• No results found

University of Groningen Hydrogen potential in the future EU energy system Blanco Reaño, Herib

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Hydrogen potential in the future EU energy system Blanco Reaño, Herib"

Copied!
46
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Hydrogen potential in the future EU energy system

Blanco Reaño, Herib

DOI:

10.33612/diss.107577829

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Blanco Reaño, H. (2019). Hydrogen potential in the future EU energy system: a multi-sectoral, multi-model approach. University of Groningen. https://doi.org/10.33612/diss.107577829

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

[1] Holli Riebeek. Global Warming. NASA - Earth Obs 2010.

https://earthobservatory.nasa.gov/Features/GlobalWarming/.

[2] Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, et al. Fifth Assessment Report of the

IPPC - Working Group 1. New York, US: Interngovernmental Panel on Climate Change (IPCC); 2013. doi:10.1017/CBO9781107415324.Summary.

[3] United Nations. Paris Agreement. United Nations Framew Conv Clim Chang 2015;December:25.

[4] Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, et al. Mitigation Pathways Compatible With

1.5°C in the Context of Sustainable Development. Glob Warm 15°C An IPCC Spec Rep [.] 2018:82pp.

[5] Kitous A, Keramidas K, Vandyck T, Saveyn B, van Dingenen R, Spadaro J, et al. Global Energy and Climate

Outlook 2017: How climate policies improve air quality - Global energy trends and ancillary benefits of the Paris Agreement. Jt Res Cent 2017:1–151. doi:10.2760/474356.

[6] Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. Climate Change 2014:

Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: 2014.

[7] IEA. Global Energy and CO2 status report. Int Energy Agency 2019;March.

[8] IEA. World Energy Investment 2019. Int Energy Agency 2019.

[9] Mccollum DL, Zhou W, Bertram C, Boer H De, Busch S, Després J, et al. Energy investment needs for

fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat Energy 2018;3:589–99. doi:doi.org/10.1038/s41560-018-0179-z.

[10] David LM, Luis Gomez E, Sebastian B, Shonali P, Simon P, Joeri R, et al. Connecting the sustainable

development goals by their energy inter-linkages. Environ Res Lett 2018;13:33006. doi:10.1088/1748-9326/aaafe3.

[11] Andrews J, Shabani B. Where does hydrogen fit in a sustainable energy economy? Procedia Eng 2012;49:15–

25. doi:10.1016/j.proeng.2012.10.107.

[12] Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P, et al. The role of hydrogen and

fuel cells in the global energy system. Energy Environ Sci 2019;12:463–91. doi:10.1039/c8ee01157e.

[13] Tremel A, Wasserscheid P, Baldauf M, Hammer T. Techno-economic analysis for the synthesis of liquid and

gaseous fuels based on hydrogen production via electrolysis. Int J Hydrogen Energy 2015;40:11457–64. doi:10.1016/j.ijhydene.2015.01.097.

[14] Bazzanella AM, Ausfelder F. Low carbon energy and feedstock for the European chemical industry. Dechema

2017:166.

[15] BNEF. Hydrogen: The economics of storage. Bloom New Energy Financ 2019;August:66.

[16] da Silva Veras T, Mozer TS, da Silva César A. Hydrogen: trends, production and characterization of the main

process worldwide. Int J Hydrogen Energy 2016;42:2018–33.

[17] Fasihi M, Bogdanov D, Breyer C. Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production

and Global Trading Based on Hybrid PV-Wind Power Plants. Energy Procedia 2016;99:243–68. doi:10.1016/j.egypro.2016.10.115.

[18] Parra D, Valverde L, Pino FJ, Patel MK. A review on the role, cost and value of hydrogen energy systems for

deep decarbonisation. Renew Sustain Energy Rev 2019;101:279–94. doi:10.1016/j.rser.2018.11.010.

[19] Eichman J, Harrison K, Peters M, Eichman J, Harrison K, Peters M. Novel Electrolyzer Applications :

Providing More Than Just Hydrogen Novel Electrolyzer Applications : Providing More Than Just Hydrogen 2014:1–24. doi:10.2172/1159377.

(3)

J Clean Prod 2014;85:151–63. doi:10.1016/j.jclepro.2013.07.048.

[21] Hannula I. Hydrogen enhancement potential of synthetic biofuels manufacture in the European context: A

techno-economic assessment. Energy 2016;104:199–212. doi:10.1016/j.energy.2016.03.119.

[22] International Energy Agency. The Future of Hydrogen: Seizing today’s opportunities. IEA 2019:203.

[23] IEA. World Energy Outlook 2018. Int Energy Agency 2018:643.

[24] Moliner R, Lazaro MJ, Suelves I. Analysis of the strategies for bridging the gap towards the Hydrogen

Economy. Int J Hydrogen Energy 2016;41:19500–8. doi:10.1016/j.ijhydene.2016.06.202.

[25] Ball M, Weeda M. The hydrogen economy - Vision or reality? Int J Hydrogen Energy 2015;40:7903–19.

doi:10.1016/j.ijhydene.2015.04.032.

[26] Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E. Development of Water Electrolysis in the

European Union - Fuel Cells and Hydrogen Joint Undertaking 2014.

[27] Welder L, Stenzel P, Ebersbach N, Markewitz P, Robinius M, Emonts B, et al. Design and evaluation of

hydrogen electricity reconversion pathways in national energy systems using spatially and temporally resolved energy system optimization. Int J Hydrogen Energy 2019;44:9594–607. doi:10.1016/j.ijhydene.2018.11.194.

[28] Ikäheimo J, Kiviluoma J, Weiss R, Holttinen H. Power-to-ammonia in future North European 100 %

renewable power and heat system. Int J Hydrogen Energy 2018:1–14. doi:10.1016/j.ijhydene.2018.06.121.

[29] Lehner M, Tichler R, Steinmüller H, Koppe M. Power-to-Gas : Technology and Business Models. 1st ed.

Springer International Publishing; 2014. doi:10.1007/978-3-319-03995-4.

[30] Albrecht FG, Konig DH, Baucks N, Dietrich RU. A standardized methodology for the techno-economic

evaluation of alternative fuels – A case study. Fuel 2017;194:511–26. doi:10.1016/j.fuel.2016.12.003.

[31] Aakko-Saksa PT, Cook C, Kiviaho J, Repo T. Liquid organic hydrogen carriers for transportation and storing

of renewable energy – Review and discussion. J Power Sources 2018;396:803–23. doi:10.1016/j.jpowsour.2018.04.011.

[32] Adolf J, Balzer C, Louis J, Schabla U, Fischedick M, Arnold K, et al. Shell Hydrogen Study - Energy of the

future? Sustainable Mobility through fuel cells and hydrogen. Shell Deutschl Oil GmbH 2017.

[33] Valera-Medina A, Xiao H, Owwn-Jones M, David WIF, Bowen PJ. Ammonia for power. Prog Energy

Combust Sci 2018;69:63–102. doi:10.1016/j.pecs.2018.07.001.

[34] Hydrogen Analysis Resource Center. Hydrogen Pipelines (World) - September 2016. Hydrog Deliv 2016.

https://h2tools.org/sites/default/files/imports/files//Hydrogen%2520Pipelines%2520September%25202016.xls x (accessed September 17, 2019).

[35] Speirs J, Balcombe P, Johnson E, Martin J, Brandon N, Hawkes A. A greener gas grid: What are the options.

Sustain Gas Inst ICL 2017:109. doi:10.1016/j.enpol.2018.03.069.

[36] EIA. Gasoline explained - Where our gasoline comes from. US Energy Inf Adm 2018.

https://www.eia.gov/energyexplained/gasoline/where-our-gasoline-comes-from.php (accessed September 17, 2019).

[37] Cooper J. Statistical Report 2018. Fuels Eur 2018:66.

[38] De Vita A, Capros P, Evangelopoulou S, Kannavou M, Siskos P, Zazias G, et al. Sectoral integration - Long

term perspective in the EU Energy System. ASSET Proj 2018:124.

[39] Yara International. Yara Fertilizer Industry Handbook. Yara 2014:90.

[40] Dodds PE, Demoullin S. Conversion of the UK gas system to transport hydrogen. Int J Hydrogen Energy

2013;38:7189–200. doi:10.1016/j.ijhydene.2013.03.070.

[41] Mahony TO. Integrated scenarios for energy: A methodology for the short term. Futures 2014;55:41–57.

(4)

[42] Connolly D, Lund H, Mathiesen B V., Leahy M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy 2010;87:1059–82.

doi:10.1016/j.apenergy.2009.09.026.

[43] Lopion P, Markewitz P, Robinius M, Stolten D. A review of current challenges and trends in energy systems

modeling. Renew Sustain Energy Rev 2018;96:156–66. doi:10.1016/j.rser.2018.07.045.

[44] Hanley ES, Deane JP, Gallachóir BPÓ. The role of hydrogen in low carbon energy futures – A review of

existing perspectives. Renew Sustain Energy Rev 2017:1–19. doi:10.1016/j.rser.2017.10.034.

[45] Quarton CJ, Tlili O, Welder L, Mansilla C, Blanco H, Heinrichs H, et al. The curious case of the conflicting roles of hydrogen in global energy scenarios. Submitted 2019:13.

[46] Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, et al. Negative emissions - Part 1: Research

landscape and synthesis. Environ Res Lett 2018;13. doi:10.1088/1748-9326/aabf9b.

[47] European Commission. Energy Roadmap 2050 - Communication from the Commission to the European

Parliament, the Council, the European economic and social Committee and the Committee of the Regions - Impact Assessment. vol. 147. Brussels, Belgium: 2011. doi:SWD(2013) 527.

