• No results found

University of Groningen Neglected aspects of hormone mediated maternal effects Kumar, Neeraj

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Neglected aspects of hormone mediated maternal effects Kumar, Neeraj"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Neglected aspects of hormone mediated maternal effects

Kumar, Neeraj

DOI:

10.33612/diss.101325389

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Kumar, N. (2019). Neglected aspects of hormone mediated maternal effects: Studies on early embryonic modulation of maternal hormonal signals in avian eggs and related methodological aspects. University of Groningen. https://doi.org/10.33612/diss.101325389

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

122

A

Adkins-Regan E. 2005. Hormones and Animal Social Behavior. Princeton University Press Albergotti LC, Hamlin HJ, McCoy MW, Guillette Jr. LJ. 2009. Endocrine Activity of

Extraembryonic Membranes Extends beyond Placental Amniotes. PLoS One. 4(5):e5452–e5452

Andersson S, Uller T, Lõhmus M, Sundström F. 2004. Effects of egg yolk testosterone on growth and immunity in a precocial bird. J. Evol. Biol. 17(3):501–5

Andrews JE, Smith CA, Sinclair AH. 1997. Sites of estrogen receptor and aromatase expression in the chicken embryo. Gen. Comp. Endocrinol. 108(2):182–90

B

Balthazart J, Taziaux M, Holloway K, Ball GF, Cornil CA. 2009. Behavioral effects of brain-derived estrogens in birds. Ann. N. Y. Acad. Sci. 1163:31–48

Benowitz-Fredericks ZM, Hodge M. 2013. Yolk androstenedione in domestic chicks (Gallus gallus domesticus): Uptake and sex-dependent alteration of growth and behavior.

Gen. Comp. Endocrinol. 193:48–55

Bowden RM, Ewert MA, Freedberg S, Nelson CE. 2002a. Maternally derived yolk hormones vary in follicles of the painted turtle, Chrysemys picta. J. Exp. Zool. 293(1):67–72 Bowden RM, Ewert MA, Nelson CE. 2002b. Hormone levels in yolk decline throughout

development in the red-eared slider turtle (Trachemys scripta elegans). Gen. Comp.

Endocrinol. 129(3):171–77

Braun T, Challis JR, Newnham JP, Sloboda DM. 2013. Early-life glucocorticoid exposure: The hypothalamic-pituitary-adrenal axis, placental function, and longterm disease risk.

Endocr. Rev. 34(6):885–916

Brown CL, Doroshov SI, Nunez JM, Hadley C, Vaneenennaam J, et al. 1988. Maternal triiodothyronine injections cause increases in swimbladder inflation and survival rates in larval striped bass, Morone saxatilis. J. Exp. Zool. 248(2):168–76

Brown CL, Urbinati EC, Zhang W, Brown SB, McComb-Kobza M. 2014. Maternal Thyroid and Glucocorticoid Hormone Interactions in Larval Fish Development, and Their Applications in Aquaculture. Rev. Fish. Sci. Aquac. 22(3):207–20

Bruggeman V, Van As P, Decuypere E. 2002. Developmental endocrinology of the reproductive axis in the chicken embryo. Comp. Biochem. Physiol. A-Molecular Integr.

Physiol. 131(4):839–46

Büttler RM, Martens F, Kushnir MM, Ackermans MT, Blankenstein MA, Heijboer AC. 2014. Simultaneous measurement of testosterone, androstenedione and dehydroepiandrosterone (DHEA) in serum and plasma using isotope-dilution 2-dimension ultra high performance liquid-chromatography tandem mass spectrometry (ID-LC-MS/MS). Clin. Chim. Acta. 438:157–59

Byerly T. 1932. Growth of the chick embryo in relation to its food supply. J. Exp. Biol. 9(1):15–44

C

Carere C, Balthazart J. 2007. Sexual versus individual differentiation: the controversial role of avian maternal hormones. Trends Endocrinol. Metab. 18(2):73–80

(4)

123 78 hydrophilic and hydrophobic veterinary drugs in milk, egg and meat by liquid chromatography-tandem mass spectrometry. Anal. Methods. 7(16):6764–76

Clairardin SG, Paitz RT, Bowden RM. 2013. In ovo inhibition of steroid metabolism by bisphenol-A as a potential mechanism of endocrine disruption. Proc. R. Soc.

B-Biological Sci. 280(1769):20131773

Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM. 1998. Sexual differentiation of the vertebrate brain: Principles and mechanisms. Front. Neuroendocrinol. 19(4):323–62 Cottrell EC, Seckl JR. 2009. Prenatal stress, glucocorticoids and the programming of adult

disease. Front. Behav. Neurosci. 3:19

Cruze L, Hamlin HJ, Kohno S, McCoy MW, Guillette LJ. 2013. Evidence of steroid hormone activity in the chorioallantoic membrane of a Turtle (Pseudemys nelsoni). Gen. Comp.

