• No results found

The value of electric energy storage including real options: The case of Eemsdelta.

N/A
N/A
Protected

Academic year: 2021

Share "The value of electric energy storage including real options: The case of Eemsdelta."

Copied!
82
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Master  Thesis  

 

 

The  value  of  electric  energy  storage  including  real  

options:  The  case  of  Eemsdelta.  

 

 

 

 

Jan  Veijer,  1713280  

January  2014  

 

 

       

 

 

 

University  of  Groningen  

(2)

Foreword  

 

       This   thesis   is   written   as   part   of   an   internship   at   Energy   Valley   focusing   on   a   project   concerning   the   production   of   hydrogen   from   electricity   through   electrolysis   in   the   Northern   Netherlands.   My   part   of   the   internship   considered   the  valuation  of  hydrogen  production  and  storage.    

 

       I  am  grateful  that  Energy  Valley  provided  me  this  opportunity  to  pursue  a  line   of   research   that   neatly   fits   my   study   profile.   The   field   of   Energy   is   not   (yet)   a   prominent   one   at   our   faculty   and   as   such   finding   a   suitable   thesis   topic   is   not   easy.  I  appreciate  the  learning  opportunities  that  arose  from  this  project  and  the   involvement  in  todays’  hot  topics  in  the  field.  Electricity  storage  is  imminent  and   once  it  is  implemented  it  will  considerably  change  the  electricity  market  as  the   property  of  storability  is  there.  

   

       Together  with  Ilco  Kuipers,  Orkhan  Shukurov  and  Elham  Khalili  I  was  part  of   an  interdisciplinary  team  able  to  focus  on  diverse  aspects  of  the  case.  I  enjoyed   the  cooperation  and  thank  them  for  the  provocative  discussions  and  company.            Further  I  thank  my  supervisors  Catrinus  Jepma  and  Peter  Smid  for  providing   me  with  useful  comments  and  suggestions  on  draft  versions  of  my  thesis.    I  thank   Steven  Brakman  for  taking  on  the  role  as  co-­‐assessor.  I  also  thank  Dewi  Eshuis   for   coordinating   the   team,   and   Koos   Lok   and   Patrick   Cnubben   for   their   useful   comments  on  our  research  during  the  meetings  at  Energy  Valley.  I  further  thank   Fred  Hage  from  Linde  Gasses,  Jeroen  de  Joode  from  ECN  and  Adriaan  de  Bakker   from  GasUnie  for  providing  additional  insights  and  information.  

(3)

Abstract    

The  increasing  penetration  of  renewable  energy  sources  calls  for  energy  storage   techniques.   This   thesis   investigates   the   economic   feasibility   of   electric   energy   time-­‐shift  by  producing  hydrogen  in  the  region  of  Eemsdelta  in  the  Netherlands.   Beside  electric  energy  time-­‐shift,  the  valuation  includes  a  number  of  real  options   recognizing  the  output  flexibility  of  hydrogen,  the  option  to  delay  the  investment,   and   the   option   to   abandon   the   project.   The   results   show   that   electric   energy   time-­‐shift   is   not   feasible   whereas   the   option   to   sell   hydrogen   as   feedstock   considerably   increases   value.   Nevertheless   the   overall   value   including   real   options  is  negative.  

     

Keywords:  Arbitrage,  Energy  storage,  Hydrogen  storage,  Real  option  valuation,  

Monte  Carlo  least  squares.    

(4)

 

Table  of  Contents  

 

Chapter  1  ...  1  

1.1  Introduction  ...  1  

1.2  Problem  Statement  and  Research  Questions  ...  2  

Chapter  2  Literature  review  ...  6  

2.1  Electricity  Prices  and  the  Balancing  Problem  ...  6  

2.2  The  Holy  Grail:  Energy  Storage  ...  8  

2.3  Power  to  Gas:  Hydrogen  energy  storage  ...  10  

Chapter  3  Valuation  Methodology  ...  14  

3.1  Value  ...  14  

3.1.1  Net  Present  Value  ...  14  

3.1.2  Real  Options  Valuation  ...  15  

3.2  Empirical  application  of  Real  Option  Valuation  ...  19  

Chapter  4  Modelling  of  Price  Series  ...  21  

4.1  Stochastic  Processes  ...  21  

4.2  Seasonal  Effects  ...  23  

4.3  Risk  Neutral  Valuation  ...  24  

Chapter  5  Eemsdelta  Case  Study  ...  27  

5.1  State  Variables  ...  27  

5.1.1  Electricity  Price  data  ...  27  

5.1.2  Gas  Prices  ...  33  

5.2  Operations  Model  and  Parameters  ...  36  

5.3  Valuation  ...  44  

5.4  Real  Options  Valuation  ...  46  

5.5  Sensitivity  Analysis  ...  51  

Chapter  6  Discussion  ...  56  

Chapter  7  Conclusion  ...  59  

References  ...  60  

Appendix  A  Storage  Technologies  ...  67  

Appendix  B  Services  and  Benefits  Provided  by  Energy  Storage  ...  69  

Appendix  C  The  Dutch  Energy  Market  ...  72  

(5)

