• No results found

UPDATING THE THERMO - MECHANICAL STRUCTURE OF THE EUROPEAN LITHOSPHERE WITH SUBSURFACE TEMPERATURE DATA

N/A
N/A
Protected

Academic year: 2022

Share "UPDATING THE THERMO - MECHANICAL STRUCTURE OF THE EUROPEAN LITHOSPHERE WITH SUBSURFACE TEMPERATURE DATA"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

LATEX TikZposter

UPDATING THE THERMO - MECHANICAL STRUCTURE OF THE EUROPEAN LITHOSPHERE WITH SUBSURFACE TEMPERATURE DATA

Jon Limberger (1), Jan-Diederik van Wees (1,2), Magdala Tesauro (1), Damien Bonté (1), Lindsay Lipsey (1,2), Jeroen Smit (1), Fred Beekman (1), and Sierd Cloetingh (1)

Contact: j.limberger@uu.nl - (1) Utrecht University, Earth Sciences, Utrecht, Netherlands, (2) TNO - Geological Survey of the Netherlands, Utrecht, the Netherlands

UPDATING THE THERMO - MECHANICAL STRUCTURE OF THE EUROPEAN LITHOSPHERE WITH SUBSURFACE TEMPERATURE DATA

Jon Limberger (1), Jan-Diederik van Wees (1,2), Magdala Tesauro (1), Damien Bonté (1), Lindsay Lipsey (1,2), Jeroen Smit (1), Fred Beekman (1), and Sierd Cloetingh (1)

Contact: j.limberger@uu.nl - (1) Utrecht University, Earth Sciences, Utrecht, Netherlands, (2) TNO - Geological Survey of the Netherlands, Utrecht, the Netherlands

(a)

surface geology

unconsolidated sed.

siliciclastics pyroclastics mixed carbonates evaporites other

(b)

Geoth.

atlas wells IHFCwells

sed.thickness (km)

0 - 0.5 0.5 - 1 1 - 1.5 1.5 - 2 2 - 3 3 - 4 4 - 5 5 - 7.5 7 - 10

>10

Fig. 1: (a) Geometry and composition. (b) Generalized surface geology. (c) Sediment thickness and locations of wells and heat flow measurements.

1: Rationale

A volumetric resource assessment of geothermal energy or any other form of geothermal exploration requires knowledge on the subsurface temperature distribution [1]. As part of the EU FP7-funded In- tegrated Methods for Advanced Geothermal Exploration (IMAGE) project, we combine large-scale geophysical models with regional-to-local scale geothermal data to develop an improved thermo- mechanical model of the European lithosphere.

Aims:

• More realistic a priori thermal properties

• Consistency between model boundary conditions and temperature data

• Analyzing temperature sensitivity to parameter variations (cf. [2])

• Quantifying uncertainties and identifying non-conductive heat transfer

2: Thermal Model and Properties

As a starting point for our prior model we use an existing crustal geometry with different lithotypes for the upper and lower crust [3] (fig. 1a). The sedimentary cover is differentiated into lithotypes based on the surface geology [4] (fig. 1b: e.g. unconsolidated, consolidated, siliciclastics, carbonates).

Each sedimentary lithotype consists of a lithology or a mixture of lithologies. Thermal properties are assigned accordingly. The thermal conductivity is iteratively updated for temperature and pressure effects (fig. 2: sediments cf. [5], upper and lower crust cf. [6], lithospheric mantle cf. [7, 8]). The model has a horizontal resolution of ∼20 km and a vertical resolution of 250 m. Heat transfer is limited to vertical conduction only, with the annual mean temperature at the surface and the temperature at the lithosphere-asthenosphere boundary (LAB) - assumed to be 1200 C - as upper and lower boundary conditions, respectively.

2: Thermal Model and Properties (Continued)

0 20 40 60 80 100 120

0 0.2 0.4 0.6 0.8 1 1.2

Depth(km)

A (μW/m3)

0 20 40 60 80 100 120

1 1.5TC (W/m/K)2 2.5 3 3.5

0 20 40 60 80 100 120

0 250 500 750 1000 1250T (°C)

0 20 40 60 80 100 120

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2Strength (GPa)

0 2 4 6 8

0 0.2 0.4 0.6

Depth (km)

Porosity

0 2 4 6 8

0 0.5

TC (W/m/K)

1 1.5 2 2.5

Bulk Matrix Water

0 2 4 6 8

0 50 100 150 200 250 300

T (°C)

Comp. Ext.