Endocrinol. 186:50–57

Cruze L, Kohno S, McCoy MW, Guillette LJ. 2012. Towards an Understanding of the Evolution of the Chorioallantoic Placenta: Steroid Biosynthesis and Steroid Hormone Signaling in the Chorioallantoic Membrane of an Oviparous Reptile. Biol. Reprod. 87(3):71–71

D

De Baere S, Rosendahl Larsen T, Devreese M, De Backer P, De Neve L, et al. 2015. Use of LC-MS-MS as an alternative to currently available immunoassay methods to quantitate corticosterone in egg yolk and albumen. Anal. Bioanal. Chem. 407(15):4351–62 Del Giudice M. 2012. Fetal programming by maternal stress: Insights from a conflict

perspective. Psychoneuroendocrinology. 37(10):1614–29

Dentressangle F, Boeck L, Torres R. 2008. Maternal investment in eggs is affected by male feet colour and breeding conditions in the blue-footed booby, Sula nebouxii. Behav.

Ecol. Sociobiol. 62(12):1899–1908

Dmitrieva LP, Gottlieb G. 1992. Development of Brain-Stem Auditory Pathway in Mallard Duck Embryos and Hatchlings. J. Comp. Physiol. A-Sensory Neural Behav. Physiol. 171(5):665–71

Dmitrieva LP, Gottlieb G. 1994. Influence of Auditory Experience on the Development of Brain-Stem Auditory-Evoked Potentials in Mallard Duck Embryos and Hatchlings.

Behav. Neural Biol. 61(1):19–28

Dorgan JF, Fears TR, McMahon RP, Aronson Friedman L, Patterson BH, Greenhut SF. 2002. Measurement of steroid sex hormones in serum: A comparison of radioimmunoassay and mass spectrometry. Steroids. 67(3–4):151–58

Drea CM. 2011. Endocrine correlates of pregnancy in the ring-tailed lemur (Lemur catta): Implications for the masculinization of daughters. Horm. Behav. 59(4):417–27 Dunlap WP, Cortina JM, Vaslow JB, Burke MJ. 1996. Meta-analysis of experiments with

matched groups or repeated measures designs. Psychol. Methods. 1(2):170–77

E

Egbert JR, Jackson MF, Rodgers BD, Schwabl H. 2013. Between-female variation in house sparrow yolk testosterone concentration is negatively associated with CYP19A1 (aromatase) mRNA expression in ovarian follicles. Gen. Comp. Endocrinol. 183:53–62 Eising C, Pavlova D, Groothuis T, Eens M, Pinxten R. 2008. Maternal yolk androgens in European starlings: affected by social environment or individual traits of the mother?

(5)

124

Eising CM, Eikenaar C, Schwabl H, Groothuis TGG. 2001. Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc. R.

Soc. B Biol. Sci. 268(1469):839–46

Eising CM, Müller W, Dijkstra C, Groothuis TGG. 2003. Maternal androgens in egg yolks: Relation with sex, incubation time and embryonic growth. Gen. Comp. Endocrinol. 132(2):241–47

Elf PK, Fivizzani AJ. 2002. Changes in sex steroid levels in yolks of the leghorn chicken, Gallus domesticus, during embryonic development. J. Exp. Zool. 293(6):594–600

Endo D, Murakami S, Akazome Y, Park MK. 2007. Sex difference in Ad4BP/SF-1 mRNA expression in the chick-embryo brain before gonadal sexual differentiation. Zoolog.

Sci. 24(9):877–82

F

Fang H. 2003. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem. Res. Toxicol. 16:1338–58

Feist G, Schreck CB. 1996. Brain-pituitary-gonadal axis during early development and sexual differentiation in the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 102(3):394–409

Ferner K, Mess A. 2011. Evolution and development of fetal membranes and placentation in amniote vertebrates. Respir. Physiol. Neurobiol. 178(1):39–50

Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, et al. 2011. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics. 6(5):566–72

Fitzgerald RL, Herold DA. 1996. Serum total testosterone: Immunoassay compared with negative chemical ionization gas chromatography-mass spectrometry. Clin. Chem. 42(5):749–55

G

Galvan I, Alonso-Alvarez C. 2010. Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism? J. Exp. Biol. 213(18):3127–30

Gasc JM. 1980. Estrogen target cells in gonads of the chicken embryo during sexual differentiation. J. Embryol. Exp. Morphol. 55:331–42

Gasc JM, Stumpf WE, Sar M. 1979. Androgen target cells in the pituitary of the chick embryo.

J. Steroid Biochem. 11(3):1201–3

Gasparini J, Boulinier T, Gill VA, Gil D, Hatch SA, Roulin A. 2007. Food availability affects the maternal transfer of androgens and antibodies into eggs of a colonial seabird. J. Evol.