[48] European Commission. A Clean Planet for all A European long-term strategic vision for a prosperous ,

modern, competitive and climate neutral economy. Commun COM 773 2018;773:393.

[49] Vrontisi Z, Luderer G, Saveyn B, Keramidas K, Reis LA, Lavinia Baumstark, et al. Enhancing global climate

policy ambition towards a 1.5 C stabilization: a short-term multi-model assessment. Environ Res Lett 2018;13:044039. doi:doi.org/10.1088/1748-9326/aab53e.

[50] European Commission. EU Reference Scenario 2016. 2016. doi:10.2833/9127.

[51] European Commission. Renewable Energy Directive (RED). COM 2017;0382:116.

[52] Parliament E, Union C of the E. Fuel Quality Directive (FQD). Off J Eur Union 2009;140:88–113.

[53] De Benedetto L, Klemeš J. The Environmental Performance Strategy Map: an integrated LCA approach to

support the strategic decision-making process. J Clean Prod 2009;17:900–6. doi:10.1016/j.jclepro.2009.02.012.

[54] European Commission. Post-2020 CO2 emission performance standards for cars and vans. 2019/631 2019.

https://ec.europa.eu/clima/policies/transport/vehicles/regulation_en (accessed September 17, 2019).

[55] European Commission. Energy Storage - The role of electricity. SWD 2017;61:1–25.

[56] FCH JU. Fuel cell and hydrogen technology: Europe’s journey to a greener world. 2017. doi:10.2843/069292.

[57] FCH JU. Who we are. Fuel Cell Hydrog Jt Undert 2018. https://www.fch.europa.eu/page/who-we-are

(accessed September 17, 2019).

[58] NOW. NIP Funding Program 2019.

https://www.now-gmbh.de/en/national-innovation-programme/funding-programme (accessed September 17, 2019).

[59] Fuel Cells Bulletin. France unveils national hydrogen plan as tool for energy transition 2018:10. doi:doi.org/10.1016/S1464-2859(18)30252-9.

[60] Speers P. Hydrogen Mobility Europe (H2ME): Vehicle and hydrogen refuelling station deployment results.

World Electr Veh J 2018;9. doi:10.3390/wevj9010002.

[61] Bonhoff K, Herbert T, Butsch H. 50 Hydrogen Refueling stations in Germany. Within the frame of the

National Innovation Programme Hydrogen and Fuel Cell Technology by Hanno Butsch. IFP/IEA/ITF Work 2012:10.

[62] SNN. Investment Agenda Hydrogen Northern Netherlands - Heading for emission-free hydrogen at

commercial scale 2019. https://www.snn.nl/sites/default/files/2019-07/Investment Agenda Hydrogen Northern Netherlands - April 2019 %285%29.pdf (accessed September 17, 2019).

(5)

[63] Robinius M, Otto A, Syranidis K, Ryberg DS, Heuser P, Welder L, et al. Linking the Power and Transport Sectors — Part 2 : Modelling a Sector Coupling Scenario for Germany. Energies 2017;10:1–23.

doi:10.3390/en10070957.

[64] Schäfer A, Jacoby HD. Vehicle technology under CO2 constraint: A general equilibrium analysis. Energy

Policy 2006;34:975–85. doi:10.1016/j.enpol.2004.08.051.

[65] Strachan N, Kannan R. Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Econ

2008;30:2947–63. doi:10.1016/j.eneco.2008.04.009.

[66] Fortes P, Pereira R, Pereira A, Seixas J. Integrated technological-economic modeling platform for energy and

climate policy analysis. Energy 2014;73:716–30. doi:10.1016/j.energy.2014.06.075.

[67] Venturini G, Tattini J, Mulholland E, O’Gallachoir B. Improvements in the representation of behaviour in

integrated energy and transport system models. Int J Sustain Transp 2018:20. doi:10.1080/15568318.2018.1466220.

[68] Lott MC, Pye S, Dodds PE. Quantifying the co-impacts of energy sector decarbonisation on outdoor air

pollution in the United Kingdom. Energy Policy 2017;101:42–51. doi:10.1016/j.enpol.2016.11.028.

[69] Brown KE, Henze DK, Milford JB. How accounting for climate and health impacts of emissions could change

the US energy system. Energy Policy 2017;102:396–405. doi:10.1016/j.enpol.2016.12.052.

[70] Pietrapertosa F, Cosmi C, Macchiato M, Salvia M, Cuomo V. Life Cycle Assessment , ExternE and

Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities. Renew Sustain Energy Rev 2009;13:1039–48. doi:10.1016/j.rser.2008.05.006.

[71] Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, et al. Considering the energy, water and

food nexus: Towards an integrated modelling approach. Energy Policy 2011;39:7896–906. doi:10.1016/j.enpol.2011.09.039.

[72] Villarroel Walker R, Beck MB, Hall JW, Dawson RJ, Heidrich O. The energy-water-food nexus: Strategic

analysis of technologies for transforming the urban metabolism. J Environ Manage 2014;141:104–15. doi:10.1016/j.jenvman.2014.01.054.

[73] Howells M, Hermann S, Welsch M, Bazilian M, Segerström R, Alfstad T, et al. Integrated analysis of climate

change, land-use, energy and water strategies. Nat Clim Chang 2013;3:621–6. doi:10.1038/nclimate1789.

[74] Lucas PL, Shukla PR, Chen W, van Ruijven BJ, Dhar S, den Elzen MGJ, et al. Implications of the

international reduction pledges on long-term energy system changes and costs in China and India. Energy Policy 2013;63:1032–41. doi:10.1016/j.enpol.2013.09.026.

[75] Foley AM, Ó Gallachóir BP, Hur J, Baldick R, McKeogh EJ. A strategic review of electricity systems models.

Energy 2010;35:4522–30. doi:10.1016/j.energy.2010.03.057.

[76] Bijgaart I Van Den, Gerlagh R, Liski M. A simple formula for the social cost of carbon. J Environ Econ

Manage 2016;77:75–94. doi:10.1016/j.jeem.2016.01.005.

[77] Pauliuk S, Arvesen A, Stadler K, Hertwich EG. Industrial ecology in integrated assessment models. Nat Publ

Gr 2017;7:13–20. doi:10.1038/nclimate3148.

[78] Gambhir A, Butnar I, Li PH, Smith P, Strachan N. A review of criticisms of integrated assessment models and

proposed approaches to address these, through the lens of BECCs. Energies 2019;12:1–21. doi:10.3390/en12091747.

[79] International Energy Agency I. World Energy Outlook (WEO) 2015. Paris, France: 2015.

doi:http://dx.doi.org/10.1787/weo-2015-en.

[80] British-Petroleum (BP). BP Statistical Review of World Energy. 2016.

[81] Denholm P, Ela E, Kirby B, Milligan M. The Role of Energy Storage with Renewable Electricity Generation

The Role of Energy Storage with Renewable Electricity Generation. vol. WER8.5005. Golden, Colorado: 2010. doi:69.

(6)

[82] Strbac G, Aunedi M, Pudjianto D, Djapic P, Teng F, Sturt A, et al. Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future Report for. Carbon Trust 2012:1–99.

[83] Deane JP, Ó Gallachóir BP, McKeogh EJ. Techno-economic review of existing and new pumped hydro

energy storage plant. Renew Sustain Energy Rev 2010;14:1293–302. doi:10.1016/j.rser.2009.11.015.

[84] eStorage. Overview of potential locations for new pumped storage plants in EU 15, Switzerland and Norway.

D42 Final Rep 2015;Grant 2953:77.

[85] Macknick J, Sattler S, Averyt K, Clemmer S, Rogers J. The water implications of generating electricity: water use across the United States based on different electricity pathways through 2050. Environ Res Lett

2012;7:045803. doi:10.1088/1748-9326/7/4/045803.

[86] Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, et al. Renewable Power-to-Gas: A

technological and economic review. Renew Energy 2016;85:1371–90. doi:10.1016/j.renene.2015.07.066.

[87] Sterner M. Bioenergy and renewable power methane in integrated 100% renewable energy systems. Limiting

global warming by transforming energy systems. Universität Kassel, 2009.

[88] Haller M, Ludig S, Bauer N. Decarbonization scenarios for the EU and MENA power system: Considering

spatial distribution and short term dynamics of renewable generation. Energy Policy 2012;47:282–90. doi:10.1016/j.enpol.2012.04.069.

[89] Gallo AB, Simões-Moreira JR, Costa HKM, Santos MM, Moutinho dos Santos E. Energy storage in the

energy transition context: A technology review. Renew Sustain Energy Rev 2016;65:800–22. doi:10.1016/j.rser.2016.07.028.

[90] Zucker A, Hinchliffe T, Spisto A. Assessing storage value in electricity markets a literature review. 2013. doi:10.2790/89242.

[91] Luo X, Wang J, Dooner M, Clarke J. Overview of current development in electrical energy storage

technologies and the application potential in power system operation. Appl Energy 2014;137:511–36. doi:10.1016/j.apenergy.2014.09.081.

[92] Rodriguez RA, Becker S, Andresen GB, Heide D, Greiner M. Transmission needs across a fully renewable

European power system. Renew Energy 2014;63:467–76. doi:10.1016/j.renene.2013.10.005.

[93] Heide D, Greiner M, von Bremen L, Hoffmann C. Reduced storage and balancing needs in a fully renewable

European power system with excess wind and solar power generation. Renew Energy 2011;36:2515–23. doi:10.1016/j.renene.2011.02.009.

[94] Steinke F, Wolfrum P, Hoffmann C. Grid vs. storage in a 100% renewable Europe. Renew Energy

2013;50:826–32. doi:10.1016/j.renene.2012.07.044.

