• No results found

University of Groningen Graphene heterostructures for spin and charge transport Zomer, Paul Joseph

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Graphene heterostructures for spin and charge transport Zomer, Paul Joseph"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Graphene heterostructures for spin and charge transport

Zomer, Paul Joseph

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Zomer, P. J. (2019). Graphene heterostructures for spin and charge transport. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

List of publications

In this thesis

1. P.J. Zomer, O. Lehtinen, A.V. Krasheninnikov, B.J. van Wees, I.V. Grigorieva and I.J. Vera-Marun, ”Robust spin transport in highly irradiated few-layer graph-ene”, in preparation

2. P. J. Zomer, M. H. D. Guimar˜aes, J. C. Brant, N. Tombros, and B. J. van Wees, ”Fast pick up technique for high quality heterostructures of bilayer graph-ene and hexagonal boron nitride”, (Featured Article) Appl. Phys. Lett. 105, 013101(2014).

3. I. J. Vera-Marun, P. J. Zomer, A. Veligura, M. H. D. Guimar˜aes, L. Visser, N. Tombros, H. J. van Elferen, U. Zeitler, B. J. van Wees, ”Quantum Hall transport as a probe of capacitance profile at graphene edges”, Appl. Phys. Lett. 102, 013106 (2013).

4. P. J. Zomer, M. H. D. Guimar˜aes, N. Tombros, B. J. van Wees, ”Long Dis-tance Spin Transport in High Mobility Graphene on Hexagonal Boron Nitride”, Phys. Rev. B 86, 161416(R) (2012).

5. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, ”A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride”, Appl. Phys. Lett. 99, 232104 (2011).

Other

6. J. Ingla-Ayn´es, M. H. D. Guimar˜aes, R. J. Meijerink, P. J. Zomer and B. J. van Wees, ”24 micrometer spin relaxation length in boron nitride encapsulated bi-layer graphene”, Phys. Rev. B. 92, 201410(R) (2015)

(3)

136 Publications 7. E. H. Huisman, A. G. Shulga, P. J. Zomer, N. Tombros, D. Bartesaghi, S. Z. Bisri, M. A. Loi, L. J. A. Koster, and B. J. van Wees, ”High Gain Hybrid Graphene-Organic Semiconductor Phototransistors”, ACS Appl. Mater. Interfaces, 7 (21), 1108311088 (2015)

8. M. H. D. Guimar˜aes, J. J. van den Berg, I. J. Vera-Marun, P.J. Zomer and B. J. van Wees, ”Spin Transport in graphene nanostructures”, Phys. Rev. B 90, 235428 (2014)

9. S. Parui, R. Ruiter, P. J. Zomer, M. Wojtaszek, B. J. van Wees and T. Banerjee, ”Temperature dependent transport characteristics of graphene/n-Si diodes, J. Appl. Phys. 116, 244505 (2014)

10. M. H. D. Guimar˜aes, P. J. Zomer, J. Ingla-Ayn´es, J. C. Brant, N. Tombros, B. J. van Wees, ”Controlling Spin Relaxation in Hexagonal BN-Encapsulated Graph-ene with a Transverse Electric Field”, Phys. Rev. Lett. 113, 086602 (2014). 11. M. H. D. Guimar˜aes, P. J. Zomer, I. J. Vera-Marun, and B. J. van Wees,

”Spin-Dependent Quantum Interference in Nonlocal Graphene Spin Valves”, Nano Letters 14, 2952(2014).

12. M. H. D. Guimar˜aes, A. Veligura, P. J. Zomer, T. Maassen, I. J. Vera-Marun, N. Tombros, and B. J. van Wees, ”Spin Transport in High-Quality Suspended Graphene Devices”, Nano Letters 12 (7), 3512-3517 (2012).

13. Alina Veligura, Paul J. Zomer, Ivan J. Vera-Marun, Csaba J ´ozsa, Pavlo I. Gordi-ichuk, Bart J. van Wees, ”Relating Hysteresis and Electrochemistry in Graphene Field Effect Transistors”, J. Appl. Phys. 110, 113708 (2011).

14. N. Tombros, A. Veligura, J. Junesch, J. J. van den Berg, P. J. Zomer, M. Woj-taszek, I. J. Vera-Marun, H. T. Jonkman, and B.J. van Wees, ”Large yield pro-duction of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer”, J. Appl. Phys. 109, 093702 (2011)

15. M. Popinciuc, C. J ´ozsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees, ”Electronic spin transport in graphene field-effect transis-tors”, Phys. Rev. B 80, 214427 (2009)

16. C. J ´ozsa, T. Maassen, M. Popinciuc, P. J. Zomer, A. Veligura, H. T. Jonkman, and B. J. van Wees, ”Linear scaling between momentum and spin scattering in graphene”, Phys. Rev. B: Rap. Comm. 80, 241403(R) (2009)

Referenties

GERELATEERDE DOCUMENTEN

Most of the graphene spintronics stud- ies were focused on aforementioned two challenges in order to achieve the large spin relaxation lengths and long spin relaxation times while

In de praktijk is het transport van spins in grafeen echter moeilijk door randomisatie van spins na een korte tijd, en de huidige onderzoeksgemeenschap is gericht op het vinden van

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded

van Wees, “Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride,” Applied Physics Letters 105(1), p.. Dean,

Both suspended graphene and h-BN based graphene devices are used to show how quantum Hall transport can be used to probe the charge carrier density profiles near the graphene

Zowel vrij hangend als h-BN ondersteund grafeen is gebruikt om aan te tonen hoe quantum Hall transport ingezet kan worden voor het in kaart brengen van de profielen van

I also really enjoyed the device fabrication, part of the reason I started this work, and think we managed as a team to lay a solid foundation for the advanced work on 2D

To increase the distance over which a spin signal can travel in graphene, it is easiest to improve the charge carrier mobility. Few layer graphene deserves more attention where