Chapter  1  

1.1  Introduction    

       Renewable   energy   sources   (RES)   are   attracting   attention   nowadays,   clearly   mirrored   in   the   European   20-­‐20-­‐20   target   (European   Commission,   2010),   the   recently   agreed   upon   Dutch   Energy   Accord   and   the   German   Energiewende.   Reasons   for   these   political   decisions   are   energy   dependency,   CO2  emission  

reduction  and  the  depletion  of  fossil  energy  sources  in  the  foreseeable  future.            Following   the   Fukushima   disaster   in   Japan,   Germany   drastically   changed   policies,   proposed   an   Energiewende,   and   heavily   invested   in   wind   power   production  capacity.  Although  wind  power  is  a  clean  alternative  to  conventional   generators  in  terms  of  greenhouse  gas  emissions,  the  intermittent  nature  of  wind   power   hampers   the   implementation   of   it   in   the   electricity   grid.   Because   electricity   storage   is   not   possible   –   or   at   least   not   at   an   efficient   and   sufficient   scale  –  the  supply  of  power  must  exactly  match  the  demand  of  power.  Therefore,   in  case  supply  of  wind  power  exceeds  demand  of  power,  wind  power  production   should  be  curtailed  or  the  power  must  leave  the  grid  in  another  way.  In  Leipzig,   in   Germany,   the   European   Energy   Exchange   (EEX)   allowed   for   negative   price   bids  in  2008  to  ensure  that  excess  energy  supply  could  leave  the  national  grid  in   order  to  balance  the  grid.    

       These  developments  show  that  the  power  system  is  in  need  of  storage  capacity   to   integrate   intermittent   renewable   energy   sources   and   balance   the   system.   Various   solutions   for   implementation   exist.   For   instance,   excess   energy   supply   from  renewable  sources  can  be  stored  centrally  and  used  to  balance  the  system   in  cases  of  undersupply.      Another  possibility  is  to  allow  market  parties  to  store   electricity   and   benefit   from   price   differences.   On   a   large   scale,   with   sufficient   storage  operators  and  proper  competition,  this  will  also  balance  prices.    

(6)

hydrogen  applications  exist:  i)  convert  hydrogen  back  into  electricity  using  fuel   cells,  or  gas  to  power  (GtP),  ii)  sell  hydrogen  to  the  chemical  industry,  iii)  feed  a   small  percentage  volume  of  hydrogen  into  the  gas  grid,  iv)  produce  methane  by   synthesizing   hydrogen   and   carbon   dioxide,   and   v)   sell   hydrogen   to   the   automobile   sector.   The   produced   oxygen   can   also   be   sold   as   a   feedstock   for   industrial  applications.    

       Currently,   a   number   of   storage   options   exist   including   for   instance:   compressed   air   energy   storage,   pumped   hydrogen   storage   (PHS),   batteries,   flywheel  storage,  and  hydrogen  storage.  The  reader  is  referred  to  Hall  and  Bain   (2008),   Beaudin   et   al.   (2010)   and   Díaz-­‐González   et   al.   (2012)   for   a   detailed   discussion   of   available   storage   technologies.   Appendix   A   provides   a   short   description  of  the  technologies.  Although  a  variety  of  technologies  exist,  not  all   technologies  are  feasible  due  to  geographical  or  power  capacity  limitations.  For   example,   PHS   applies   only   in   regions   with   sufficient   elevation   differences,   batteries  are  not  yet  available  at  a  large  scale  and  compressed  air  energy  storage   is  still  in  a  development  phase.  Hydrogen  storage  is  a  promising  technique  as  it  is   versatile   for   its   applications,   geographically   independent   and   applicable   on   a   large  scale.    

       In   this   thesis,   the   proposed   location   of   the   storage   facility   is   the   region   of   Eemsdelta   in   the   northern   part   of   the   Netherlands.   There   is   a   nearby   chemical   industry  and  there  are  salt  caverns  optional  for  hydrogen  storage.  This  study  is   one  of  the  first  attempts  to  value  a  hydrogen  storage  facility  using  real  options   valuation.   Further   it   is   the   first   study   on   electricity   energy   time-­‐shift   in   the   Netherlands.   The   outcomes   of   this   study   reveal   further   comprehension   of   practical   operation   strategies   and   the   conditions   under   which   it   is   optimal   to   invest  in  hydrogen  storage.    

 

1.2  Problem  Statement  and  Research  Questions  

(7)

observed  cross  border  trade  of  power  between  Western  European  countries  is  a   manifestation  of  this  balancing  problem.1    The  occurrence  of  negative  prices  on  

the  wholesale  market  is  another  manifestation  of  this  problem.    

       Technically   the   imbalance   is   a   considerable   problem   that   needs   technical   solutions.   Nonetheless,   a   price   equilibrium   can   solve   the   technical   problem   of   balancing,   but   comes   at   a   cost   for   the   supplier   in   case   of   oversupply   and   consequent   prices   decrease.   Economically   the   imbalance   offers   an   opportunity   for  arbitrage  by  means  of  storage.  Arbitrage  or  time-­‐shift  is  basically  purchasing   electricity   at   one   time   and   selling   it   at   a   later   time.2  Given   that   wind   power  

curtailment  is  unpopular  from  a  European  political  perspective3,  excess  supply  

of  wind  power  tends  to  decrease  the  equilibrium  price  level.  Through  the  merit   order   of   electricity   supply,   the   price   of   electricity   is   settled   at   the   generator   producing  at  the  highest  marginal  costs.  Because  the  marginal  cost  of  producing   wind  is  low,  an  high  supply  of  wind  power  tends  to  reduce  the  equilibrium  price   of  electricity.    