[95] Aneke M, Wang M. Energy storage technologies and real life applications – A state of the art review. Appl

Energy 2016;179:350–77. doi:http://dx.doi.org/10.1016/j.apenergy.2016.06.097.

[96] Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP. Characterisation of electrical energy storage technologies. Energy 2013;53:288–98.

[97] Akinyele DO, Rayudu RK. Review of energy storage technologies for sustainable power networks. Sustain

Energy Technol Assessments 2014;8:74–91. doi:10.1016/j.seta.2014.07.004.

[98] McConnell D, Forcey T, Sandiford M. Estimating the value of electricity storage in an energy-only wholesale

market. Appl Energy 2015;159:422–32. doi:10.1016/j.apenergy.2015.09.006.

[99] Sioshansi FP. Why the Time Has Arrived To Rethink The Electric Business Model. Electr J 2012;25:65–74.

doi:10.1016/j.tej.2012.09.003.

[100] Sioshansi R, Denholm P, Jenkin T, Weiss J. Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects. Energy Econ 2009;31:269–77. doi:10.1016/j.eneco.2008.10.005.

(7)

arbitrage potential in real-time U.S. electricity markets. Appl Energy 2014;114:512–9. doi:10.1016/j.apenergy.2013.10.010.

[102] Huff G, Currier AB, Kaun BC, Rastler DM, Chen SB, Bradshaw DT, et al. DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Rep SAND2013- … 2013:340. doi:SAND2013-5131.

[103] Schoenung SM, Hassenzahl WV. Long- vs . Short-Term Energy Storage Technologies Analysis A Life-Cycle Cost Study A Study for the DOE Energy Storage Systems Program. Power Qual 2003;SAND2011-2:84. [104] Kaun B. Cost-Effectiveness of Energy Storage in California. Natl Renew Energy Lab 2013;10-12–007.

doi:3002001162.

[105] He X, Delarue E, D’haeseleer W, Glachant JM. A novel business model for aggregating the values of electricity storage. Energy Policy 2011;39:1575–85. doi:10.1016/j.enpol.2010.12.033.

[106] Das T, Krishnan V, McCalley JD. Assessing the benefits and economics of bulk energy storage technologies in the power grid. Appl Energy 2015;139:104–18. doi:10.1016/j.apenergy.2014.11.017.

[107] Walawalkar R, Apt J, Mancini R. Economics of electric energy storage for energy arbitrage and regulation in New York. Energy Policy 2007;35:2558–68. doi:10.1016/j.enpol.2006.09.005.

[108] Loisel R, Mercier A, Gatzen C, Elms N, Petric H. Valuation framework for large scale electricity storage in a case with wind curtailment. Energy Policy 2010;38:7323–37. doi:10.1016/j.enpol.2010.08.007.

[109] Moreno R, Moreira R, Strbac G. A MILP model for optimising multi-service portfolios of distributed energy storage. Appl Energy 2015;137:554–66. doi:10.1016/j.apenergy.2014.08.080.

[110] Cho J, Kleit AN. Energy storage systems in energy and ancillary markets: A backwards induction approach. Appl Energy 2015;147:176–83. doi:10.1016/j.apenergy.2015.01.114.

[111] Lund H, Salgi G, Elmegaard B, Andersen AN. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl Therm Eng 2009;29:799–806.

doi:10.1016/j.applthermaleng.2008.05.020.

[112] Siemer L, Schöpfer F, Kleinhans D. Cost-optimal operation of energy storage units: Benefits of a problem-specific approach. J Energy Storage 2016;6:11–21. doi:10.1016/j.est.2016.01.005.

[113] Connolly D, Lund H, Finn P, Mathiesen B V., Leahy M. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 2011;39:4189–96. doi:10.1016/j.enpol.2011.04.032.

[114] Hiroux C, Saguan M. Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs? Energy Policy 2010;38:3135–45. doi:10.1016/j.enpol.2009.07.030.

[115] Schill WP, Kemfert C. Modeling strategic electricity storage: The case of pumped hydro storage in Germany. Energy J 2011;32:59–87. doi:10.5547/ISSN0195-6574-EJ-Vol32-No3-3.

[116] Ludig S, Haller M, Schmid E, Bauer N. Fluctuating renewables in a long-term climate change mitigation strategy. Energy 2011;36:6674–85. doi:10.1016/j.energy.2011.08.021.

[117] Bertsch J, Nagl S. Flexibility in Europe ’ s power sector - an additional requirement or an automatic complement ? Energy Econ 2016;53:118–31. doi:10.1016/j.eneco.2014.10.022.

[118] Aboumahboub T, Schaber K, Tzscheutschler P, Hamacher T. Optimization of the utilization of renewable energy sources in the electricity sector. Proc 5th IASME/WSEAS Int Conf Energy Environ 2010;11:196–204. [119] Schaber K. Integration of Variable Renewable Energies in the European power system: a model-based

analysis of transmission grid extensions and energy sector coupling. Universität München, 2013.

[120] Richter J. DIMENSION - A Dispatch and Investment Model for European Electricity Markets. Inst Energy Econ Univ Col 2011:18.

[121] de Sisternes FJ, Jenkins JD, Botterud A. The value of energy storage in decarbonizing the electricity sector. Appl Energy 2016;175:368–79. doi:10.1016/j.apenergy.2016.05.014.

(8)

[122] Schill WP. Residual load, renewable surplus generation and storage requirements in Germany. Energy Policy 2014;73:65–79. doi:10.1016/j.enpol.2014.05.032.

[123] Denholm P, Hand M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 2011;39:1817–30. doi:10.1016/j.enpol.2011.01.019.

[124] Inage S. Prospects for Energy Storage in Decarbonised Power Grids. Int Energy Agency 2009:94. [125] Rasmussen MG, Andresen GB, Greiner M. Storage and balancing synergies in a fully or highly renewable

pan-European power system. Energy Policy 2012;51:642–51. doi:10.1016/j.enpol.2012.09.009.

[126] Rodriguez R, Andresen GB, Becker S, Greiner M. Transmission Needs in a Fully Renewable Pan-European Electricity System n.d.:1–5.

[127] Krakowski V, Assoumou E, Mazauric V, Maïzi N. Feasible path toward 40-100% renewable energy shares for power supply in France by 2050: A prospective analysis. Appl Energy 2016;171:501–22.

doi:10.1016/j.apenergy.2016.03.094.

[128] Pfenninger S, Keirstead J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Appl Energy 2015;152:83–93.

doi:10.1016/j.apenergy.2015.04.102.

[129] Haller M, Ludig S, Bauer N. Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage. Renew Sustain Energy Rev 2012;16:2687–95.

doi:10.1016/j.rser.2012.01.080.

[130] Lise W, Laan J Van Der, Nieuwenhout F, Rademaekers K. Energy Policy 2013;59:904–13.

[131] Deane JP, Gracceva F, Chiodi A, Gargiulo M, Gallachóir BPÓ. Assessing power system security. A framework and a multi model approach. Int J Electr Power Energy Syst 2015;73:283–97.

doi:10.1016/j.ijepes.2015.04.020.

[132] Gracceva F, Zeniewski P. A systemic approach to assessing energy security in a low-carbon EU energy system. Appl Energy 2014;123:335–48. doi:10.1016/j.apenergy.2013.12.018.

[133] Huber M, Dimkova D, Hamacher T. Integration of wind and solar power in Europe : Assessment of flexibility requirements 2014;69:236–46.

[134] Sterner M, Stadler I. Energiespeicher - Bedarf, Technologien, Integration. Springer Vieweg; 2014. doi:10.1007/978-3-642-37380-0.

[135] Gerlach A-K, Stetter D, Schmid J, Breyer C. PV and Wind Power - Complementary Technologies. 26th Eur. Photovolt. Sol. Energy Conf. Exhib. HYBRID, Hamburg, Germany: 2011, p. 4607–13.

doi:10.1017/CBO9781107415324.004.

[136] Heide D, von Bremen L, Greiner M, Hoffmann C, Speckmann M, Bofinger S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew Energy 2010;35:2483–9.

doi:10.1016/j.renene.2010.03.012.

[137] Becker S, Frew B a, Andresen GB, Zeyer T, Schramm S, Greiner M, et al. Optimized mixes of wind and solar PV and transmission grid extensions. Energy 2014;72:443–58.

[138] Breyer C. Economics of Hybrid Photovoltaic Power Plants. University of Kassel, 2012.

[139] Quiggin D, Buswell R. The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios. Energy 2016;98:253–70. doi:10.1016/j.energy.2015.11.060. [140] Hossaina MS, Madlool NA, Rahim NA, Selvaraj J, Pandey AK, Khan AF. Role of smart grid in renewable

energy. An Overview, Renew Sustain Energy Rev 2016;60:1168–84.

[141] Brouwer AS, van den Broek M, Zappa W, Turkenburg WC, Faaij A. Least-cost options for integrating intermittent renewables in low-carbon power systems. Appl Energy 2016;161:48–74.

(9)

[142] Papaefthymiou G, Dragoon K. Towards 100 % renewable energy systems : Uncapping power system fl exibility 2016;92:69–82. doi:10.1016/j.enpol.2016.01.025.

[143] Kruyt B, van Vuuren DP, de Vries HJM, Groenenberg H. Indicators for energy security. Energy Policy 2009;37:2166–81. doi:10.1016/j.enpol.2009.02.006.

[144] Lund PD, Lindgren J, Mikkola J, Salpakari J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew Sustain Energy Rev 2015;45:785–807.

doi:10.1016/j.rser.2015.01.057.

[145] Weitemeyer S, Kleinhans D, Vogt T, Agert C. Integration of Renewable Energy Sources in future power systems: The role of storage. Renew Energy 2015;75:14–20. doi:10.1016/j.renene.2014.09.028.