Biol. 20(3):874–80

Gil D. 2008. Hormones in avian eggs: Physiology, ecology and behavior. Adv. Study Behav. 38:337–98

Gil D, Graves J, Hazon N, Wells A. 1999. Male attractiveness and differential testosterone investment in zebra finch eggs. Science (80-. ). 286(5437):126–28

Gil D, Leboucher G, Lacroix A, Cue R, Kreutzer M. 2004. Female canaries produce eggs with greater amounts of testosterone when exposed to preferred male song. Horm. Behav. 45(1):64–70

(6)

125 urbica) reduce egg androgen deposition in response to a challenge of their immune system. Behav. Ecol. Sociobiol. 60(1):96–100

Gil D, Ninni P, Lacroix A, De Lope F, Tirard C, et al. 2006b. Yolk androgens in the barn swallow (Hirundo rustica): A test of some adaptive hypotheses. J. Evol. Biol. 19(1):123–31 Gilbert L, Bulmer E, Arnold KE, Graves JA. 2007. Yolk androgens and embryo sex: Maternal

effects or confounding factors? Horm. Behav. 51(2):231–38

Godfray HCJ. 1995. Evolutionary-Theory of Parent-Offspring Conflict. Nature. 376(6536):133–38

Goerlich VC, Dijkstra C, Groothuis TGG. 2010. Effects of in vivo testosterone manipulation on ovarian morphology, follicular development, and follicle yolk testosterone in the homing pigeon. J. Exp. Zool. Part A Ecol. Genet. Physiol. 313 A(6):328–38

Goerlich VC, Dijkstra C, Schaafsma SM, Groothuis TGG. 2009. Testosterone has a long-term effect on primary sex ratio of first eggs in pigeons-in search of a mechanism. Gen.

Comp. Endocrinol. 163(1–2):184–92

Gordon AS, Zanjani ED, Levere RD, Kappas A. 1970. Stimulation of Mammalian Erythropoiesis by 5beta-H Steroid Metabolites. Proc. Natl. Acad. Sci. U. S. A. 65(4):919–24

Gottlieb G. 1963. Imprinting in Nature. Science (80-. ). 139(355):497–98

Gottlieb G. 1965. Prenatal Auditory Sensitivity in Chickens and Ducks. Science (80-. ). 147(3665):1596–98

Gottlieb G. 1968. Prenatal Behavior of Birds. Q. Rev. Biol. 43(2):148–74

Gottlieb G, Kuo Z-Y. 1965. Development of Behavior in the Duck Embryo. J. Comp. Physiol.

Psychol. 59(2):183–88

Gottlieb G, Vandenbergh. 1968. Ontogeny of Vocalization in Duck and Chick Embryos. J. Exp.

Zool. 168(3):307–26

Griffith OW, Brandley MC, Whittington CM, Belov K, Thompson MB. 2017. Comparative genomics of hormonal signaling in the chorioallantoic membrane of oviparous and viviparous amniotes. Gen. Comp. Endocrinol. 244:19–29

Groothuis TG, Eising CM, Dijkstra C, Müller W. 2005a. Balancing between costs and benefits of maternal hormone deposition in avian eggs. Biol. Lett. 1(1):78–81

Groothuis TG, Schwabl H. 2002. Determinants of within- and among-clutch variation in levels of maternal hormones in Black-Headed Gull eggs. Funct. Ecol. 16(3):281–89 Groothuis TGG, Müller W, von Engelhardt N, Carere C, Eising C. 2005b. Maternal hormones

as a tool to adjust offspring phenotype in avian species. Neurosci. Biobehav. Rev. 29(2):329–52

Groothuis TGG, Schwabl H. 2008. Hormone-mediated maternal effects in birds: mechanisms matter but what do we know of them? Philos. Trans. R. Soc. B-Biological Sci. 363(1497):1647–61

Grzegorzewska AK, Lis MW, Sechman A. 2016. Immunolocalization of Leptin Receptor and mRNA Expression of Leptin and Estrogen Receptors as well as Caspases in the Chorioallantoic Membrane (CAM) of the Chicken Embryo. Folia Biol. 64(2):79–87 Guennoun R, Reyssbrion M, Gasc JM. 1987. Progesterone Receptors in Hypothalamus and

Pituitary during the Embryonic-Development of the Chick - Regulation by Sex Steroid-Hormones. Dev. Brain Res. 37(1–2):1–9

Guiguen Y, Fostier A, Piferrer F, Chang CF. 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen. Comp. Endocrinol.

(7)

126

165(3):352–66

Gwinner H, Schwabl H. 2005. Evidence for sexy sons in European starlings (Sturnus vulgaris).

Behav. Ecol. Sociobiol. 58(4):375–82

H

Hahn DC. 2011. Patterns of maternal yolk hormones in eastern screech owl eggs (Megascops asio). Gen. Comp. Endocrinol. 172(3):423–29

Haig D. 1993. Genetic Conflicts in Human Pregnancy. Q. Rev. Biol. 68(4):495–532

Harris A, Seckl J. 2011. Glucocorticoids, prenatal stress and the programming of disease.

