . . . 18

3 The influence of step geometry on the desorption characteristics of O2, D2, and H2O from stepped Pt surfaces 21 3.1 Introduction . . . 22

3.2 Experimental . . . 24

3.3 Results and discussion . . . 24

3.3.1 Oxygen . . . 24

3.3.2 Deuterium . . . 26

3.3.3 Water . . . 30

3.4 Conclusion . . . 35 4 Co-adsorption of O and H2O on nano-structured platinum surfaces:

does OH form at steps? 37

v

(7)

TABLE OF CONTENTS

5 The interaction between H2O and pre-adsorbed O on the stepped Pt(533)

surface 45

5.1 Introduction . . . 46

5.2 Experimental . . . 49

5.3 Results and discussion . . . 49

5.3.1 O2adsorption/desorption . . . 49

5.3.2 H2O only . . . 50

5.3.3 Co-adsorption of18Oadand H216O . . . 52

5.4 Conclusion . . . 59

6 A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface 61 6.1 Introduction . . . 62

6.2 Experimental . . . 64

6.3 Results and discussion . . . 64

6.3.1 O2adsorption/desorption . . . 64

6.3.2 H2O desorption from the bare surface . . . 65

6.3.3 Co-adsorption of18Oadand H216O . . . 67

6.3.4 Unannealed Pt(553) surface . . . 75

6.4 Conclusion . . . 77

7 Tuning hydrophobicity of platinum by small changes in substrate mor- phology 79 8 Hydrophobic interactions between amorphous solid water and pre- adsorbed D on the stepped Pt(533) surface 87 8.1 Introduction . . . 88

8.2 Experimental . . . 89

8.3 Results . . . 90

8.4 Discussion . . . 97

8.5 Conclusion . . . 102

9 The interaction between H2O and pre-adsorbed D on the stepped Pt(553) surface 103 9.1 Introduction . . . 104

9.2 Experimental . . . 105

9.3 Results . . . 106

9.3.1 H2O and D2desorption from Pt(553) and D/Pt(553) . . . 106

9.3.2 θD= 1 ML; 0<θH 2O<2.28 ML . . . 107

9.3.3 θH2O1.3 ML; 0<θD<1 . . . 110

9.4 Discussion . . . 112

9.4.1 H2O and D2desorption from Pt(553) and D/Pt(553) . . . 112 vi

(8)

9.4.2 θD= 1 ML; 0<θH

2O<2.28 ML . . . 113

9.4.3 θH2O1.3 ML; 0<θD<1 . . . 115

9.5 Conclusion . . . 116

10 Impedance spectroscopy of H and OH adsorption on stepped single- crystal platinum electrodes in alkaline and acidic media 119 10.1 Introduction . . . 120

10.2 Experimental . . . 121

10.3 Results . . . 122

10.3.1 Pt(111) . . . 122

10.3.2 Stepped surfaces . . . 126

10.4 Discussion . . . 129

10.5 Conclusions . . . 132

11 Water dissociation on well-defined platinum surfaces: the electrochem- ical perspective 135 11.1 Introduction . . . 136

11.2 Experimental . . . 139

11.3 Results . . . 140

11.3.1 Pt[n(111)x(110)] . . . 140

11.3.2 Pt[n(111)x(100)] . . . 141

11.3.3 pH-dependence . . . 143

11.4 The model . . . 144

11.5 Water dissociation on well-defined platinum surfaces: the UHV per- spective . . . 146

11.6 Discussion . . . 147

11.7 Conclusion . . . 150

Appendix 151

Bibliography 153

Summary 165

Samenvatting 167

List of publications 171

Curriculum Vitae 173

Nawoord 175

Quotes 177

vii

(9)

Referenties

GERELATEERDE DOCUMENTEN

Figure 5.2a shows TPD spectra for m/e = 18 and 20 after dosing various amounts of H 16 2 O onto a Pt(533) surface where both step and terrace sites have been pre- covered with 18 O..

We observed similar behavior on the Pt(533) surface, but the peak associated to desorption from step sites is located ∼ 36 K higher on this surface, indicating that oxygen adatoms

Even though the Pt(533) and Pt(553) surfaces have similar geometries, the hy- drophobicity on the deuterated surface is surprisingly different: on Pt(533) the sur- face is

Although exchange of D ad with H 2 O occurs both at steps and terraces and is dependent on both surface coverages, the preference of water molecules to cluster at the step sites on

For 1 ML of deuterium with different amounts of water the exchange between H and D atoms is mainly taking place directly at the Pt(553) surface and not in the multilayer.

Since the kinetics of the hydrogen adsorption in acidic media are too fast to be measured with common techniques (i.e. R ct = 0), the circuit shown in figure 10.2 reduces to a simple

A maxi- mum hydrogen coverage on steps of ∼ 0.5 ML could possibly explain why both in acidic 209–211 and alkaline (this work) media a charge transfer close to the one elec- tron

Tribollet, Electrochemical impedance spectroscopy, The Elec- trochemical Society series, John Wiley &amp; Sons, Inc., 2008..