[146] Solomon AA, Kammen DM, Callaway D. Investigating the impact of wind-solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Appl Energy 2016;168:130–45.

doi:10.1016/j.apenergy.2016.01.070.

[147] Esteban M, Zhang Q, Utama A. Estimation of the energy storage requirement of a future 100% renewable energy system in Japan. Energy Policy 2012;47:22–31. doi:10.1016/j.enpol.2012.03.078.

[148] Bogdanov D, Breyer C. North-East Asian Super Grid for 100% renewable energy supply: Optimal mix of energy technologies for electricity, gas and heat supply options. Energy Convers Manag 2016;112:176–90. doi:10.1016/j.enconman.2016.01.019.

[149] Solomon AA, Kammen DM, Callaway D. The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources. Appl Energy 2014;134:75– 89. doi:10.1016/j.apenergy.2014.07.095.

[150] Kötter E, Schneider L, Sehnke F, Ohnmeiss K, Schröer R. Sensitivities of power-to-gas within an optimised energy system. Energy Procedia 2015;73:190–9. doi:10.1016/j.egypro.2015.07.670.

[151] Jentsch M, Trost T, Sterner M. Optimal use of Power-to-Gas energy storage systems in an 85% renewable energy scenario. Energy Procedia 2014;46:254–61. doi:10.1016/j.egypro.2014.01.180.

[152] Kannan R. The development and application of a temporal MARKAL energy system model using flexible time slicing. Appl Energy 2011;88:2261–72. doi:10.1016/j.apenergy.2010.12.066.

[153] Delarue E, Morris J, Prinn RG, Reilly JM. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models. MIT Jt Progr Sci Policy Glob Chang 2015.

[154] Krüger C, Buddeke M, Merten F, Nebel A. Modeling the interdependencies of storage, DSM and grid-extension for Europe. 2th Int. Conf. th Eur. Energy Mark., 2015, p. 1–5. doi:10.1109/EEM.2015.7216669. [155] Juul N, Meibom P. Road transport and power system scenarios for Northern Europe in 2030. Appl Energy

2012;92:573–82. doi:10.1016/j.apenergy.2011.11.074.

[156] Keane A, Tuohy A, Meibom P, Denny E, Flynn D, Mullane A, et al. Demand side resource operation on the Irish power system with high wind power penetration. Energy Policy 2011;39:2925–34.

doi:10.1016/j.enpol.2011.02.071.

[157] Solomon AA, Faiman D, Meron G. Appropriate storage for high-penetration grid-connected photovoltaic plants. Energy Policy 2012;40:335–44. doi:10.1016/j.enpol.2011.10.019.

[158] Budischak C, Sewell D, Thomson H, MacH L, Veron DE, Kempton W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time. J Power Sources 2013;225:60–74. doi:10.1016/j.jpowsour.2012.09.054.

[159] Converse AO. Seasonal Energy Storage in a Renewable Energy System. Proc IEEE 2012;100. doi:10.1109/JPROC.2011.2105231.

[160] Schmid E, Knopf B. Quantifying the long-term economic benefits of European electricity system integration. Energy Policy 2015;87:260–9. doi:10.1016/j.enpol.2015.09.026.

(10)

[161] Thien T, Alvarez R, Cai Z, Awater P, Leuthold M, Moser A, et al. Storage and Grid Expansion Needs in a European Electricity Supply System with a High Share of Renewable Energy. Int Renew Energy Storage Conf Exhib 2012.

[162] Bussar C, Stöcker P, Cai Z, Moraes L, Alvarez R, Chen H, et al. Large-scale Integration of Renewable Energies and Impact on Storage Demand in a European Renewable Power System of 2050. J Energy Storage 2016;6:1–10. doi:10.1016/j.egypro.2015.07.662.

[163] Thien T, Moos M, Alvarez R, Chen H, Cai Z, Leuthold M. Storage demand in a 100% RES power system for Europe with different PV installation levels. 28th Eur. Photovolt. Sol. Energy Conf. Exhib., Paris, France: 2013, p. 4261–5.

[164] Huber M, Roger A, Hamacher T. Optimizing long-term investments for a sustainable development of the ASEAN power system. Energy 2015;88:180–93. doi:10.1016/j.energy.2015.04.065.

[165] Aboumahboub T. Modeling and Optimization of the Global Electricity Generation System with High Shares of Fluctuating Renewable Energy Sources. Technische Universität München, 2012.

[166] Palzer A, Henning H-M. A Future German Energy System with a Dominating Contribution from Renewable Energies: A Holistic Model Based on Hourly Simulation. Energy Technol 2014;2:13–28.

doi:10.1002/ente.201300083.

[167] Bussar C, Moos M, Alvarez R, Wolf P, Thien T, Chen H, et al. Optimal allocation and capacity of energy storage systems in a future European power system with 100% renewable energy generation. Energy Procedia 2014;46:40–7. doi:10.1016/j.egypro.2014.01.156.

[168] Bussar C, Stöcker P, Cai Z, Moraes L, Alvarez R, Chen H, et al. Large-scale Integration of Renewable Energies and Impact on Storage Demand in a European Renewable Power System of 2050. 4th Sol Integr Work 2015;73:145–53. doi:10.1016/j.egypro.2015.07.662.

[169] Kloess M, Zach K. Bulk electricity storage technologies for load-leveling operation - An economic assessment for the Austrian and German power market. Int J Electr Power Energy Syst 2014;59:111–22.

doi:10.1016/j.ijepes.2014.02.002.

[170] Locatelli G, Palerma E, Mancini M. Assessing the economics of large Energy Storage Plants with an optimisation methodology. Energy 2015;83:15–28. doi:10.1016/j.energy.2015.01.050.

[171] Qadrdan M, Abeysekera M, Chaudry M, Wu J, Jenkins N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int J Hydrogen Energy 2015;40:5763–75.

doi:10.1016/j.ijhydene.2015.03.004.

[172] Helmut Schmidt Universitat H, National Technical University of Athens N. SPAIN - Overview of current status and future development scenarios of the electricity system, and assessment of the energy storage needs. Store Proj - Deliv 52 2013:56.

[173] de Boer HS. The application of different types of large scale energy storage systems in the Dutch electricity system at different wind power penetration levels An environmental , economical and energetic analysis on. Energy 2014;72:360–70.

[174] Weiss T, Wänn A. Power system overview and RES integration - Ireland. 2013.

[175] Weiß T, Schulz D. Overview of the electricity supply system and an estimation of future energy storage needs in Germany. 2013.

[176] Anagnostopoulos J, Papantonis D. GREECE : Overview of the electricity system status and its future development scenarios – Assessment of the energy storage infrastructure needs. 2015.

[177] Zach K, Auer H, Lettner G, Weiß T. Assessment of the Future Energy Storage Needs of Austria for Integration of Variable RES-E Generation. 2013.

[178] Belderbos A, Delarue E, D’haeseleer W. Possible role of Power-to-Gas in future energy systems. Leuven, Belgium: 2015. doi:10.1109/EEM.2015.7216744.

(11)

[179] Sorknæs P, Mæng H, Weiss T, Andersen AN. Overview of current status and future development scenarios of the electricity system in Denmark – allowing integration of large quantities of wind power. Store Proj - Deliv 51 2013:69.

[180] Doetsch C, Droste-franke B, Mulder G, Scholz Y, Perrin M. » Electric Energy Storage - Future Energy Storage Demand « Final Report. 2015.

[181] Moeller C, Meiss J, Mueller B, Hlusiak M, Breyer C, Kastner M, et al. Transforming the electricity generation of the Berlin e Brandenburg region , Germany. Renew Energy 2014;72:39–50.

doi:10.1016/j.renene.2014.06.042.

[182] European Commission. Roadmap 2050 - Technical Analysis - Volume I. 2010. doi:10.2833/10759.

[183] Fürsch M, Hagspiel S, Jägemann C, Nagl S, Lindenberger DD, Glotzbach L, et al. Roadmap 2050 – a closer look. Cost-efficient RES-E penetration and the role of grid extensions. 2011.

[184] Scholz Y. Möglichkeiten und Grenzen der Integration verschiedener regenerativer Energiequellen zu einer 100% regenerativen Stromversorgung der Bundesrepublik Deutschland bis zum Jahr 2050. 2010.

[185] Kondziella H, Bruckner T. Flexibility requirements of renewable energy based electricity systems - A review of research results and methodologies. Renew Sustain Energy Rev 2016;53:10–22.

doi:10.1016/j.rser.2015.07.199.

[186] Howley M, Holland M, Dineen D. Energy in Ireland Key Statistics. 2015.

[187] Parliament E, Council E. Directive 2009/142/EC relating to appliances burning gaseous fuels. 2009. [188] Parliament E, Council E. COD 2016/0382 - Corrigendum of COM (2016) 767 on promotion of the use of

energy from renewable sources (recast). vol. 0382. 2017.

[189] Sioshansi R, Denholm P, Jenkin T. A comparative analysis of the value of pure and hybrid electricity storage. Energy Econ 2011;33:56–66. doi:10.1016/j.eneco.2010.06.004.

[190] Electric Power Research Institute. Electricity Energy Storage Technology Options. Rep 1020676 2010:170. [191] Zakeri B, Syri S. Value of energy storage in the Nordic Power market - Benefits from price arbitrage and

ancillary services. Int Conf Eur Energy Mark EEM 2016;2016-July:0–4. doi:10.1109/EEM.2016.7521275. [192] Gulagi A, Bogdanov D, Breyer C. East Asian Super Grid : Can Australia Become an Electricity Source for

Asia ? 6th Sol Integr Work 2016.