       Although  it  is  theoretically  possible  to  benefit  from  time-­‐shift,  in  practice  the   value  of  arbitrage  is  depending  on  a  number  of  parameters  including:  investment   cost,   operation   and   maintenance   costs,   equipment   life   cycle,   real   world   energy   price  differences  and  others.  The  ultimate  question  is  whether  the  benefits  offset   the  costs.  In  this  case  study  I  investigate  whether  electricity  time-­‐shifting  using   hydrogen  storage  and  production  is  economically  feasible.  The  case  is  the  region   of  Eemsdelta,  which  is  in  the  Northern  province  of  Groningen  in  the  Netherlands.     The  research  question  leading  this  study  is  as  follows:    

 

What   is   the   value   of   electric   energy   storage   using   hydrogen   production   and   storage?  

                                                                                                               

1  The   trade   primarily   occurs   in   Germany   that   imported   7.3%   and   exported   11.1%   of   its  

electricity  consumption  (Destatis,  2013).    

2  From   a   finance   perspective   this   sounds   odd   as   the   assumption   of   many   theories   is   that  

arbitrage  opportunities  do  not  exist.  However,  in  electricity  markets  daily  price  variations  exist,   theoretically  allowing  for  arbitrage  if  storage  is  available.  Arbitrage  and  time-­‐shift  are  alike  and   used  interchangeably  in  this  thesis.  

3  Curtailing  wind  power  production  contradicts  the  implementation  of  the  20-­‐20-­‐20  program  of  

(8)

The  general  research  question  gives  rise  to  four  sub  questions,  each  stipulating   dimensions  that  are  relevant  given  the  nature  of  the  project:  

-­‐ Why  investigate  the  case  of  hydrogen  storage?   -­‐ What  is  the  context  of  Eemsdelta?  

-­‐ What  factors  drive  the  value  of  energy  storage?     -­‐ What  is  the  value  of  alternative  output  options?  

The   first   two   sub   questions   merely   follow   from   the   start   of   this   research   and   serve  as  a  motive  or  description  of  the  context  of  this  research.  The  last  two  sub   questions  deal  with  the  value  drivers  of  hydrogen  production,  storage  and  sale.    

 

1  Why  investigate  the  case  of  Power  to  Gas?  

       There  exist  a  number  of  energy  storage  technologies.  Each  technology  has  its   pros   and   cons   in   technical   and   economic   terms.   The   main   characteristics   that   should   be   considered   are   costs,   efficiency   and   time-­‐scale   applicability   (Hedegaard   and   Meibom,   2011).     Power   to   Gas   is   a   promising   technique   as   it   allows   for   large-­‐scale   storage,   is   not   dependent   on   geography   and   allows   for   output  flexibility.    

 

2  What  is  the  context  of  Eemsdelta?  

       The  case  study  concerns  the  region  of  Eemsdelta  in  the  Northern  Netherland.   In   this   region   a   number   of   chemical   plants   reside   and   there   exist   facilities   for   large-­‐scale  hydrogen  storage  in  salt  caverns.  We  use  energy  price  data  from  the   Netherlands   and   base   the   assumptions   of   the   model   on   the   location   in   the   Eemsdelta.    

 

3  What  factors  drive  the  value  of  energy  storage?      

       The  value  of  storage  basically  depends  on  revenues  and  costs.  We  identify  the   cost  of  investing  in  electrolyzers  and  fuel  cells  and  model  the  revenues  by  their   respective  drivers:  the  prices  of  energy.    

 

4  What  is  the  value  of  alternative  output  options  and  strategic  options?  

(9)

the  gas  infrastructure,  converted  into  methane,  and  can  be  converted  back  into   electricity.   Putting   it   simple,   when   one   output   becomes   unprofitable   we   can   switch   to   another   output   that   is   profitable.   Switching   from   output   along   with   profitability  results  in  managerial  flexibility  that  has  a  certain  value  under  real   options  valuation  (ROV).  For  this  sub  question  I  identify  the  relevant  options  in   this   project   based   on   the   options   established   in   the   ROV   literature   and   subsequently  value  the  recognized  options.      

 

Methodology    

       We   assess   the   economics   of   hydrogen   storage   by   standard   net   present   value   (NPV)   analysis   and   ROV   on   top   of   that   to   capture   the   options   that   exist   in   the   project.  The  point  of  departure  is  a  daily  output  optimization  using  the  prevailing   prices.  

  Data    

       The  data  for  this  research  comes  from  the  Amsterdam  Power  Exchange  (APX)   that  reports  the  prices  of  electricity  on  an  hourly  basis  and  the  prices  of  gas  on  a   daily   basis.   Data   on   future   prices   is   attained   from   the   ICE   ENDEX.   Price   of   hydrogen   and   oxygen   are   obtained   from   industrial   gas   companies.   The   parameters   for   the   technology   applied   are   primarily   derived   from   DNV   KEMA   (2013).    

 

Outline    

       This  thesis  proceeds  as  follows.  Chapter  two  gives  a  literature  review  on  the   relevant   aspects   of   this   study   including:   energy   storage   technologies   and   the   economics   of   energy   storage.   Chapter   three   provides   the   preliminaries   for   the   valuation  methodology.  Chapter  four  presents  the  mathematics  for  modeling  the   state  variables.  Chapter  five  encompasses  the  Eemsdelta  case  study  including  the   estimation   of   the   state   variables,   operations   model,   valuation,   and   sensitivity   analysis.  Chapter  six  discusses  the  outcomes  and  chapter  seven  concludes.  