Horm. Behav. 59(3):279–89

Hartmann S, Lacorn M, Steinhart H. 1998. Natural occurrence of steroid hormones in food.

Food Chem. 62(1):7–20

Hoaglin DC, Iglewicz B. 1987. Fine-tuning some resistant rules for outlier labeling. J. Am.

Stat. Assoc. 82(400):1147–49

Hsu B-Y, Dijkstra C, Darras VM, de Vries B, Groothuis TGG. 2016. Maternal adjustment or constraint: differential effects of food availability on maternal deposition of macro-nutrients, steroids and thyroid hormones in rock pigeon eggs. Ecol. Evol. 6(2):397–411 Hsu TY, Lan KC, Tsai CC, Ou CY, Cheng BH, et al. 2009. Expression of Androgen Receptor in Human Placentas from Normal and Preeclamptic Pregnancies. Taiwan. J. Obstet.

Gynecol. 48(3):262–67

I

Irving RA, Mainwaring WIP, Spooner PM. 1976. Regulation of Hemoglobin Synthesis in Cultured Chick Blastoderms by Steroids Related to 5-Beta-Androstane. Biochem. J. 154(1):81–93

J

Jong WHAD, Buitenwerf E, Pranger AT, Riphagen IJ, Wolffenbuttel BHR, et al. 2017. Determination of reference intervals for urinary steroid profiling using a newly validated GC-MS/MS method. Clin. Chem. Lab. Med. 56(1):103–12

K

Katoh H, Ogino Y, Yamada G. 2006. Cloning and expression analysis of androgen receptor gene in chicken embryogenesis. FEBS Lett. 580(6):1607–15

Ketterson ED, Nolan V, Wolf L, Ziegenfus C. 1992. Testosterone and Avian Life Histories - Effects of Experimentally Elevated Testosterone on Behavior and Correlates of Fitness in the Dark-Eyed Junco (Junco-Hyemalis). Am. Nat. 140(6):980–99

Kim SC, Park M-N, Lee YJ, Joo JK, An B-S. 2016. Interaction of steroid receptor coactivators and estrogen receptors in the human placenta. J. Mol. Endocrinol. 56(3):239–47 Kingma SA, Komdeur J, Vedder O, Von Engelhardt N, Korsten P, Groothuis TGG. 2009.

Manipulation of male attractiveness induces rapid changes in avian maternal yolk androgen deposition. Behav. Ecol. 20(1):172–79

Kumar N, van Dam A, Permentier H, van Faassen M, Kema I, et al. 2019. Avian yolk androgens are metabolized instead of taken up by the embryo during the first days of incubation. J. Exp. Biol. jeb.193961

(8)

127 Kumar N, van Faassen M, de Vries B, Kema I, Gahr M, Groothuis TGG. 2018a. Gonadal steroid levels in rock pigeon eggs do not represent adequately maternal allocation. Sci. Rep. 8:11213

Kumar N, van Faassen M, Kema I, Gahr M, Groothuis TGG. 2018b. Early embryonic modification of maternal hormones differs systematically among embryos of different laying order: A study in birds. Gen. Comp. Endocrinol. 269C:53–59

L

Larsen TR, Fairhurst GD, De Baere S, Croubels S, Müller W, et al. 2015. Novel insights into relationships between egg corticosterone and timing of breeding revealed by LC-MS/MS. J. Avian Biol. 46(6):643–47

Levere RD, Kappas A, Granick S. 1967. Stimulation of Hemoglobin Synthesis in Chick Blastoderms by Certain 5beta Androstane and 5beta Pregnane Steroids. Proc. Natl.

Acad. Sci. U. S. A. 58(3):985–90

Lipar JL, Ketterson ED, Nolan V. 1999. Intraclutch variation in testosterone content of red-winged blackbird eggs. AUK. 116(1):231–35

Losel R, Wehling M. 2003. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4(1):46–56

Loyau A, Saint Jalme M, Mauget R, Sorci G. 2007. Male sexual attractiveness affects the investment of maternal resources into the eggs in peafowl (Pavo cristatus). Behav.

Ecol. Sociobiol. 61(7):1043–52

M

Mann K, Mann M. 2008. The chicken egg yolk plasma and granule proteomes. Proteomics. 8(1):178–91

Marshall DJ, Uller T. 2007. When is a maternal effect adaptive? Oikos. 116(12):1957–63 Martel C, Melner MH, Gagne D, Simard J, Labrie F. 1994. Widespread tissue distribution of

steroid sulfatase, 3B-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3B-HSD), 17B-HSD 5a-reductase and aromatase activities in the rhesus monkey. Mol. Cell.