[193] Australian Energy Market Operator A. 100 Per Cent Renewables Study – Modelling Outcomes. 2013. [194] Lenzen M, McBain B, Trainer T, Jütte S, Rey-Lescure O, Huang J. Simulating low-carbon electricity supply

for Australia. Appl Energy 2016;179:553–64. doi:10.1016/j.apenergy.2016.06.151.

[195] de Souza Noel Simas Barbosa L, Orozco JF, Bogdanov D, Vainikka P, Breyer C. Hydropower and Power-to-gas Storage Options: The Brazilian Energy System Case. Energy Procedia 2016;99:89–107.

doi:10.1016/j.egypro.2016.10.101.

[196] Bogdanov D, Breyer C. Eurasian Super Grid for 100% Renewable Energy power supply: Generation and storage technologies in the cost optimal mix. ISES Sol World Congr 2015 2015.

doi:10.4229/31stEUPVSEC2015-7DO.14.6.

[197] Bogdanov D, Koskinen O, Aghahosseini A, Breyer C. Integrated renewable energy based power system for Europe, Eurasia and MENA regions. 2016 Int Energy Sustain Conf IESC 2016 2016.

doi:10.1109/IESC.2016.7569508.

[198] Palzer A, Henning HM. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies - Part II: Results. Renew Sustain Energy Rev 2014;30:1019–34. doi:10.1016/j.rser.2013.11.032.

[199] Anagnostopoulos JS, Papantonis DE. Study of pumped storage schemes to support high RES penetration in the electric power system of Greece. Energy 2012;45:416–23. doi:10.1016/j.energy.2012.02.031.

(12)

[200] Connolly D, Lund H, Mathiesen B V., Leahy M. The first step towards a 100% renewable energy-system for Ireland. Appl Energy 2011;88:502–7. doi:10.1016/j.apenergy.2010.03.006.

[201] Gulagi A, Bogdanov D, Breyer C. Solar Photovoltaics - A driving force towards 100% Renewable Energy for India and SAARC 2012:24–8.

[202] Aghahosseini A, Bogdanov D, Breyer C. The MENA Super Grid towards 100 % Renewable Energy Power Supply by 2030 The MENA Super Grid towards 100 % Renewable Energy Power Supply by 2030 2016. [203] Alhamwi A, Kleinhans D, Weitemeyer S, Vogt T. Optimal mix of renewable power generation in the MENA

region as a basis for an efficient electricity supply to europe. EPJ Web Conf 2014;79:03004. doi:10.1051/epjconf/20137903004.

[204] Aghahosseini A, Bogdanov D, Breyer C. 100% Renewable energy in North America and the role of solar photovaltaics. 32nd Eur. Photovolt. Sol. Energy Conf., 2016.

[205] Breyer C, Gulagi A, Bogdanov D. South-East Asia and the Pacific Rim Super Grid for 100 % Renewable Energy power supply South-East Asia and the Pacific Rim Super Grid for 100 % RE power supply Christian Breyer , Ashish Gulagi and Dmitrii Bogdanov 2015. doi:10.13140/RG.2.1.1798.4729.

[206] Barbosa L, Bogdanov D, Vainikka P, Breyer C. Hydro, wind and solar power as a base for a 100% Renewable Energy supply for South and Central America. World Clim Energy Event 2016.

doi:10.1371/journal.pone.0173820.

[207] Barasa M, Bogdanov D, Oyewo AS, Breyer C. A Cost Optimal Resolution for Sub-Saharan Africa powered by 100 % Renewables for Year 2030 Assumptions. 32nd Eur. Photovolt. Sol. Energy Conf., Munich, Germany: 2016, p. 42.

[208] Allen P, Blake L, Harper P, Hooker-Stroud A, James P, Kellner T. Zero Carbon Britain: Rethinking the Future. vol. 14. 2010.

[209] Jacobson MZ, Delucchi MA, Bauer ZAF, Savannah C, Chapman WE, Cameron MA, et al. 100 % Clean and Renewable Wind , Water , and Sunlight (WWS) All- Sector Energy Roadmaps for 139 Countries of the World By 2050. Draft 2015:1–61.

[210] Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy 2009;34:524–31. doi:10.1016/j.energy.2008.04.003.

[211] Jacobson MZ, Delucchi MA. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 2011;39:1154–69. doi:10.1016/j.enpol.2010.11.040.

[212] Delucchi MA, Jacobson MZ. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy 2011;39:1170–90.

doi:10.1016/j.enpol.2010.11.045.

[213] Jacobson MZ, Howarth RW, Delucchi MA, Stan R, Barth JM, Dvorak MJ, et al. Examining the feasibility of converting New York State ’ s all-purpose energy infrastructure to one using wind , water and sunlight. Energy Policy 2013;57:585–601. doi:10.1016/j.enpol.2013.02.036.

[214] Jacobson MZ, Delucchi MA, Cameron MA, Frew BA. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc Natl Acad Sci 2015;112:15060– 5. doi:10.1073/pnas.1510028112.

[215] Jacobson MZ, Delucchi MA, Bauer ZAF, Savannah C, Chapman WE, Cameron MA, et al. 100 % Clean and Renewable Wind , Water , and Sunlight (WWS) All- Sector Energy Roadmaps for 139 Countries of the World By 2050. 2017.

[216] Jacobson MZ, Delucchi MA, Ingraffea AR, Howarth RW, Bazouin G, Bridgeland B, et al. A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy 2014;73:875–89.

doi:10.1016/j.energy.2014.06.099.

(13)

low-cost grid power with 100% wind, water, and solar. Proc Natl Acad Sci 2017:201610381. doi:10.1073/PNAS.1610381114.

[218] Taggart S, James G, Dong Z, Russell C. The future of renewables linked by a transnational Asian grid. Proc IEEE 2012;100:348–59. doi:10.1109/JPROC.2011.2159089.

[219] Mathiesen BV, Lund H, Karlsson K. 100% Renewable energy systems, climate mitigation and economic growth. Appl Energy 2011;88:488–501. doi:10.1016/j.apenergy.2010.03.001.

[220] Krajačić G, Duić N, Carvalho M da G. How to achieve a 100% RES electricity supply for Portugal? Appl Energy 2011;88:508–17. doi:10.1016/j.apenergy.2010.09.006.

[221] Ćosić B, Krajačić G, Duić N. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy 2012;48:80–7. doi:10.1016/j.energy.2012.06.078.

[222] Lund H, Duić N, Krajačić G, Graça Carvalho M da. Two energy system analysis models: A comparison of methodologies and results. Energy 2007;32:948–54. doi:10.1016/j.energy.2006.10.014.

[223] Busuttil A, Krajačić G, Duić N. Energy scenarios for Malta. Int J Hydrogen Energy 2008;33:4235–46. doi:10.1016/j.ijhydene.2008.06.010.

[224] Duić N, Da Graça Carvalho M. Increasing renewable energy sources in island energy supply: Case study Porto Santo. Renew Sustain Energy Rev 2004;8:383–99. doi:10.1016/j.rser.2003.11.004.

[225] Connolly D, Mathiesen BV. A technical and economic analysis of one potential pathway to a 100% renewable energy system. Int J Sustain Energy Plan Manag 2014;1:7–28. doi:10.5278/ijsepm.2014.1.2.

[226] Østergaard PA. Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations. Appl Energy 2015;154:921–33. doi:10.1016/j.apenergy.2015.05.086.

[227] Zakeri B, Syri S, Rinne S. Higher renewable energy integration into the existing energy system of Finland e Is there any maximum limit? Energy 2014;92:244–59. doi:10.1016/j.energy.2015.01.007.

[228] Heard BP, Brook BW, Wigley TML, Bradshaw CJA. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew Sustain Energy Rev 2017;76:1122–33. doi:10.1016/j.rser.2017.03.114.

[229] Reedman LJ. High Penetration Renewables Studies : A Review of the Literature 2012:1–44. doi:Report No. EP 127113.

[230] Cornot-Gandolphe S. Underground gas storage in the World - 2013 (fifth Edition). 2013.

[231] U.S. Energy Information Administration (EIA). International Energy Outlook 2016. vol. 0484. 2016. doi:DOE/EIA-0484(2014).

[232] Isaac M, van Vuuren DP. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009;37:507–21. doi:10.1016/j.enpol.2008.09.051.

[233] Gillhaus A, Horvath P-L. Compilation of geological and geotechnical data of world- wide domal salt deposits and domal salt cavern fields. 2007.

[234] Connolly D, Mathiesen B V., Ridjan I. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy 2014;73:110–25.

doi:10.1016/j.energy.2014.05.104.

[235] Klumpp F. Potential for large scale energy storage technologies - Comparison and ranking including an outlook to 2030. Energy Procedia 2015;73:124–35. doi:10.1016/j.egypro.2015.07.659.

[236] Breyer C, Tsupari E, Tikka V, Vainikka P. Power-to-gas as an emerging profitable business through creating an integrated value chain. Energy Procedia 2015;73:182–9. doi:10.1016/j.egypro.2015.07.668.

[237] Dickinson RR, Battye DL, Linton VM, Ashman PJ, Nathan G (Gus) J. Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int J Hydrogen Energy 2010;35:1321–9. doi:10.1016/j.ijhydene.2009.11.052.

(14)

[238] Buchholz OS, Van Der Ham AGJ, Veneman R, Brilman DWF, Kersten SRA. Power-to-Gas: Storing surplus electrical energy a design study. Energy Procedia 2014;63:7993–8009. doi:10.1016/j.egypro.2014.11.836. [239] Giglio E, Lanzini A, Santarelli M, Leone P. Synthetic natural gas via integrated high- temperature electrolysis

and methanation : Part I - energy performance. J Energy Storage 2015;1:22–37.