(10)

Chapter  2  Literature  review  

       The   recent   political   decision-­‐making   that   leads   to   the   subsidized   implementation   of   renewable   energy   sources   has   severe   consequences   for   the   energy   system.   I   shortly   discuss   the   technical   consequences   for   the   electricity   system   –   the   balancing   problem   –   and   elaborate   more   on   the   economic   implications  for  energy  prices  and  the  energy  business.  Subsequently,  I  discuss   the  imminent  solution  of  the  balancing  problem,  which  is  energy  storage.  Then  I   reach   at   the   point   of   departure   for   this   research   and   continue   with   the   methodology  in  the  next  chapter.    

2.1  Electricity  Prices  and  the  Balancing  Problem    

Electricity  Prices    

       The  inherent  characteristic  of  current  deregulated  markets  is  that  the  resulting   prices   tend   to   show   a   volatile   pattern   with   price   spikes   from   time   to   time.   A   number  of  factors  attribute  to  this  observed  volatility.  The  prime  reason  is  that   with   current   technology   it   is   not   possible   to   store   electricity   in   large   volumes.   Therefore  the  supply  of  power  should  exactly  match  the  demand  of  power,  which   can  be  predicted  on  a  daily  basis.  Program  responsible  parties,  subjected  to  a  fine   otherwise,   are   there   to   ensure   that   supply   continuously   meets   demand   of   electricity.4  Consequently,  arbitrage  opportunities  are  limited  in  practice  and  the  

market-­‐clearing  price  is  equal  to  the  marginal  cost  of  production.    

       Further  we  can  distinguish  base  load  and  peak  load  generators.  Conventional   baseload   power   plants   operate   steady   and   meet   the   baseload   power   demand.   When   the   load   increases,   other   generators   start   operating.   Through   the   merit   order,   the   baseload   generators   having   the   lowest   marginal   costs   meet   the   baseload  demand  and  when  demand  increases  other  generators  start  to  operate   in  the  order  of  lowest  marginal  cost  of  generation.  

       Based  on  this  supply  side  and  the  demand  pattern  of  electricity  we  can  elicit  a   number   of   electricity   price   characteristics   (Knittel   and   Roberts,   2005).   These   characteristics  serve  as  theoretical  rationale  for  the  modeling  of  price  series.    

                                                                                                               

(11)

       The   first   characteristic   is   the   intraday   variation   in   prices.   As   such,   we   can   differentiate   between   base   load   periods   –   or   off-­‐peak   periods   –   and   peak   load   periods.  In  base  load  periods  demand  is  relatively  low  and  base  load  generators   can  meet  the  demand.  Therefore,  in  a  base  load  period  generated  volume  is  low   and   prices   are   also   low.   In   peak   load   periods   demand   is   higher   and   more   generators   need   to   be   operated,   generating   power   at   a   higher   marginal   costs   along  the  demand  curve.  In  such  case,  it  might  happen  that  demand  peaks  in  a   given   hour   giving   rise   to   –   sometimes   extremely   –   high   prices.   Concerning   the   timing  of  baseload  and  peak  load,  in  general  base  load  occurs  at  night  and  peak   load  occurs  during  the  day.5    

       The   second   characteristic   is   the   seasonal   variation   in   demand.   Seasons   influence   the   demand   for   electricity   that   is   needed   to   heat   or   cool   accommodations.   For   instance,   on   warm   summer   days   electricity   demand   increases   due   to   increased   use   of   air-­‐conditioning   to   cool   accommodations.   Winter   days   show   a   lower   demand   pattern   as   gas   or   coal   meets   the   heating   needs.6    

       The  third  characteristic  is  the  limited  distribution  and  transmission  capacity.   The  generated  electricity  travels  through  the  distribution  and  transmission  lines   to   the   destination   of   demand.   The   distribution   lines   have   a   maximum   capacity   which  is  the  maximum  of  MW  they  can  carry  in  an  hour.  Once  the  transmission   exceeds  the  capacity,  marginal  costs  of  transmission  becomes  infinite.    

     These  characteristics  cause  an  inelastic  supply  of  electricity  in  the  short  term,   from  hour  to  hour.  Therefore  in  some  cases  small  shifts  in  demand  or  supply  of   electricity  can  have  a  vast  impact  on  the  price  charged  per  MWh.  This  is  the  main   reason   why   huge   spikes   occur   in   the   price   pattern   and   the   overall   pattern   is   highly  volatile  (Knittel  and  Roberts,  2005).  

 

Energy  System  

       The   increasing   share   of   renewable   energy   sources   in   the   energy   mix   has   its   impact  on  the  energy  system.  Due  to  the  intermittency  of  wind  power  generation   there  are  large  fluctuations  in  wind  power  supply  depending  on  the  availability                                                                                                                  

(12)

of   wind   on   the   one   hand   and   the   required   power   on   the   other   hand.   Further,   Sensuß   et   al.   (2008)   observe   that   the   increase   in   renewable   energy   sources,   supported   by   feed-­‐in   tariffs,   decreases   the   average   electricity   price   thereby   benefiting  the  demand  side  at  the  cost  of  the  supply  side.  

       Technically   there   is   a   balancing   problem,   but   economically   the   price   equilibrium   can   solve   the   balancing   problem   even   if   this   leads   to   negative   wholesale   prices.   Currently,   price   drops   are   primarily   observed   in   the   German   wholesale   market   and   in   the   cross   border   trade   between   Germany   and   its   neighboring   countries   (Muche,   2009).   However,   negative   prices   are   clearly   not   the  producers’  interest  while  price  spikes  are  not  beneficial  to  the  consumers.      