Endocrinol. 104(1):103–11

Matsunaga M, Okuhara K, Ukena K, Tsutsui K. 2004. Identification of 3β,5β-tetrahydroprogesterone, a progesterone metabolite, and its stimulatory action on preoptic neurons in the avian brain. Brain Res. 1007(1–2):160–66

Mazuc J, Bonneaud C, Chastel O, Sorci G. 2003. Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecol. Lett. 6(12):1084– 90

McNatt LG, Weimer L, Yanni J, Clark AF. 1999. Angiostatic Activity of Steroids in the Chick Embryo CAM and Rabbit Cornea Models of Neovascularization. J. Ocul. Pharmacol.

Ther. 15(5):413–23

Merrill L, Chiavacci SJ, Paitz RT, Benson TJ. 2018. Quantification of 27 yolk steroid hormones in seven shrubland bird species: interspecific patterns of hormone deposition, and links to life history, development, and predation risk. Can. J. Zool.

Meyer UA. 2007. Endo-xenobiotic crosstalk and the regulation of cytochromes P450. Drug

Metab. Rev. 39(2–3):639–46

Mi X, Li S, Li Y, Wang K, Zhu D, Chen G. 2014. Quantitative determination of 26 steroids in eggs from various species using liquid chromatography-triple quadrupole-mass

(9)

128

spectrometry. J. Chromatogr. a. 1356:54–63

Michl G, Török J, Péczely P, Garamszegi LZ, Schwabl H. 2005. Female collared flycatchers adjust yolk testosterone to male age, but not to attractiveness. Behav. Ecol. 16(2):383–88

Mock DW, Forbes LS. 1994. Life-History Consequences of Avian Brood Reduction. Auk. 111(1):115–23

Moore LB, Parks DJ, Jones SA, Bledsoe RK, Consler TG, et al. 2000. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275(20):15122–27

Mousseau TA, Fox CW. 1998. Maternal Effects as Adaptations. Oxford University Press Mparmpakas D, Zachariades E, Sotiriadis G, Goumenou A, Harvey AJ, et al. 2014. Differential

expression of placental glucocorticoid receptors and growth arrest-specific transcript 5 in term and preterm pregnancies: evidence for involvement of maternal stress.

Obstet. Gynecol. Int. 2014:1–9

Müller W, Eising CM, Dijkstra C, Groothuis TGG. 2002. Sex differences in yolk hormones depend on maternal social status in leghorn chickens (Gallus gallus domesticus). Proc.

R. Soc. Biol. Sci. 269(1506):2249–55

Müller W, Groothuis TGG, Kasprzik A, Dijkstra C, Alatalo R V, Siitari H. 2005. Prenatal androgen exposure modulates cellular and humoral immune function of black-headed gull chicks. Proc. R. Soc. B-Biological Sci. 272(1575):1971–77

Müller W, Lessells CM, Korsten P, von Engelhardt N. 2007. Manipulative signals in family conflict? On the function of maternal yolk hormones in birds. Am. Nat. 169(4):E84–96 Muriel J, Pérez-Rodríguez L, Puerta M, Gil D. 2015. Diverse dose–response effects of yolk androgens on embryo development and nestling growth in a wild passerine. J. Exp.

Biol. 218(14):2241–49

N

Nakagawa S, Cuthill IC. 2007. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 82(4):591–605

Navara KJ, Hill GE, Mendonça MT. 2005. Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiol. Biochem. Zool. 78(4):570–78

Navara KJ, Pinson SE. 2010. Yolk and albumen corticosterone concentrations in eggs laid by white versus brown caged laying hens. Poult. Sci. 89(7):1509–13

Nelson RJ. 2011. An Introduction to Behavioral Endocrinology, 4th Ed. Sunderland, MA, US: Sinauer Associates

Nomura O, Nakabayashi O, Nishimori K, Yasue H, Mizuno S. 1999. Expression of five steroidogenic genes including aromatase gene at early developmental stages of chicken male and female embryos. J. Steroid Biochem. Mol. Biol. 71(3–4):103–9 Nowak-Sliwinska P, Segura T, Iruela-Arispe ML. 2014. The chicken chorioallantoic

membrane model in biology, medicine and bioengineering. Angiogenesis. 17(4):779– 804

O

Okuliarová M, Šárniková B, Rettenbacher S, Škrobánek P, Zeman M. 2010. Yolk testosterone and corticosterone in hierarchical follicles and laid eggs of Japanese quail exposed to

(10)

129 long-term restraint stress. Gen. Comp. Endocrinol. 165(1):91–96

P

Paitz RT, Bowden RM. 2008. A proposed role of the sulfotransferase/sulfatase pathway in modulating yolk steroid effects. Integr. Comp. Biol. 48(3):419–27

Paitz RT, Bowden RM. 2009. Rapid decline in the concentrations of three yolk steroids during development: Is it embryonic regulation? Gen. Comp. Endocrinol. 161(2):246– 51

Paitz RT, Bowden RM. 2010. Progesterone metabolites, “xenobiotic-sensing” nuclear receptors, and the metabolism of maternal steroids. Gen. Comp. Endocrinol. 166(2):217–21

