• No results found

(1)A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia

N/A
N/A
Protected

Academic year: 2022

Share "(1)A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)A growing degree day inference model based on mountain birch leaf cuticle analysis over a latitudinal gradient in Fennoscandia. Fabian.E.Z. Ercan1*, H.J. de Boer2, F. Wagner-Cremer1 1Palaeoecology, Physical Geography, Utrecht University, Princetonlaan 8a 3584 CB, Utrecht. 2Copernicus Institute of Sustainable Development, Department of Environmental Sciences, Utrecht University, Princetonlaan 8a 3584 CB, Utrecht..                                        (

(2) )                                                                                       (   )

(3)                                                                                                     

(4)                                                        (         

(5)          (

(6) 

(7)     ) ä      )                                         

(8)    

(9)                                                   ­                   €                                                                 

(10) ‚  ­     ƒ                                  „                        ( )„    † ‡ °                                ~† ˆ ‡ ‡   ~‰ ‡ ‡ °     Š ‡ † ‰

(11) Interpolated GDD5. Interpolated UI. 725 842 578. 1.14. 1.12 776. 1.16. 68°N. 909. 1.14. 1.17. 1060. 80 0 60. 1246. Latitude. 1117. 62.5 65.0 67.5 70.0. 1.15. 64°N. 1245. 1.2. d. 1800. 1.18. 64°N. 1.2 1.23 1.23. 1431. 1413. 1368. 1.27. 62°N. 1.2 1.23 1.2 1.23. 1250 1000. 22°E. 24°E. 26°E. 28°E. 30°E. 32°E. 60°N. 1.12. c. 100 km. 1.24. 1.16 100 km. 20°E. 22°E. 24°E. 26°E. 28°E. 30°E. 32°E. Figure 2: a) Meteorological station locations (n=28) and their measured GDD5 values, with inverse distance weighted interpolation gradient. b) Linear relation between Latitude and GDD5. c) Sample locations and the measured mountain birch UI values (n=26) with inverse distance weighted interpolation gradient. d) Linear relation between Latitude and UI with error bars indicating the naturally occurring variance in UI..                      ˆ                                                                

(12)                 „                                                                                                                                                 (   )                

(13)  ”                                                                                                                                                                       ­                                          ­          (   )          

(14). *Corresponding author:. 1800 1400. b. 1000 600. 600. 1000 1400 1800 GDD5 (observed). 1200 1000. UI. 1.20. 60°N. 750. 20°E. 62°N. 1.21. GDD5. 1414 1414. 1600. a. 1400. 1.26. 1493. 1288. a. 2200 2000. 1.17. Latitude. 62.5 65.0 67.5 70.0. 1334. 1193. 1.17 1.17 66°N. b.       † ‹ Œ                                                 Ž Ž ‰      ( )     † ‘ ’ “      ( )„                                                                              „        

(15) ”        ˆ ‡ μ

(16). UI. 1226. 1.10 1.15 1.20 1.25 1.30. 1 1 1 00 200 400 600. GDD T=5°C. 66°N. 0. 10. 1009 1049. b. 68°N. 1.17. 1.17. 1042 1142. a. 1.16. 1.14. Growing Degree Day (GDD5). 781. 70°N. 1.15. GDD5(predicted). 70°N 847. f.e.z.ercan@uu.nl. 800 600 400 1.05. 1.10. 1.1 1.20 1.25 Undula�on Index (UI). 1.30. 1.35.       “ ‹  )             ƒ                                                                 Š ‡ † ‰         

(17)  Œ         €                     „   •                                                         

(18)                                            ƒ       ’ ˆ %    ƒ            

(19)   )                                            † ’ ’ Ž     ƒ            ”       

(20)  Œ         €                                                    Š ‡ † ‰             

(21)  –                        ’ ˆ %    ƒ                                   

(22)                              (Œ Š  = ‡

(23) — ‰ „   = ‡

(24) Š ‘ )„                              † ‹†                                      

(25).

(26)

Referenties

GERELATEERDE DOCUMENTEN

A N image obtained with an optical device, such as a photocamera, a telescope or a microscope, depends on a given object’s geometry, known as the object function, and the optical

A N image obtained with an optical device, such as a photocamera, a telescope or a microscope, depends on a given object’s geometry, known as the object function, and the optical

[1] is deeply analyzed in close comparison with the thermodynamically consistent strain gradient crystal plasticity framework (TCCP) of Gurtin [2] to investigate the thermodynamics

For defor- mations where the plastic strain field is smooth, numerical results from the scalar gradient model are similar to those of the proposed model.

10 de grafiek verschuift naar links omdat het gemiddelde kleiner wordt.. De vorm blijft gelijk omdat de standaarddeviatie

Als de groeifactor dicht bij de 1 komt gaat de groei heel erg langzaam en duurt het heel lang voordat eend. hoeveelheid

Als de sepsis ernstiger wordt en de patiënt een lage bloeddruk krijgt noemen we dit een septische shock.. De lage bloeddruk herstelt niet door het geven van extra vocht via

137 the regression model using surface area plots provides a visual response of factors (such as, ethyl formate concentration, fumigation duration and treatment temperature)