2.2  The  Holy  Grail:  Energy  Storage    

       Although   the   property   of   storability   is   disregarded   in   the   valuation   of   electricity   derivatives   and   investments,   the   body   of   research   on   storage   technologies  grows.  In  particular  due  to  the  increasing  penetration  of  renewable   energy   sources   as   photovoltaic   and   wind   power,   the   necessity   for   storage   increases   in   order   to   accommodate   for   the   inherent   intermittent   supply   of   renewable  energy  sources.    

         Although   a   comprehensive   review   of   available   technologies   is   beyond   the   scope  of  this  thesis,  I  briefly  discuss  the  main  storage  technologies  appearing  in   the   literature   in   appendix   A.7  The   technologies   discussed   are   Compressed   Air  

Energy   Storage   (CAES),   Pumped   Hydro   Storage   (PHS),   Flywheel,   batteries,   and   Power  to  Gas  (PtG).  For  a  further  review  the  reader  is  referred  to  Hall  and  Bain   (2008),  Beaudin  et  al.  (2010),  and  Díaz-­‐Gonzales  et  al.  (2012).  

 

Economics  of  Energy  Storage  

       Research   on   energy   storage   can   broadly   categorized   on   a   regional   economic   system  level  as  well  as  on  a  plant  level.  Research  on  the  regional  level  is  mainly   concerned   with   the   integration   of   large   amounts   of   renewable   energy   sources   into  the  system  and  the  effect  on  system  flexibility  (Denholm  and  Hand,  2011)   and  the  need  for  large-­‐scale  storage  (Connolly  et  al.,  2012;  Diaf  et  al.,  2008).  Plant                                                                                                                  

7  Many  of  the  available  technologies  are  still  in  an  R&D  stage.  The  technologies  discussed  are  also  

(13)

level  research  considers  the  economics  of  a  single  plant  with  respect  to  storage.   Various   storage   technologies   have   been   assessed,   i.e.   compressed   air   energy   storage   (CAES)   (Madlener   and   Latz,   2013),   pumped   hydrogen   storage   (PHS)   (Muche,  2009),  batteries  (Walawalkar,  2007),  flywheel  (Walawalkar,  2007),  and   hydrogen  storage  (Floch  et  al.,  2007).    

       The   technologies   mentioned   in   the   previous   section   have   different   characteristics   in   terms   of   economics   and   technology.   For   the   economic   assessment,  the  most  important  characteristics  are:  power  capacity  measured  in   megawatt  (MW),  energy  capacity  measured  in  megawatt  hour  (MWh),  and  round   trip  efficiency.  Power  capacity  is  the  maximum  capacity  that  a  storage  device  can   realize   in   an   hour.   Energy   capacity   is   the   energy   that   is   actually   discharged   by   the   storage   device   in   a   given   time   period.   Round   trip   efficiency   can   be   characterized  as  the  share  of  charged  electricity  that  is  discharged  into  the  grid   after  storage.    

       Using  these  characteristics  along  with  financial  data  the  feasibility  of  storage   options  can  be  assessed.  Benefits  of  storage  arise  from  a  number  of  dimensions   and   applications.   Eyer   and   Garth   (2010)   estimate   a   broad   range   of   benefits   –   including   the   integration   of   renewable   energy   sources,   load   shifting,   and   ancillary   services8  -­‐   for   small   and   large-­‐scale   electricity   storage   applications.  

Appendix  B  shows  the  main  benefits  involved  including  a  short  description.            The   main   benefits   studied   in   the   literature   are   electric   energy   time-­‐shift   (Muche,   2009;   Sioshansi   et   al.,   2009),   avoidance   of   wind   curtailment   (Loisel   et   al.,  2010)  and,  regulation  services  (Walawalkar  et  al.,  2007).  Further,  a  growing   body   of   research   considers   the   combination   of   storage   with   an   existing   power   plant  (Taljan  et  al.,  2008)  or  wind  park  (Fertig  and  Apt,  2011).  

       Loisel  et  al.  (2010)  investigate  the  market  potential  of  CAES  and  PHS  in  France   and  Germany  focusing  on  the  benefits  of  wind  curtailment,  price  arbitrage  and   secondary  and  tertiary  services.  They  found  that  storage  is  only  viable  when  it   receives   a   number   of   compensations   for   multiple   services   provided.   They   also   stipulate  that  the  accrued  benefits  from  the  services  provided  should  be  aligned   because  the  investor  captures  not  all  benefits.    

                                                                                                               

8  Following  Eyer  and  Garth  (2010):  ‘ancillary  services  are  necessary  services  that  must  be  

(14)

       Walawalkar   et   al.   (2007)   studied   the   feasibility   of   storage   by   sodium   sulfur   batteries   and   flywheel   storage   in   the   New   York   state   electricity   market.   They   show   that   there   is   a   strong   case   for   electricity   storage   in   that   market   for   applications  such  as  energy  arbitrage  and  regulation  services.  Another  important   benefit  that  occurs  is  the  possibility  to  defer  investments  in  transmission  system   upgrades.    

       Although   different   techniques   have   different   applications   and   benefits,   research   shows   that   no   single   technology   consistently   outperforms   other   technologies  on  the  various  benefits  in  the  system  (Beaudin  et  al.,  2010).  Further   there   are   a   number   of   external   factors   such   as   mineral   availability   and   geographical  characteristics  that  might  limit  the  applicability  of  certain  storage   devices.  