Paitz RT, Bowden RM. 2011. Biological activity of oestradiol sulphate in an oviparous amniote: implications for maternal steroid effects. Proc. R. Soc. B-Biological Sci. 278(1714):2005–10

Paitz RT, Bowden RM. 2013. Sulfonation of maternal steroids is a conserved metabolic pathway in vertebrates. Integr. Comp. Biol. 53(6):895–901

Paitz RT, Bowden RM. 2015. The in ovo conversion of oestrone to oestrone sulfate is rapid and subject to inhibition by Bisphenol A. Biol. Lett. 11(4):UNSP 20140946-UNSP 20140946

Paitz RT, Bowden RM, Casto JM. 2011. Embryonic modulation of maternal steroids in European starlings (Sturnus vulgaris). Proc. R. Soc. B-Biological Sci. 278(1702):99–106 Paitz RT, Casto JM. 2012. The decline in yolk progesterone concentrations during incubation is dependent on embryonic development in the European starling. Gen. Comp.

Endocrinol. 176(3):415–19

Paitz RT, Duffield KR, Bowden RM. 2017. Characterizing the distribution of steroid sulfatase during embryonic development: when and where might metabolites of maternal steroids be reactivated? J. Exp. Biol. 220(24):4567–70

Paitz RT, Sawa AR, Bowden RM. 2012. Characterizing the metabolism and movement of yolk estradiol during embryonic development in the red-eared slider (Trachemys scripta).

Gen. Comp. Endocrinol. 176(3):507–12

Parsons IC. 1970. Metabolism of Testosterone by Early Chick Embryonic Blastoderm.

Steroids. 16(1):59–65

Patten BM. 1920. The Early Embryology of the Chick. Philadelphia: P. Blakiston

Pavlik A, Novotna B, Jelinek R. 1986. Glucocorticoid Receptor-Mediated Teratogenesis and Cell-Proliferation in the Limbs and Face of the Chick-Embryo. Teratog. Carcinog.

Mutagen. 6(5):441–50

Pfannkuche KA, Gahr M, Weites IM, Riedstra B, Wolf C, Groothuis TGG. 2011. Examining a pathway for hormone mediated maternal effects – Yolk testosterone affects androgen receptor expression and endogenous testosterone production in young chicks (Gallus gallus domesticus). Gen. Comp. Endocrinol. 172(3):487–93

Pignataro L, Colman Lerner AA, Barañao JL, De Plazas SF. 1998. Biosynthesis of progesterone derived neurosteroids by developing avian CNS : In vitro effects on the gabaa receptor complex. Int. J. Dev. Neurosci. 16(5):433–41

Pilz KM, Smith HG. 2004. Egg yolk androgen levels increase with breeding density in the European Starling, Sturnus vulgaris. Funct. Ecol. 18(1):58–66

Podmokła E, Drobniak SM, Rutkowska J. 2018. Chicken or egg? Outcomes of experimental manipulations of maternally transmitted hormones depend on administration

(11)

130

method – a meta-analysis. Biol. Rev. 93(3):1499–1517

Pri-Tal BM, Blue S, Pau FKY, Podrabsky JE. 2011. Hormonal components of altered developmental pathways in the annual killifish, Austrofundulus limnaeus. Gen. Comp.

Endocrinol. 174(2):166–74

Q

Quillfeldt P, Poisbleau M, Parenteau C, Trouvé C, Demongin L, et al. 2011. Measuring corticosterone in seabird egg yolk and the presence of high yolk gestagen concentrations. Gen. Comp. Endocrinol. 173(1):11–14

R

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Radder RS. 2007. Maternally derived egg yolk steroid hormones and sex determination: review of a paradox in reptiles. J. Biosci. 32(6):1213–20

Reed WL, Clark ME. 2011. Beyond Maternal Effects in Birds: Responses of the Embryo to the Environment. Integr. Comp. Biol. 51(1):73–80

Reed WL, Vleck CM. 2001. Functional significance of variation in egg-yolk androgens in the American coot. Oecologia. 128(2):164–71

Rettenbacher S, Möstl E, Groothuis TGG. 2009. Gestagens and glucocorticoids in chicken eggs. Gen. Comp. Endocrinol. 164(2–3):125–29

Rhen T, Crews D. 2002. Variation in reproductive behaviour within a sex: Neural systems and endocrine activation. J. Neuroendocrinol. 14(7):517–31

S

Saif Z, Dyson RM, Palliser HK, Wright IMR, Lu N, Clifton VL. 2016. Identification of eight different isoforms of the glucocorticoid receptor in Guinea pig placenta: Relationship to preterm delivery, sex and betamethasone exposure. PLoS One. 11(2):e0148226 Sandell MI, Tobler M, Hasselquist D. 2009. Yolk androgens and the development of avian

immunity: an experiment in jackdaws (Corvus monedula). J. Exp. Biol. 212(6):815–22 Sas B, Domány G, Gyimóthy I, Gaál Kovácsné K, Süth M. 2006. Influence of the type of management system on corticosterone transfer into eggs in laying hens. Acta Vet.