[240] Saint M De, Baurens P, Bouallou C. Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis. Int J Hydrogen Energy 2014;39:17024–39. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.08.091.

[241] Varone A, Ferrari M. Power to liquid and power to gas: An option for the German Energiewende. Renew Sustain Energy Rev 2015;45:207–18. doi:10.1016/j.rser.2015.01.049.

[242] Estermann T, Newborough M, Sterner M. Power-to-gas systems for absorbing excess solar power in electricity distribution networks. Int J Hydrogen Energy 2016:1–10. doi:10.1016/j.ijhydene.2016.05.278. [243] Zoss T, Dace E, Blumberga D. Modeling a power-to-renewable methane system for an assessment of power

grid balancing options in the Baltic States’ region. Appl Energy 2016;170:278–85. doi:10.1016/j.apenergy.2016.02.137.

[244] Schenuit C, Heuke R, Paschke J. Potenzialatlas Power to Gas. Klimaschutz umsetzen, erneuerbare Energien integrieren, regionale Wertschöpfung ermöglichen. Berlin: 2016.

[245] Steinmüller H. Power to Gas – eine Systemanalyse 2014:390.

[246] Norman Gerhardt, Sandau F, Scholz A, Hahn DH, Schumacher P, Sager C, et al. Interaktion EE-Strom, Wärme und Verkehr. Fraunhofer IWES 2015:219.

[247] Schmied M, Wüthrich P, Zah R, Althaus H-J, Friedl C. Postfossile Energieversor- gungsoptionen für einen treibhausgasneutralen Verkehr im Jahr 2050: Eine verkehrsträger- übergreifende Bewertung. Dessau-Roßlau: 2014.

[248] Budny C, Madlener R, Hilgers C. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing. Energy Convers Manag 2015;102:258–66.

doi:10.1016/j.enconman.2015.04.070.

[249] Grueger F, Möhrke F, Robinius M, Stolten D. Early power to gas applications: Reducing wind farm forecast errors and providing secondary control reserve. Appl Energy 2016. doi:10.1016/j.apenergy.2016.06.131. [250] Grond L, Paula S, Holstein J. Final Report: Systems Analyses Power to Gas. Groningen: 2013.

[251] Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy

2015;40:4285–94. doi:10.1016/j.ijhydene.2015.01.123.

[252] E&E consultant, HESPUL, Solagro. Etude portant sur l’hydrogène et la méthanation comme procédé de valorisation de l’électricité excédentaire 2014:238.

[253] Benjaminsson G, Benjaminsson J, Rudberg RB. Power-to-Gas – A technical review. Malmo: 2013. [254] Clegg S, Mancarella P. Integrated Modeling and Assessment of the Operational Impact of Power-to-Gas

(P2G) on Electrical and Gas Transmission Networks. IEEE Trans Sustain Energy 2015;6:1234–44. doi:10.1109/TSTE.2015.2424885.

[255] Vandewalle J, Bruninx K, D’Haeseleer W. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Convers Manag 2015;94:28–39.

doi:10.1016/j.enconman.2015.01.038.

[256] Reiter G, Lindorfer J. Evaluating CO2 sources for power-to-gas applications – A case study for Austria. J CO2 Util 2015;10:40–9. doi:10.1016/j.jcou.2015.03.003.

[257] Sternberg A, Bardow A. Power-to-What? - Environmental assessment of energy storage systems. Energy Environ Sci 2015;8:389–400. doi:10.1039/C4EE03051F.

(15)

[258] Sternberg A, Bardow A. Life Cycle Assessment of Power-to-Gas: Syngas vs Methane. ACS Sustain Chem Eng 2016;4:4156–65. doi:10.1021/acssuschemeng.6b00644.

[259] Vartiainen V. Screening of power to gas projects. Lappeenranta University of Technology, 2016. [260] Reiter G, Lindorfer J. Global warming potential of hydrogen and methane production from renewable

electricity via power-to-gas technology. Int J Life Cycle Assess 2015:477–89. doi:10.1007/s11367-015-0848-0.

[261] Parra D, Patel M. Techno-economic implications of the electrolyser technology and size for power-to-gas systems. Int J Hydrogen Energy 2016;41:3478–761. doi:http://dx.doi.org/10.1016/j.ijhydene.2015.12.160. [262] Ueckerdt F, Luderer G, Müller-Hansen F. Abschlussbericht: Analyse des Klimaschutzpotentials der Nutzung

von erneuerbarem Wasserstoff und Methan 2013.

[263] Daniëls B, Seebregts A, Joode J, Smekens K, Van Stralen J, Dalla Longa F, et al. Exploring the role for power-to-gas in the future Dutch energy system. 2014.

[264] Schneider L, Kötter E. The geographic potential of Power-to-Gas in a German model region-Trier-Amprion 5. J Energy Storage 2015;1:1–6. doi:10.1016/j.est.2015.03.001.

[265] Ahern EP, Deane P, Persson T, Gallachoir BO, Murphy J. A perspective on the potential role of biogas in smart energy grids. Renew Energy 2015;78:648–56. doi:10.1016/j.renene.2015.01.048.

[266] Pleßmann G, Erdmann M, Hlusiak M, Breyer C. Global energy storage demand for a 100% renewable electricity supply. Energy Procedia 2014;46:22–31. doi:10.1016/j.egypro.2014.01.154.

[267] Vandewalle J, Bruninx K, D’Haeseleer W. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Convers Manag 2015;94:28–39.

doi:10.1016/j.enconman.2015.01.038.

[268] Henning H-M, Palzer A. The Role of Power-to-Gas in Achieving Germany’s Climate Policy Targets with a Special Focus on Concepts for Road-based Mobility 2015.

[269] Marchenko O V, Solomin S V. The future energy: Hydrogen versus electricity. Int J Hydrogen Energy 2015;40:3801–5. doi:10.1016/j.ijhydene.2015.01.132.

[270] Bockris JOM. The hydrogen economy: Its history. Int J Hydrogen Energy 2013;38:2579–88. doi:10.1016/j.ijhydene.2012.12.026.

[271] Program UNE. The Hydrogen Economy - A non technical review. UNEP DTIE; 2006.

[272] Cetinkaya E, Dincer I, Naterer GF. Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 2012;37:2071–80. doi:10.1016/j.ijhydene.2011.10.064.

[273] Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 2014;39:1–12. doi:10.1016/j.ijhydene.2013.10.060.

[274] Suleman F, Dincer I. Environmental impact assessment and comparison of some hydrogen production options. Int J Hydrogen Energy 2015;40:6976–87.

[275] Dufour J, Serrano DP, Gálvez JL, González A, Soria E, Fierro JLG. Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int J Hydrogen Energy 2012;37:1173–83.

doi:10.1016/j.ijhydene.2011.09.135.

[276] Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 2013;38:4901–34. doi:10.1016/j.ijhydene.2013.01.151.

[277] Janic M. Greening commercial air transportation by using liquid hydrogen as a fuel. Int J Hydrogen Energy 2014;39:16426–41. doi:10.1016/j.ijhydene.2014.08.011.

[278] Cecere D, Giacomazzi E, Ingenito A. A review on hydrogen industrial aerospace applications. Int J Hydrogen Energy 2014;39:10731–47. doi:10.1016/j.ijhydene.2014.04.126.

(16)

[279] Pereira SR, Fontes T, Coelho MC. Can hydrogen or natural gas be alternatives for aviation ? - A life cycle assessment. Int J Hydrogen Energy 2014;9:13266–75. doi:10.1016/j.ijhydene.2014.06.146.

[280] Verstraete D. Long range transport aircraft using hydrogen fuel. Int J Hydrogen Energy 2013;38:14824–31. doi:10.1016/j.ijhydene.2013.09.021.

[281] Yilmaz C, Kanoglu M, Bolatturk A, Gadalla M. Economics of hydrogen production and liquefaction by geothermal energy. Int J Hydrogen Energy 2012;37:2058–69. doi:10.1016/j.ijhydene.2011.06.037.

[282] Fraile D, Lanoix J-C, Maio P, Rangel A, Torres A. Overview of the market segmentation for hydrogen across potential customer groups, based on key application areas. CertifHy Proj 2015;Deliverabl:1–32.

[283] EU 2050 Energy Strategy n.d. https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2050-energy-strategy (accessed August 31, 2018).

[284] European Commission. HyWays - The European Hydrogen Roadmap. Dir Res Inf Commun Unit 2008;Directorat:58. doi:10.2777/35839.

[285] Körner A. Technology Roadmap - Hydrogen and Fuel Cells. Paris, France: 2015. doi:10.1007/SpringerReference_7300.

[286] Council of the European Union. Proposal for a directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (recast). COD 2018;10308:269.

[287] European-CommissionEuropean Commission. Clean Power for Transport: A European alternative fuels strategy. SWD 2013;4:1–11.

[288] European Commission. White Paper - Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system. COM 2011;144:30.

[289] Bleischwitz R, Ã NB. Policies for the transition towards a hydrogen economy : The EU case. Energy Policy 2010;38:5388–98. doi:10.1016/j.enpol.2009.03.041.

[290] Zhang F, Zhao P, Niu M, Maddy J. The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energy 2016;41:14535–52. doi:10.1016/j.ijhydene.2016.05.293.

[291] Kast J, Vijayagopal R, Gangloff JJ, Marcinkoski J. Clean commercial transportation : Medium and heavy duty fuel cell electric trucks. Int J Hydrogen Energy 2017;42:4508–17. doi:10.1016/j.ijhydene.2016.12.129. [292] Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector

coupling via power-to-gas and power-to-liquids: A review. Renew Sustain Energy Rev 2018;82:2440–54. doi:10.1016/j.rser.2017.09.003.