2.3  Power  to  Gas:  Hydrogen  energy  storage  

       Hydrogen   energy   storage   is   an   electrochemical   storage   process   in   which,   by   means   of   electrolysis,   electricity   is   used   to   convert   water   into   hydrogen   and   oxygen.   The   distinct   benefit   of   hydrogen   storage   is   the   ability   to   decouple   production   and   storage   of   hydrogen.   This   makes   it   possible   to   store   large   amounts  of  energy,  which  is  virtually  impossible  with  most  of  the  other  storage   techniques.  

               The   basic   process   of   storage   is   that   electricity   is   used   to   split   water   into   oxygen  and  hydrogen,  given  by  the  chemical  equation  

 

2  𝐻!𝑂   → 2  𝐻!+  𝑂!  ,                                                                                                  (2.1)  

 

which   implies   that,   through   electrolysis,   two   molecules   of   water  𝐻!𝑂  convert   into  two  molecules  of  hydrogen  H2  and  one  molecule  of  oxygen  O2.  

(15)

industry,   iii)   infeed   in   the   gas   infrastructure,   iv)   methanation   through   reacting   hydrogen  and  carbon  dioxide,  and  v)  delivery  of  hydrogen  fuel  to  the  automobile   sector.    

       Conversion   to   electricity   is   the   reverse   of   PtG;   gas   to   power   (GtP),   a   process   that   consequently   releases   electricity   through   the   conversion   of   hydrogen   and   oxygen  into  water.  These  two  processes,  combined  with  the  possibility  to  store   hydrogen,  are  the  essence  of  electricity  storage  through  hydrogen.    

       Beside  the  basic  option  of  electricity  conversion,  other  hydrogen  applications   exist.   One   option   is   to   sell   hydrogen   to   the   chemical   industry.   Hydrogen   is   valuable   feedstock   for   the   chemical   industry.   For   example,   the   petrochemical   industry   uses   hydrogen   for   crude   oil   refinements.   Other   applications   in   the   chemical  industry  are  water  peroxide  and  methanol  production.  Another  option   is  to  feed  hydrogen  into  the  gas  infrastructure  in  small  proportion.  In  the  Dutch   gas   grid   the   allowed   volume   equals   0.02   vol%   (Donders   et   al.,   2010),   with   an   expected   increase   to   0.5   vol%   in   2021   (EL&I,   2012).   The   fourth   option   is   to   convert   hydrogen   into   methane   by   reacting   hydrogen   and   carbon   dioxide9.  

Further  the  automobile  sector  increasingly  uses  hydrogen  as  fuel.      

Natural  Gas  Prices    

       The  natural  gas  markets  are  also  deregulated  in  the  1980s  and  1990s.  Former   monopolists   do   not   exist   any   longer   and   the   market   settles   prices.   Where   formerly  the  natural  gas  price  was  coupled  to  oil  price,  in  recent  years  gas  prices   decoupled  from  oil  prices  in  several  gas  markets  (Erdős,  2012).  

       As  for  electricity,  seasonality  applies  to  gas  prices.  Gas  is  often  used  for  heating   in   the   winter   periods   and   in   the   summer,   as   gas   is   often   used   as   a   mean   to   generate   electricity,   it   is   implicitly   used   for   the   electricity   that   is   used   for   air-­‐ conditioning.   Therefore,   the   demand   for   natural   gas   depends   on   the   weather,   which   in   turn   is   related   to   seasons.   In   general   gas   prices   are   less   volatile   than   electricity  prices.  

 

 

                                                                                                               

9  In  the  Netherlands  explored  natural  gas  consists  approximately  80%  of  methane.  Therefore,  

(16)

 

Hydrogen  Prices    

       In  contrast  to  natural  gas  and  electricity  there  does  not  exist  an  exchange  for   hydrogen.  Hydrogen  is  often  produced  by  companies  for  their  own  use  or  sold   via   contracts   with   gas   producing   companies.   The   hydrogen   price   depends   on   factors   such   as   the   form   in   which   hydrogen   is   delivered   and   the   transport   distance   from   supplier   to   demander.   Further,   the   prices   are   not   publicly   available  for  reasons  of  competition.      

 

Research  on  Hydrogen  Storage  

       Previous  research  on  hydrogen  storage  mainly  concentrates  on  the  connection   of  a  hydrogen  storage  facility  with  an  existing  power  plant  (Taljan  et  al.,  2008;   Floch  et  al.,  2007)  or  wind  farm  (Olateju  et  al,  2014).    

       Taljan   et   al.   (2008)   show   that   hydrogen   production   storage   is   feasible   for   existent  mixed  wind-­‐nuclear  power  plant,  using  the  options  of  direct  hydrogen   sale  and  utilization  of  residual  heat  and  oxygen.  They  conclude  that  the  price  of   fuel  cells  does  not  justify  the  generation  of  electricity.    

       Floch   et   al.   (2007)   study   the   opportunities   of   producing   hydrogen   via   electrolysis  during  off-­‐peak  periods.  They  conclude  that  in  the  French  wholesale   electricity  market,  with  a  substantial  capacity  of  nuclear  power  plants,  hydrogen   production  is  not  feasible  with  a  percentage  of  use  between  30%  and  50%.  The   price  of  hydrogen  does  not  cover  the  electrolyzer  investments  cost.    