Hung. 54(3):343–52

Schwabl H. 1993. Yolk is a source of maternal testosterone for developing birds. Proc. Natl.

Acad. Sci. U. S. A. 90(24):11446–50

Schwabl H. 1997a. A hormonal mechanism for parental favouritism. Nature. 386(6622):231 Schwabl H. 1997b. The contents of maternal testosterone in house sparrow Passer

domesticus eggs vary with breeding conditions. Naturwissenschaften. 84(9):406–8 Shackleton C. 2010. Clinical steroid mass spectrometry: A 45-year history culminating in

HPLC-MS/MS becoming an essential tool for patient diagnosis

Smiseth PT, Scott MP, Andrews C. 2011. Hormonal regulation of offspring begging and mediation of parent-offspring conflict. Anim. Behav. 81(3):507–17

Smith CA, Andrews JE, Sinclair AH. 1997. Gonadal sex differentiation in chicken embryos: Expression of estrogen receptor and aromatase genes. J. Steroid Biochem. Mol. Biol. 60(5–6):295–302

(12)

131 Sopinka NM, Capelle PM, Semeniuk CAD, Love OP. 2017. Glucocorticoids in Fish Eggs: Variation, Interactions with the Environment, and the Potential to Shape Offspring Fitness. Physiol. Biochem. Zool. 90(1):15–33

T

Taieb J, Mathian B, Millot F, Patricot MC, Mathieu E, et al. 2003. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin. Chem. 49(8):1381–95

Tanvez A, Béguin N, Chastel O, Lacroix A, Leboucher G. 2004. Sexually attractive phrases increase yolk androgens deposition in Canaries (Serinus canaria). Gen. Comp.

Endocrinol. 138(2):113–20

Taylor AE, Keevil B, Huhtaniemi IT. 2015. Mass spectrometry and immunoassay: How to measure steroid hormones today and tomorrow. Eur. J. Endocrinol. 173(2):D1–12 Tobler M, Sandell MI. 2009. Sex-specific effects of prenatal testosterone on nestling plasma

antioxidant capacity in the zebra finch. J. Exp. Biol. 212(1):89–94

Tobler M, Sandell MI, Chiriac S, Hasselquist D. 2013. Effects of Prenatal Testosterone Exposure on Antioxidant Status and Bill Color in Adult Zebra Finches. Physiol. Biochem.

Zool. 86(3):333–45

Tölgyesi Á, Barta E, Simon A, McDonald TJ, Sharma VK. 2017. Screening and confirmation of steroids and nitroimidazoles in urine, blood, and food matrices: Sample preparation methods and liquid chromatography tandem mass spectrometric separations. J.

Pharm. Biomed. Anal. 145:805–13

Treidel LA, Whitley BN, Benowitz-Fredericks ZM, Haussmann MF. 2013. Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus). Biol. Lett. 9(5):

Trivers RL. 1974. Parent-Offspring Conflict. Am. Zool. 14(1):249–64

Tschirren B, Richner H, Schwabl H. 2004. Ectoparasite-modulated deposition of maternal androgens in great tit eggs. Proc. R. Soc. B Biol. Sci. 271(1546):1371–75

U

Uller T. 2008. Developmental plasticity and the evolution of parental effects. Trends Ecol.

Evol. 23(8):432–38

Upreti R, Naredo G, Faqehi AMM, Hughes KA, Stewart LH, et al. 2015. Simultaneous pharmacokinetic and pharmacodynamic analysis of 5α-reductase inhibitors and androgens by liquid chromatography tandem mass spectrometry. Talanta. 131:728– 35

V

Vassallo BG, Paitz RT, Fasanello VJ, Haussmann MF. 2014. Glucocorticoid metabolism in the in ovo environment modulates exposure to maternal corticosterone in Japanese quail embryos (Coturnix japonica). Biol. Lett. 10(11):20140502

Verboven N, Monaghan P, Evans DM, Schwabl H, Evans N, et al. 2003. Maternal condition, yolk androgens and offspring performance: A supplemental feeding experiment in the lesser black-backed gull (Larus fuscus). Proc. R. Soc. B Biol. Sci. 270(1530):2223–32 Viapiano MS, De Plazas SF. 1998. Comparative modulation by 3alpha,5alpha and

(13)

132

3beta,5beta neurosteroids of GABA binding sites during avian central nervous system development. Neurochem.Res. 23(2):155–61

von Engelhardt N, Groothuis TGG. 2011. Maternal hormones in avian eggs. In Hormones and

Reproduction of Vertebrates, Volume 4: Birds, ed. David O. Norris and Kristin H. Lopez,

pp. 91–127. Academic Press

von Engelhardt N, Henriksen R, Groothuis TGG. 2009. Steroids in chicken egg yolk: Metabolism and uptake during early embryonic development. Gen. Comp. Endocrinol. 163(1–2):175–83

Von Engelhardt N, Groothuis TGG. 2005. Measuring steroid hormones in avian eggs. Ann.