[293] Dagdougui H. Models, methods and approaches for the planning and design of the future hydrogen supply chain. Int J Hydrogen Energy 2012;37:5318–27. doi:10.1016/j.ijhydene.2011.08.041.

[294] David L. Greene Paul N. Leiby. Integrated Analysis of Market Transformation Scenarios with HyTrans. 2007. [295] Agnolucci P, Mcdowall W. Designing future hydrogen infrastructure: Insights from analysis at different

spatial scales. Int J Hydrogen Energy 2013;38:5181–91. doi:10.1016/j.ijhydene.2013.02.042.

[296] Moreno-benito M, Agnolucci P, Papageorgiou LG. Towards a sustainable hydrogen economy : Optimisation-based framework for hydrogen infrastructure development. Comput Chem Eng 2017;102:110–27.

doi:10.1016/j.compchemeng.2016.08.005.

[297] Han J, Ryu J, Lee I. Chemical Engineering Research and Design Multi-objective optimization design of hydrogen infrastructures simultaneously considering economic cost , safety and CO 2 emission 2013;1:1427– 39.

[298] Johnson N, Ogden J. A spatially-explicit optimization model for long-term hydrogen pipeline planning 2011;7. doi:10.1016/j.ijhydene.2011.08.109.

[299] Samsatli S, Staffell I, Samsatli NJ. ScienceDirect Optimal design and operation of integrated wind- hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain. Int J Hydrogen Energy

(17)

2015;41:447–75. doi:10.1016/j.ijhydene.2015.10.032.

[300] Lin Z, Chen CW, Ogden J, Fan Y. The least-cost hydrogen for Southern California. Int J Hydrogen Energy 2008;33:3009–14. doi:10.1016/j.ijhydene.2008.01.039.

[301] Reuß M, Grube T, Robinius M, Preuster P, Wasserscheid P, Stolten D. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Appl Energy 2017;200:290–302.

doi:10.1016/j.apenergy.2017.05.050.

[302] Stiller C, B??nger U, M??ller-Holst S, Svensson AM, Espegren KA, Nowak M. Pathways to a hydrogen fuel infrastructure in Norway. Int J Hydrogen Energy 2010;35:2597–601. doi:10.1016/j.ijhydene.2009.04.003. [303] Parks K. Hydrogen Deployment System Modeling Environment ( HyDS ME ) Documentation Milestone

Report FY 2006 Hydrogen Deployment System Modeling Environment ( HyDS ME ) Documentation Milestone Report FY 2006 2006.

[304] Saba SM, Müller M, Robinius M, Stolten D. The investment costs of electrolysis – A comparison of cost studies from the past 30 years. Int J Hydrogen Energy 2018;43:1209–23. doi:10.1016/j.ijhydene.2017.11.115. [305] Saur G, Ramsden T. Wind Electrolysis: Hydrogen Cost Optimisation. Natl Renew Energy Lab Publ 2011;Task

No. H:14.

[306] Tock L, Maréchal F. H2 processes with CO2 mitigation: Thermo-economic modeling and process integration. Int J Hydrogen Energy 2012;37:11785–95. doi:10.1016/j.ijhydene.2012.05.046.

[307] Loisel R, Baranger L, Chemouri N, Spinu S, Pardo S. Economic evaluation of hybrid off-shore wind power and hydrogen storage system. Int J Hydrogen Energy 2015;40:6727–39. doi:10.1016/j.ijhydene.2015.03.117. [308] Felgenhauer M, Hamacher T. State-of-the-art of commercial electrolyzers and on-site hydrogen generation for

logistic vehicles in South Carolina. Int J Hydrogen Energy 2015;40:2084–90. doi:10.1016/j.ijhydene.2014.12.043.

[309] Martens A, Germain A, Proost S, Palmers G. Development of tools to evaluate the potential of sustainable hydrogen in Belgium. CP/55 - Sci Support Plan a Sustain Dev Policy 2006;Part 1:185.

[310] Gül T, Kypreos S, Turton H, Barreto L. An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM). Energy 2009;34:1423–37.

doi:10.1016/j.energy.2009.04.010.

[311] Krzyzanowski DA, Kypreos S. Supporting hydrogen based transportation : case studies with Global MARKAL Model 2008:207–31. doi:10.1007/s10287-007-0040-5.

[312] Rösler H, Bruggink J, Keppo I. Design of a European sustainable hydrogen model: Model structure and data sources 2011.

[313] Contaldi M, Gracceva F, Mattucci A. Hydrogen perspectives in Italy: Analysis of possible deployment scenarios. Int J Hydrogen Energy 2008;33:1630–42. doi:10.1016/j.ijhydene.2007.12.035.

[314] Endo E. Market penetration analysis of fuel cell vehicles in Japan by using the energy system model MARKAL. Int J Hydrogen Energy 2007;32:1347–54. doi:10.1016/j.ijhydene.2006.10.015.

[315] Nakata T. Energy modeling on cleaner vehicles for reducing CO 2 emissions in Japan 2003;11:389–96. doi:10.1016/S0959-6526(02)00061-6.

[316] Carol Shay, DeCarolis J, Loughlin D, Gage C. EPA U. S. National MARKAL Database. United States Environ Prot Agency 2006.

[317] Yeh S, Loughlin DH, Shay C, Gage C. An integrated assessment of the impacts of hydrogen economy on transportation, energy use, and air emissions. Proc Ieee 2006;94:1838–51.

[318] Working U, No P, Dodds PE, Mcdowall W, Wch L. A review of hydrogen production technologies for energy system models Central House , 14 Upper Woburn Place. UCL Energy Institute, Univ Coll London 2012:1–22. [319] Dodds PE, Staffell I, Hawkes AD, Li F, Grunewald P, McDowall W, et al. Hydrogen and fuel cell

(18)

technologies for heating: A review. Int J Hydrogen Energy 2015;40:2065–83. doi:10.1016/j.ijhydene.2014.11.059.

[320] Yang C, Ogden J. Determining the Lowest-Cost Hydrogen Delivery Mode. Davis: 2009. doi:10.1007/s11116-007-9132-x.

[321] Rosenberg E, Fidje A, Espegren KA, Stiller C, Svensson AM, Møller-Holst S. Market penetration analysis of hydrogen vehicles in Norwegian passenger transport towards 2050. Int J Hydrogen Energy 2010;35:7267–79. doi:10.1016/j.ijhydene.2010.04.153.

[322] Karlsson K, Meibom P. Optimal investment paths for future renewable based energy systems-Using the optimisation model Balmorel. Int J Hydrogen Energy 2008;33:1777–87. doi:10.1016/j.ijhydene.2008.01.031. [323] Contreras A, Guervós E, Posso F. Market penetration analysis of the use of hydrogen in the road transport

sector of the Madrid region, using MARKAL. Int J Hydrogen Energy 2009;34:13–20. doi:10.1016/j.ijhydene.2008.10.031.

[324] Schulz TF, Kypreos S, Barreto L, Wokaun A. Intermediate steps towards the 2000 W society in Switzerland: An energy-economic scenario analysis. Energy Policy 2008;36:1303–17. doi:10.1016/j.enpol.2007.12.006. [325] Kannan R, Hirschberg S. Interplay between electricity and transport sectors - Integrating the Swiss car fleet

and electricity system. Transp Res Part A Policy Pract 2016;94:514–31. doi:10.1016/j.tra.2016.10.007. [326] Tomaschek J, Kober R, Fahl U, Lozynskyy Y. Energy system modelling and GIS to build an Integrated

Climate Protection Concept for Gauteng Province , South Africa 2016;88:445–55. doi:10.1016/j.enpol.2015.10.041.

[327] Welder L. Spatio-Temporal Optimization of a Future Energy System for Power-to-Hydrogen Applications in Germany. Forschungszentrum Julich GmbH 2017;0518–1:35.

[328] Robinius M, Otto A, Heuser P, Welder L, Syranidis K, Ryberg DS, et al. Linking the Power and Transport Sectors — Part 1 : The Principle of Sector Coupling 2017. doi:10.3390/en10070956.

[329] Yang C, Ogden JM. Renewable and low carbon hydrogen for California – Modeling the long term evolution of fuel infrastructure using a quasi-spatial TIMES model. Int J Hydrogen Energy 2013;38:4250–65.

doi:10.1016/j.ijhydene.2013.01.195.

[330] Bahn O, Marcy M, Vaillancourt K, Waaub JP. Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada. Energy Policy 2013;62:593–606. doi:10.1016/j.enpol.2013.07.023. [331] Vaillancourt K, Alcocer Y, Bahn O, Fertel C, Frenette E, Garbouj H, et al. A Canadian 2050 energy outlook:

Analysis with the multi-regional model TIMES-Canada. Appl Energy 2014;132:56–65. doi:10.1016/j.apenergy.2014.06.072.

[332] RITS V, KYPREOS S, WOKAUN A. Evaluating the Diffusion of Fuel-Cell Cars in the China Markets. IATSS Res 2004;28:34–46. doi:10.1016/S0386-1112(14)60090-X.

[333] Zhang H, Chen W, Huang W. TIMES modelling of transport sector in China and USA : Comparisons from a decarbonization perspective q. Appl Energy 2016;162:1505–14. doi:10.1016/j.apenergy.2015.08.124. [334] Sgobbi A, Nijs W, De Miglio R, Chiodi A, Gargiulo M, Thiel C. How far away is hydrogen? Its role in the

medium and long-term decarbonisation of the European energy system. Int J Hydrogen Energy 2016;41:19– 35. doi:10.1016/j.ijhydene.2015.09.004.