       Olateju  et  al.  (2014)  study  the  production  of  hydrogen  using  a  large-­‐scale  wind   farm   for   serving   the   oil   sands   bitumen   upgrading   industry   in   Western   Canada.   They   optimize   the   plant   configuration   and   conclude   that   hydrogen   production   from   wind   energy   is   not   competing   with   conventional   hydrogen   production   based  on  fossil  fuels.      

 

Case  Study  

(17)

application  in  a  certain  context.  Therefore,  as  a  case  study  we  choose  the  region   of  Eemsdelta  in  the  Northern  Netherlands  where  a  number  of  companies  reside   including   chemical   companies,   conventional   electricity   producers   and   wind   parks.   Furthermore,   in   the   Northern   Netherlands   salt   caverns   allow   for   large-­‐ scale  hydrogen  storage.  The  combination  of  a  nearby  chemical  plant  and  large-­‐ scale  storage  facilities  is  a  unique  combination.  The  chemical  industry  uses  about   150  million  Nm3  of  hydrogen  per  year  and  therefore  the  Eemsdelta  region  suits  

the  case  study.  This  study  focuses  primarily  on  the  storage  benefit  of  electricity   time-­‐shift   and   secondary   on   the   allocation   of   alternative   output   options   for   hydrogen.    

       Although   other   benefits   such   as   ancillary   services   might   apply,   I   choose   for   electricity  time-­‐shift  as  research  subject.  Electricity  time  shift  or  price  arbitrage   is  the  main  benefit  studied  in  previous  research  and  easily  identifiable.  Further,   electricity  time-­‐shift  is  a  predominant  benefit  due  to  the  existent  price  difference   between  off-­‐peak  and  peak  hours.    

(18)

Chapter  3  Valuation  Methodology  

3.1  Value    

       In  any  valuation  methodology  we  apply,  the  main  factor  is  the  expected  cash   flow   that   is   discounted   to   the   present,   accounting   for   the   time   value   of   money   and   the   required   –   risk   adjusted   –   return.   The   workhorse   model   in   basic   valuation  exercises  is  the  discounted  cash  flow  calculation  culminating  in  the  net   present  value  (NPV)  after  subtracting  investment  costs.    

       However,   in   case   of   energy   storage,   predicting   cash   flows   can   be   a   difficult   task,  as  these  series  tend  to  follow  a  stochastic  price  pattern,  induced  by  factors   such   as   weather   and   technological   developments   but   also   (geo)   political   developments.10  Real   options   valuation   (ROV)   captures   these   uncertainties   by  

accommodating  the  NPV.  As  such,  ROV  does  not  resolve  the  inherent  uncertainty   but  at  least  accounts  for  it  by  assigning  a  value.      

       Therefore,  in  this  study  we  basically  apply  an  NPV  analysis  with  on  top  of  that   ROV  to  capture  the  project’s  inherent  flexibility.11  In  this  chapter  I  briefly  discuss  

the  preliminaries  of  the  NPV  to  continue  with  a  comprehensive  review  of  ROV.      

3.1.1  Net  Present  Value  

       The  NPV  is  a  standardized  algorithm  and  widely  applied  in  empirical  work  due   to   its   consistency,   inclusion   of   the   time   value   of   money   and   corporate   capital   structure  and,  not  unimportant,  its  ease  to  implement  (Mun,  2006).  

       Basically   the   NPV   is   nothing   more   and   nothing   less   then   the   difference   between  the  required  investment  cost  and  the  present  value  of  the  expected  free   cash  flows  (FCF)  over  the  project  lifetime.  The  NPV  is  given  by:  

  𝑁𝑃𝑉 =   !"!! (!!!)!− 𝐼 ! !!! ,         (3.1)                                                                                                                    

10  Developments  in  Germany  clearly  show  that  political  decisions  w.r.t.  renewable  energy  

sources  influence  electricity  price  patterns.    

11  In  fact  both  traditional  NPV  and  ROV  are  based  on  net  present  value.  In  this  thesis  NPV  refers  

(19)

where  FCF  represents  the  free  cash  flow  from  operations,  r  is  the  discount  rate   and  I  is  the  required  investment.    

       Notwithstanding  the  advantages,  the  NPV  faces  severe  shortcomings.  The  NPV   assume  a  deterministic  outcome  regarding  the  project  payoff  whereas  in  reality   the   payoff   is   uncertain   or   stochastic.   The   arrival   of   new   information   cannot   be   captured  in  NPV  whereas  ROV  does  capture  new  information  and  as  such  offers   managerial  flexibility  to  alter  the  course  of  action.12    

       The  characteristics  of  the  hydrogen  storage  process,  such  as  the  inbuilt  output   flexibility   and   the   inherent   stochastic   nature   of   the   price   series   underlying   the   output  options,  challenges  the  standard  discounted  cash  flow  (DCF)  analysis  for   valuation   purposes.   Therefore   in   this   case,   a   real   options   valuation   is   a   useful   addition  on  top  of  the  DCF  analysis.    