N. Y. Acad. Sci. 1046(1):181–92

W

Wang C, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. 2004. Measurement of Total Serum Testosterone in Adult Men: Comparison of Current Laboratory Methods Versus Liquid Chromatography-Tandem Mass Spectrometry. J. Clin. Endocrinol. Metab. 89(2):534–43

Wang Q, Zhang A, Pan X, Chen L. 2010. Simultaneous determination of sex hormones in egg products by ZnCl2 depositing lipid, solid-phase extraction and ultra performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal.

Chim. Acta. 678(1):108–16

Welty JL, Belthoff JR, Egbert J, Schwabl H. 2012. Relationships between yolk androgens and nest density, laying date, and laying order in Western Burrowing Owls (Athene cunicularia hypugaea). Can. J. Zool. Can. Zool. 90(2):182–92

West-Eberhard MJ. 2003. Developmental Plasticity and Evolution. Oxford University Press Whittingham LA, Schwabl H. 2002. Maternal testosterone in tree swallow eggs varies with

female aggression. Anim. Behav. 63(1):63–67

Wielders J, Roelofsen-de Beer RJAC, Boer A-K, de Jong WHA, Mulder AHL, et al. 2017.

Validation and Verification of Examination Procedures in Medical Laboratories: A Practical Proposal for Dealing with the ISO15189:2012 Demands

Williams TD, Ames CE, Kiparissis Y, Wynne-Edwards KE. 2005. Laying-sequence-specific variation in yolk oestrogen levels, and relationship to plasma oestrogen in female zebra finches (Taeniopygia guttata). Proceedings. Biol. Sci. 272(1559):173–77 Wilson AJ, Pilkington JG, Pemberton JM, Coltman DW, Overall ADJ, et al. 2005. Selection on

mothers and offspring: Whose phenotype is it and does it matter? Evolution (N. Y). 59(2):451–63

Wilson CM, McNabb FMA. 1997. Maternal thyroid hormones in Japanese quail eggs and their influence on embryonic development. Gen. Comp. Endocrinol. 107(2):153–65 Winkler DW. 1993. Testosterone in Egg-Yolks - an Ornithologists Perspective. Proc. Natl.

Acad. Sci. U. S. A. 90(24):11439–41

Wolf JB, Wade MJ. 2001. On the assignment of fitness to parents and offspring: whose fitness is it and when does it matter? J. Evol. Biol. 14(2):347–56

Woods JE, Simpson RM, Moore PL. 1975. Plasma testosterone levels in the chick embryo.

Gen. Comp. Endocrinol. 27(4):543–47

Wudy SA, Schuler G, Sanchez-Guijo A, Hartmann MF. 2018. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J. Steroid Biochem. Mol.

(14)

133

X

Xu JZ, Zhang XY, Ding T, Wu B, Shen CY, et al. 2009. Determination of Anabolic Steroid and Glucocorticoid Hormones in Chicken and Egg Using Liquid Chromatography-Tandem Mass Spectrometry. Chinese J. Anal. Chem. 37(3):341–46

Y

Yang Y, Shao B, Zhang J, Wu Y, Ying J. 2008. Analysis of eight free progestogens in eggs by matrix solid-phase dispersion extraction and very high pressure liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Anal. Technol.

Biomed. Life Sci. 870(2):241–46

Yoshida K, Shimada K, Saito N. 1996. Expression of P450(17 alpha) hydroxylase and P450 aromatase genes in the chicken gonad before and after sexual differentiation. Gen.

Comp. Endocrinol. 102(2):233–40

Youngson NA, Whitelaw E. 2008. Transgenerational epigenetic effects. Annu. Rev. Genomics

(15)

Referenties

GERELATEERDE DOCUMENTEN

That is, the role of the embryo in translating maternal hormonal allocation to their phenotypic effects, or in circumventing such effects when they are unfavourable for the

Intriguingly, we show that RIAs give higher estimates as compared to LC-MS/MS even for plasma samples of birds as well as rats when measured by using a kit for human serum, partly

By studying changes in gonadal hormones in mature first and second follicles and first and second freshly laid eggs of rock pigeons and by using a treatment aiming at

Regardless of whether the enzymes are of maternal or embryonic origin, these could be an evolutionary adaptation to use maternal hormones prior to development of the embryonic

Vertebrate embryos are exposed to maternal hormones that can profoundly affect their later phenotype. Although it is known that the embryo can metabolize these maternal

We also report the first experimental evidence for steroid receptor regulation in the avian embryo in response to yolk steroid levels: the level of AR is dependent on

As we show an active role of the embryo in adapting its receptor expression in the EMs to yolk hormone levels, it indicates that the embryo is not just a slave to maternal

Deze paradox kan op drie manieren worden opgelost: ten eerste kunnen de actieve hormonen al voor hun uitputting receptor-gemedieerde genetische en/of niet-