LM

LC

UC

SED

Fig. 2: (Top) Example 4-layer lithosphere profile with thermal properties: A radiogenic heat production, TC (bulk) thermal conductivity, T temperature, and computed strength under conditions of compression (-) and extension (+). (SED

= sediments, UC = upper crust, LC = lower crust, LM = lithospheric mantle). (Bottom) Porosity reduction of typical siltstone following Athy’s law of compaction. The bulk thermal conductivity of sediments varies with depth due to: (1) Porosity changes effecting the geometrical average of the thermal conductivity of the rock matrix and the fluid phase (water). (2) The temperature dependence of the thermal conductivity of the rock matrix and water [9].

3: Model Calibration

The prior thermal model and the corresponding thermal properties are calibrated using an ensemble smoother with multiple data assimilation (ES-MDA) approach [10]. A compilation of available tem- perature data [1] have been converted into regular-spaced grids consisting of 28917 cells at depths between 1 - 6 km depth. For each grid cell, an uncertainty has been assigned based on the amount of wells (fig. 1c, 3a, 3b) [11, 12, 13] that are present within each grid cell and on the depth of the grid.

prior T bottom

prior A UC

prior TC 0-5km

obs T

prior T posteriorobs

T misfit

updated T bottom

updated A UC

updated TC 0-5km

ES-MDA

1

2 4

3

(a)

0 50 100 150 200 250 observed

0 50 100 150 200 250

modelled

n = 28917 mean = -9.73 median = -5.45

(b)

0 50 100 150 200 250 observed

0 50 100 150 200 250

modelled

n = 28917 mean = -2.04 median = -0.85

(c)

Fig. 3: (a) Schematic workflow of model calibration. (b) Temperature data (x-axis) plotted against the prior model temperatures (y-axis) (c) Temperature data plotted against the posterior model temperatures showing an improved fit.

Uncertainty ranges for feed-in parameters:

• Temperature data (± 3 C for points at 1km depth with more than 5 wells to ± 17 C for points at 6 km depth without wells)

• Temperature at the bottom of the model (1200 C ± 200 C)

• Radiogenic heat generation in the upper crust (± 100%), radiogenic heat generation in the top 20 km (± 10 - 25%), and thermal conductivity in the top 5 km (± 5 - 25%)

According to the uncertainty ranges, probability density functions (pdf) are assigned to the prior model parameters and to the obervations. The model parameters are then stochastically varied to minimalize the misfit between model and obervations, given the prior pdf’s and the model covariance. This results in updated model parameters and pdf’s (fig. 3a).

4: Model Calibration Results

Prior

T 2km (°C)

< 25 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100 100 - 110 110 - 120

> 120

(a)

Posterior

T 2km (°C)

< 25 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75 75 - 80 80 - 85 85 - 90 90 - 95 95 - 100 100 - 110 110 - 120

> 120

T misfit °C at 2 km

< -40 -40 - -30 -30 - -20 -20 - -10 -10 - 0 0 - 10 10 - 20 20 - 30 30 - 40

> 40

(b)

T misfit (°C) at 2km

< -40 -40 - -30 -30 - -20 -20 - -10 -10 - 0 0 - 10 10 - 20 20 - 30 30 - 40

> 40

TC (W/m/K)

< 1.75 1.75 - 2 2 - 2.25 2.25 - 2.5 2.5 - 2.75 2.75 - 3 3 - 3.25 3.25 - 3.5

(c)

TC (W/m/K)

< 1.75 1.75 - 2 2 - 2.25 2.25 - 2.5 2.5 - 2.75 2.75 - 3 3 - 3.25 3.25 - 3.5

Depth of 1200 °C isotherm (km)

< 60 60 - 70 70 - 80 80 - 90 90 - 100 100 - 110 110 - 120 120 - 130 130 - 140 140 - 150 150 - 175 175 - 200

> 200

(d)

Depth of 1200 °C isotherm (km)

< 60 60 - 70 70 - 80 80 - 90 90 - 100 100 - 110 110 - 120 120 - 130 130 - 140 140 - 150 150 - 175 175 - 200

> 200

Fig. 4: (a) Computed temperatures at 2 km of the prior temperature model compared to posterior mean model. (b) Prior model temperature misfits at 2 km depth compared to posterior mean model temperature misfits. Blue colors indicate that the modeled temperatures are too low in comparison to the observations and red colors indicate that the modeled temperatures are too high. (c) Prior model bulk thermal conductivity at 2 km depth compared to posterior mean model.

(d) Prior model depth of the lithosphere-asthenosphere boundary (LAB) compared LAB depth of posterior mean model.

