• No results found

University of Groningen The future of protoplanetary disk models Greenwood, Aaron James

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen The future of protoplanetary disk models Greenwood, Aaron James"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

The future of protoplanetary disk models

Greenwood, Aaron James

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Greenwood, A. J. (2018). The future of protoplanetary disk models: Brown dwarfs, mid-infrared molecular spectra, and dust evolution. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

The future of protoplanetary

disk models

Brown dwarfs, mid-infrared molecular spectra, and dust evolution

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen

op gezag van de

rector magnificus prof. dr. E. Sterken en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op maandag 15 oktober om 12:45 uur

door

Aaron James Greenwood

geboren op 21 februari 1991 te Napier, Nieuw-Zeeland

(3)

Promotores

Prof. I.E.E. Kamp Prof. L.B.F.M. Waters

Beoordelingscommissie

Prof. F.F.S. van der Tak Prof. C. Dominik Prof. C. Helling

ISBN: 978-94-034-0820-0 (printed version) ISBN: 978-94-034-0819-4 (electronic version)

(4)
(5)

Cover:the MAGIC telescopes, Roque de los Muchachos Observatory, La Palma Inside back cover:New Zealand Tui “Tuition” by Joshua Drummond @tworuru Printed by GVO Drukkers & Vormgevers on recycled paper

(6)

C O N T E N T S

1 introduction 1

1.1 Goals of the thesis . . . 2

1.2 Disk formation . . . 3

1.3 Disk classification . . . 4

1.4 Disk observations . . . 6

1.5 Brown dwarfs and their disks . . . 9

1.6 Planets and brown dwarfs . . . 13

1.7 Dust structure, grain growth, and migration . . . 15

1.8 Modelling approaches . . . 17 1.9 Molecular spectroscopy . . . 18 1.10 Infrared spectra . . . 20 1.11 Disk models . . . 20 1.11.1 ProDiMo . . . 21 1.11.2 FLiTs . . . 23 1.11.3 Model results . . . 24 1.12 This thesis . . . 24

2 thermochemical modelling of brown dwarf disks 29 2.1 Introduction . . . 30

2.2 Models . . . 32

2.2.1 Defining the fiducial model . . . 33

2.2.2 12CO sub-mm lines from the fiducial model . . . 34

2.2.3 The fiducial model and grid selection . . . 38

2.2.4 Chemical modelling and comparisons with T Tauri disks . 40 2.3 Results and discussion . . . 43

2.3.1 Line ratios and flux predictions of brown dwarf disks . . . 44

2.3.2 Disk geometry . . . 46

2.3.3 HCN chemistry . . . 47

2.3.4 HCO+chemistry . . . 49

2.4 Conclusions . . . 53

(7)

vi contents

3 the infrared line-emitting regions of t tauri disks 55

3.1 Introduction . . . 56

3.2 FLiTs . . . 58

3.2.1 Computational requirements . . . 59

3.2.2 Data processing . . . 62

3.3 Disk models: a standard T Tauri model . . . 63

3.3.1 Line-emitting regions . . . 63

3.4 Permutations to the standard model . . . 67

3.4.1 Changes in the line-emitting area . . . 70

Sensitivity to gas and dust temperatures . . . 71

3.4.2 Spectra from the model series . . . 78

3.4.3 Absorption lines . . . 80

3.4.4 Dust settling . . . 81

3.5 Conclusions . . . 86

3.6 Acknowledgements . . . 87

3.7 Supplementary data . . . 87

4 the effects of dust evolution on disks in the mid-ir 107 4.1 Introduction . . . 108

4.2 Dust growth and migration . . . 110

4.3 Modelling strategy . . . 111

4.3.1 Model parameters . . . 112

4.4 Dust migration and disk surface densities . . . 113

4.5 Size of the dust disk . . . 115

4.6 Mid-infrared spectra . . . 121

4.6.1 Line fluxes: C2H2in comparison to other species . . . 125

4.6.2 Properties of the line-emitting regions . . . 125

4.7 Discussion . . . 132

4.8 Conclusion . . . 133

4.9 Acknowledgements . . . 134

5 conclusions and outlook 135

a english summary 141

b nederlandse samenvatting 155

acknowledgements 169

Referenties

GERELATEERDE DOCUMENTEN

Since these spirals appear in polarized scattered light, they only trace the small dust grains, well coupled to the gas, but located at the surface layers of the disks.. It is

Given this upcoming sub-mm data, one avenue of exploration is to compare the mid- infrared spectra of T Tauri disks to that of brown dwarf disks: JWST will easily observe brown

In this chapter, I take a model of a larger, higher-mass “T Tauri” type disk and scale it down to the size of a brown dwarf: that is, I take the same set of model input

Protoplanetaire schijven zijn bij sommige maten vrij groot: een typische protop- lanetaire schijf rond een ster die vergelijkbaar is met onze eigen zon heeft een straal van ongeveer

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.. Downloaded

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded

Through both thermochemical modelling and observations, we can gain a better understanding of the structure and evolution of brown dwarf disks – leading also towards understanding

Combining dust evolution with self-consistent settling can reproduce line fluxes as high as have been observed with Spitzer, without ad hoc assumptions such as increasing