[335] Ball M, Wietschel M, Rentz O. Integration of a hydrogen economy into the German energy system: an optimising modelling approach. Int J Hydrogen Energy 2007;32:1355–68.

doi:10.1016/j.ijhydene.2006.10.016.

[336] Guandalini G, Robinius M, Grube T, Campanari S, Stolten D. Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. Int J Hydrogen Energy 2017;42:13389–406.

doi:10.1016/j.ijhydene.2017.03.081.

(19)

electricity. Int J Hydrogen Energy 2017:1–13. doi:10.1016/j.ijhydene.2017.07.121.

[338] Steffen B, Weber C. Efficient storage capacity in power systems with thermal and renewable generation. Energy Econ 2013;36:556–67. doi:10.1016/j.eneco.2012.11.007.

[339] Hedegaard K, Meibom P. Wind power impacts and electricity storage - A time scale perspective. Renew Energy 2012;37:318–24. doi:10.1016/j.renene.2011.06.034.

[340] Lyseng B, Niet T, English J, Keller V, Palmer-Wilson K, Robertson B, et al. System-level power-to-gas energy storage for high penetrations of variable renewables. Int J Hydrogen Energy 2017;43:1966–79. doi:10.1016/j.ijhydene.2017.11.162.

[341] Melaina M, Eichman J. Hydrogen Energy Storage. Natl Renew Energy Lab 2015;TP-5400-62:1–18. doi:10.1016/B978-0-444-62616-5.00009-7.

[342] Levene J, Kroposki B, Sverdrup G. Wind Energy and Production of Hydrogen and Electricity — Opportunities for Renewable Hydrogen. Contract 2006.

[343] Caumon P, Lopez-Botet Zulueta M, Louyrette J, Albou S, Bourasseau C, Mansilla C. Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels. Energy 2015;81:556–62. doi:10.1016/j.energy.2014.12.073.

[344] Bennoua S, Le Duigou A, Quemere MM, Dautremont S. Role of hydrogen in resolving electricity grid issues. Int J Hydrogen Energy 2015;40:7231–45. doi:10.1016/j.ijhydene.2015.03.137.

[345] Gandía LM, Oroz R, Ursúa A, Sanchis P, Diéguez PM. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy and Fuels 2007;21:1699–706. doi:10.1021/ef060491u.

[346] Guandalini G, Campanari S, Romano MC. Comparison of gas turbines and power-to-gas plants for improved wind park energy dispatchability. Proc ASME Turbo Expo 2014 2015;147:117–30.

doi:10.1016/j.apenergy.2015.02.055.

[347] Cany C, Mansilla C, da Costa P, Mathonnière G, Duquesnoy T, Baschwitz A. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix. Energy Policy 2016;95:135– 46. doi:10.1016/j.enpol.2016.04.037.

[348] Ye J, Yuan R. Integrated Natural Gas, Heat, and Power Dispatch Considering Wind Power and Power-to-Gas. Sustainability 2017;9:602. doi:10.3390/su9040602.

[349] Troncoso E, Newborough M. Electrolysers for mitigating wind curtailment and producing “green” merchant hydrogen. Int J Hydrogen Energy 2011;36:120–34. doi:10.1016/j.ijhydene.2010.10.047.

[350] Serna Á, Tadeo F. Offshore hydrogen production from wave energy. Int J Hydrogen Energy 2014;39:1549– 57. doi:10.1016/j.ijhydene.2013.04.113.

[351] Grant D. Short and Long Term Energy Storage for Enhanced Resilience of Electric Infrastructures. IEEE 2014;7:7–12.

[352] Aguado M, Ayerbe E, Azcárate C, Blanco R, Garde R, Mallor F, et al. Economical assessment of a wind-hydrogen energy system using WindHyGen?? software. Int J Hydrogen Energy 2009;34:2845–54. doi:10.1016/j.ijhydene.2008.12.098.

[353] Zolezzi JM, Garay A, Reveco M. Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile. J Power Sources 2010;195:8236–43.

doi:10.1016/j.jpowsour.2009.12.060.

[354] Scamman D, Newborough M. Using surplus nuclear power for hydrogen mobility and power-to-gas in France. Int J Hydrogen Energy 2016;41:10080–9. doi:10.1016/j.ijhydene.2016.04.166.

[355] Barton J, Gammon R. The production of hydrogen fuel from renewable sources and its role in grid operations. J Power Sources 2010;195:8222–35. doi:10.1016/j.jpowsour.2009.12.100.

(20)

[356] DoE, DoT. Hydrogen Posture Plan - An Integrated Research, Development and Demonstration Plan 2006. [357] Le Duigou A, Quéméré M, Marion P, Menanteau P, Decarre S, Sinegre L, et al. Hydrogen pathways in

France : Results of the HyFrance3 Project. Energy Policy J 2013;62:1562–9. doi:10.1016/j.enpol.2013.06.094. [358] Hart D, Howes J, Madden B, Boyd E. Hydrogen and Fuel Cells: Opportunities for Growth 2016.

[359] Ishimoto Y, Kurosawa A, Sasakura M, Sakata K. Significance of CO2 -free hydrogen globally and for Japan using a long-term global energy system analysis. Int J Hydrogen Energy 2017;42:13357–67.

doi:10.1016/j.ijhydene.2017.02.058.

[360] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century : a sustainable development scenario 2003;28:267–84.

[361] Edmonds J, Clarke J, Dooley J, Kim SH, Smith SJ. Stabilization of CO 2 in a B2 world : insights on the roles of carbon capture and disposal , hydrogen , and transportation technologies 2004;26:517–37.

doi:10.1016/j.eneco.2004.04.025.

[362] Ruijven B Van, Vuuren DP Van, Vries B De. The potential role of hydrogen in energy systems with and without climate policy 2007;32:1655–72. doi:10.1016/j.ijhydene.2006.08.036.

[363] Hedenus F, Karlsson S, Azar C, Sprei F. Cost-effective energy carriers for transport – The role of the energy supply system in a carbon-constrained world 2010;35:4638–51. doi:10.1016/j.ijhydene.2010.02.064.

[364] Kyle P, Kim SH. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands 2011;39:3012–24. doi:10.1016/j.enpol.2011.03.016.

[365] Ruijven B Van, Lamarque J, Vuuren DP Van, Kram T, Eerens H. Emission scenarios for a global hydrogen economy and the consequences for global air pollution 2011;21:983–94.

doi:10.1016/j.gloenvcha.2011.03.013.

[366] Harris (Editor) AM, Takeshita (Author) T. Clean Energy : Resources, Production and Developments - Chapter 5 - Future role of electricity and hydrogen in the global energy system under climate change mitigation constraints. New York: Nova Science Publishe; 2011.

[367] Thiel C, Nijs W, Schmidt J, Zyl A Van, Schmid E. The impact of the EU car CO 2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation. Energy Policy 2016;96:153–66. doi:10.1016/j.enpol.2016.05.043.

[368] Simoes S, Nijs W, Ruiz P, Sgobbi A, Radu D, Bolat P, et al. The JRC-EU-TIMES model. Assessing the long-term role of the SET Plan Energy technologies. 2013. doi:10.2790/97596.

[369] Loulou R. Documentation for the TIMES Model 2016:1–151.

[370] Loulou R, Labriet M. ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure. Comput Manag Sci 2008;5:7–40. doi:10.1007/s10287-007-0046-z.

[371] Loulou R, Remme U, Kanudia A, Lehtila A, Goldstein G. Documentation for the TIMES Model Part II. IEA Energy Technol Syst Anal Program 2005:1–78.

[372] Assoumou E, Maïzi N. Carbon value dynamics for France: A key driver to support mitigation pledges at country scale. Energy Policy 2011;39:4325–36. doi:10.1016/j.enpol.2011.04.050.

[373] Lehtilä A, Savolainen I, Syri S. The role of technology development in greenhouse gas emissions reduction: The case of Finland. Energy 2005;30:2738–58. doi:10.1016/j.energy.2004.07.019.

[374] García-Gusano D, Cabal H, Lechón Y. Long-term behaviour of CO2 emissions from cement production in Spain: Scenario analysis using an energy optimisation model. J Clean Prod 2015;99:101–11.

doi:10.1016/j.jclepro.2015.03.027.

[375] Blesl M, Das A, Fahl U, Remme U. Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES. Energy Policy 2007;35:772–85. doi:10.1016/j.enpol.2006.05.013. [376] Fais B, Blesl M, Fahl U, Voß A. Analysing the interaction between emission trading and renewable electricity

Referenties

GERELATEERDE DOCUMENTEN

40-50% of the total mix of the final energy demand is met by electricity followed by liquid fuels that are still used for aviation and marine transport (15-25% of

Another change is the concept that demand needs to be satisfied at all times (or at a very high cost) no longer holds in this future system since the electrolyzer can adjust

Evaluating the possibility of this international trading of hydrogen and its derivatives involves consideration of the trade-off between cost (lower production cost with

51 95CCSVREPtLLHeffGeo Effect of lower geothermal potential in main scenario to evaluate impact on electricity prices, hydrogen prices and potential effect on PtL contribution 52

Another change is the concept that demand needs to be satisfied at all times (or at a very high cost) no longer holds in this future system since the electrolyzer can adjust

Electricity is the preferred energy carrier to satisfy final demand, followed by hydrogen and then hydrocarbons. Methane is a molecule for the transition stage and

However, the hydrogen-storage system which is supplied by either the electricity generated by 10 and 20 wind turbines has been used mostly used to produce and store

Purpose: The goal of this study is to analyse how renewable gasses can create flexibility for future local energy system’s households and buildings, to balance intermittent