4: Strength Model

Prior

Integrat.

strength (TPa m)

< 8 8 - 14 14 - 20 20 - 26 26 - 32 32 - 38 38 - 44 44 - 50 50 - 56 56 - 62 62 - 68 68 - 74 74 - 80

(a)

Posterior

Integrat.

strength (TPa m)

< 8 8 - 14 14 - 20 20 - 26 26 - 32 32 - 38 38 - 44 44 - 50 50 - 56 56 - 62 62 - 68 68 - 74 74 - 80

Integrat.

strength (TPa m)

< 4 4 - 8 8 - 12 12 - 16 16 - 20 20 - 24 24 - 28 28 - 32 32 - 36 36 - 40 40 - 44

(b)

Integrat.

strength (TPa m)

< 4 4 - 8 8 - 12 12 - 16 16 - 20 20 - 24 24 - 28 28 - 32 32 - 36 36 - 40 40 - 44

Fig. 5: (a) Integrated strength of the lithosphere estimated under conditions of compression based on the temperatures of the prior model (left) and posterior mean model (right). (b) Integrated strength of the lithosphere estimated under condi- tions of extension based on the temperatures of the prior model (left) and posterior mean model (right). All estimations based on a fixed strain rate of 10-15 s-1.

The thermal model was used in combination with rheology to calculate the (integrated) strength (fig.

5 ). Different rheologies were assigned according to the crustal lithotype [14]:

• Upper crust: quartzite (dry) or granulite

• Lower crust: mafic granulite or diorite (wet) or diabase (dry)

• Lithospheric mantle: olivine (dry)

References and Acknowledgements

[1] J. Limberger, P. Calcagno, A. Manzella, E. Trumpy, T. Boxem, M. P. D. Pluymaekers, and J.-D. van Wees. Assessing the prospective resource base for enhanced geothermal systems in europe. Geothermal Energy Science, 2(1):55–71, 2014.

[2] M. Scheck-Wenderoth, M. Cacace, Y. P. Maystrenko, Y. Cherubini, V. Noack, B. O. Kaiser, J. Sippel, and L. Björn. Models of heat transport in the central european basin system: Effective mechanisms at different scales. Marine and Petroleum Geology, 55:315–331, 2014.

[3] M. Tesauro, M. K. Kaban, and S. A. P. L. Cloetingh. EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett., 35(5):1–5, 2008.

[4] J. Hartmann and N. Moosdorf. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys., 13(12), 2012.

[5] K. Sekiguchi. Terrestrial heat flow studies and the structure of the lithosphere a method for determining terrestrial heat flow in oil basinal areas. Tectonophysics, 103(1):67–

79, 1984.

[6] D. S. Chapman. Thermal gradients in the continental crust. J. Geol. Soc. London Spec. Pub., 24(1):63–70, 1986.

[7] Y. Xu, T. J. Shankland, S. Linhardt, D. C. Rubie, F. Langenhorst, and K. Klasinski. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Phys. Earth Planet. In., 143–144:321–336, 2004.

[8] J. F. Schatz and G. Simmons. Thermal conductivity of Earth materials at high temperatures. Journal of Geophysical Research, 77(35):6966–6983, 1972.

[9] T. Hantschel and A. I. Kauerauf. Fundamentals of Basin and Petroleum Systems Modeling. Springer Berlin Heidelberg, Germany, 2009. ISBN 978-3540723172.

[10] A. A. Emerick and A. C. Reynolds. Ensemble smoother with multiple data assimilation. Comput. Geosci., 55:3–15, 2013.

[11] H. N. Pollack, S. J. Hurter, and J. R. Johnson. Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3):267–280, 1993.

[12] S. J. Hurter and R. Haenel, editors. Atlas of Geothermal Resources in Europe (EUR 17811). Office for Official Publications of the European Communities, Luxemburg, 2002. ISBN 92-828-0999-4.

[13] D. Hasterok. An analysis of the revised global heat flow database. in prep.

[14] M. Tesauro, M. K. Kaban, and S. A. P. L. Cloetingh. A new thermal and rheological model of the European lithosphere. Tectonophysics, 476(3–4):478–495, 2009.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 608553 Project IMAGE (http://www.image-fp7.eu).

Referenties

GERELATEERDE DOCUMENTEN

As both operations and data elements are represented by transactions in models generated with algorithm Delta, deleting a data element, will result in removing the

A lamellar cast iron microstructure-based model that includes all relevant microstructural features (matrix/graphite phases volume fraction and continuity, direction

The overall goal of the study is to gather more evidence and thereby map and analyze the scale, types and value of different forms of recognition of prior learning in the youth

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Ek het al vir haar gesê, sy dink nie daaraan dat elke aand die kos wat sy in haar mond sit, en die Tab wat daar moet wees vir haar om te drink, sy dink nie daaraan dat ek betaal

Comparison of kinetics, selectivity of decomposition, and rate of coking of heptane and of reformer raffinate leads to the finding that thiophene influences the radical con-

De gedachte achter het werken met het Zorgleefplan is dat cliënten behalve op vakbekwame zorg en behandeling ook moeten kunnen rekenen op een prettige woon- en

For example, a large variation is found in experimentally determined muscle fiber orientations (figures 2.4 and 4.5). Therefore, the choice of the muscle fiber orientation in