• No results found

Micromodel of traumatic brain injury

N/A
N/A
Protected

Academic year: 2021

Share "Micromodel of traumatic brain injury"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Micromodel of traumatic brain injury

Citation for published version (APA):

Cloots, R. J. H., Dommelen, van, J. A. W., Nyberg, T., & Geers, M. G. D. (2008). Micromodel of traumatic brain injury. Poster session presented at Mate Poster Award 2008 : 13th Annual Poster Contest.

Document status and date: Published: 01/01/2008 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Mechanics of Materials

Micromodel of Traumatic Brain Injury

R.J.H. Cloots∗, J.A.W. van Dommelen, T. Nyberg, and M.G.D. Geers

Eindhoven University of Technology, The NetherlandsRoyal Institute of Technology, Stockholm, Sweden

/department of mechanical engineering

Introduction

The development of Traumatic Brain Injury (TBI) involves length scales ranging from the head level (i.e., dm) to the cellular level (i.e., µm), see Fig. 1. The aim of this study is to connect the cellular level to the tissue level.

mechanical load injury

cell body axon

neuron

Fig. 1 The length scales that are involved with TBI. Left: cross-section

of a human head. Right: schematic drawing of a neuron.

Methods

Microstructure

In the cortex (Fig. 2, A), the axons are oriented in a random fashion, whereas all the axons in the corpus callosum (Fig. 2, B) are aligned in one direction. Inside a single axon, the neuro-filaments are aligned with the axonal direction.

B A

axon

Fig. 2 Microstructures of the brain: orientations of the axons (A and B)

and theneurofilaments.

Cell injury

Pathological findings are:1

- Damage is observed at the locations in the axons where it has to deviate for an inclusion, e.g., a blood vessel, a cell body, or a glial cell (cf. Fig. 3).

- Damaged axons are found isolated between intact axons.

Numerical model

The geometry of the model in Fig. 3 represents a critical area for injury based on the pathological findings in literature.

or B A axon inclusion tissue

Fig. 3 Geometry and fiber orientations of the model. A and B refer to

the locations in Fig. 2.

The Cauchy stress tensor of the brain tissue and its constituents consists of an isotropic part and afiber contribution:2

σ= 2 J  C10B˜ d + KJ 2 − 1 J2 I +σf  σf= k1h ˜Efi  κ ˜Bd+ ˜I4(1 − 3κ)(~n~n)d  ˜ Ef = κ( ˜I1− 3) + (1 − 3κ)( ˜I4− 1)

where~n is the fiber vector with unit length and the preferred fiber direction andκ describes the dispersion of the fiber orientations around the preferred fiber direction. The Macaulay bracketsh·i take into account that the fibers contribute during tension only. The mechanical properties are derived from combining mechan-ical and structural properties at the tissue and cellular level ob-tained from literature.

Results

Figure 4 shows preliminary results of a simulation in which a shear strain is applied to three different configurations from lo-cation A (Fig. 2). Stress concentrations are observed in the curved part of the axon.

0 20 40 60 80 100 120 140 160 180 200 s[Pa]

Fig. 4 Equivalent stress fields of three different geometries.

Discussion and Conclusions

- TBI involves injury mechanisms at the cellular level. - First results agree with pathological findings.

References

[1] Povlishock (1992): Ann Emerg Med, 22, 980-986

Referenties

GERELATEERDE DOCUMENTEN

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring

Die veranderingen van normen en waarden begrijpen we niet of nauwelijks, maar die bepalen straks het succes van de heront - worpen veehouderij.. In dat onbegrip schuilt wel