3.1.2  Real  Options  Valuation      

       Modern   option   valuation   departs   from   the   seminal   papers   by   Black   and   Scholes   (1973)   and   Merton   (1971,   1973).   The   Black-­‐Scholes-­‐Merton   (BSM)   model  has  become  a  workhorse  model  for  option  valuation  and  is  considered  as   the   standard   in   many   finance   textbooks.13  Later   Cox   et   al.   (1979)   develop   the  

simple  binominal-­‐option  pricing  based  on  the  parameters  of  the  BSM  model.            Myers  (1977)  has  been  one  of  the  first  to  characterize  the  investment  as  a  call   option  on  the  value  of  the  project.  Analogous  to  the  notation  of  American  plain   vanilla   call   options   we   can   define   parameters   for   the   option   on   the   project.   Exercising  the  option  is  equivalent  to  the  decision  to  invest.  Table  1  provides  the   comparison  between  plain  vanilla  options  and  options  on  the  project.      

       The  underlying  asset  is  the  project  value  and  through  paying  the  investment   sum   the   option   on   the   value   of   the   project   is   exercised.   The   exercise   price   is   equal   to   the   investment   cost   and   when   the   investment   cost   is   higher   than   the   value  of  the  project  it  is  not  optimal  to  exercise  the  real  option,  i.e.  the  option  to   invest   is   out-­‐of-­‐the-­‐money.   The   length   of   the   project   is   the   time   to   maturity.   Option   valuation   is   based   on   risk   neutral   valuation   using   replicating   portfolios   and   as   such   the   risk   free   rate   is   used   as   a   discount   rate.   The   riskiness   of   the                                                                                                                  

12  A  full  comparison  of  NPV  and  ROV  is  beyond  the  scope  of  this  text  but  the  reader  may  consult  

Mun  (2006)  or  Kodukula  and  Papudesu  (2006)  for  a  comprehensive  comparison  and  discussion.  

(20)

business,   the   volatility   of   cash   flows,   is   captured   by   the   volatility   parameter  𝜎.   Dividend  yield  decreases  the  stock  value  and  similarly  cash  flows  decrease  the   value   of   the   project   as   long   as   the   option   remains   unexercised.   Delaying   the   investment  implies  sacrificing  cash  flows  that  subsequently  reduce  the  value  of   the  project.    

 

Table  1  

Similarity  between  financial  options  and  real  options  

Financial  Options   Real  Options   Symbol  

Stock  price   Value  of  the  project     S  

Exercise  price   Investment  cost   K  

Time  to  maturity   Length  of  the  project   T  

Risk  free  rate   Discount  rate     r  

Stock  Volatility   Riskiness  of  the  business   σ  

Dividend  yield   Cash  Flows   q  

     

       Trigeorgis   (1996)   provides   an   in-­‐depth   discussion   of   ROV   and   categorizes  

different  options:  

-­‐ Option  to  defer  regards  the  timing  of  the  investment.  

-­‐ Time-­‐to-­‐built   option   allows   for   stages   of   investments,   i.e.   after   a   stage   there  exists  an  option  to  abandon  or  proceed.    

-­‐ Option   to   alter   operating   scale   implies   expansion   or   contraction   of   capacity.  

-­‐ Option  to  abandon  is  an  option  to  abandon  operations.  The  value  depends   on  the  salvage  value  of  the  equipment.  

-­‐ Option   to   switch   provides   an   option   to   switch   the   output   or   input   in   operations.  

-­‐ Growth  option  implies  that  optional  investments  can  lead  to  future  growth   options.        

-­‐ Multiple   interacting   option   arises   when   several   options   exists   that   interact.   In   that   case   the   sum   of   the   parts   might   differ   from   the   combination  of  options.    

(21)

 

Solving  Real  Options    

       In   practice   the   calculation   of   option   values   basically   proceeds   through   analytical   solutions   or   numerical   solutions.     The   method   based   on   analytical   solutions   proceeds   by   solving   the   differential   equations   of   the   underlying   stochastic   processes.   The   BSM   model   is   a   famous   example   of   a   closed   form   solution.   For   analytical   solutions   we   can   discern   solutions   based   on   dynamic   programming   and   contingent   claims   analysis   (Dixit   and   Pindyck,   1994).   Contingent  claims,  as  underlying  the  BSM  model,  uses  a  replicating  portfolio  and   is  based  on  risk  neutral  valuation.  Risk  neutral  cash  flows  are  discounted  by  the   risk  neutral  discount  rate.  Dynamic  programming  uses  the  unadjusted  cash  flows   and  discounts  the  cash  flows  at  a  constant  risk-­‐adjusted  discount  rate,  which  is   the   main   disadvantage   of   the   method   since   it   is   questionable   whether   risk   is   constant   through   time.   Dynamic   programming   is   preferable   over   contingent   claims   when   it   is   impossible   to   project   risk-­‐adjusted   expected   cash   flows,   provided  that  a  proper  discount  rate  does  exist.    

       Nonetheless,   analytical   solutions   rarely   exist   in   reality,   especially   when   the   underlying  process  has  more  stochastic  components  or  follows  a  path  dependent   process.   In   such   case   numerical   solutions   apply.   Numerical   solutions   are   approached  via  a  number  of  available  techniques  including14:  

-­‐ lattice  or  tree  methods,     -­‐ finite  differences,  and   -­‐ Monte  Carlo  simulation.  

       Numerous   applications   of   lattices   for   option   pricing   exist.   The   best   known   is   the   binomial   tree   that   includes   an   upward   and   downward   movement   at   each   node.  In  the  limit  the  binomial  tree  solution  equals  the  closed  form  solution  in   case  of  specific  choices  for  the  upward  and  downward  probabilities  (Cox  et  al.,   1979).    

       Finite   differences   methods   value   a   derivative   by   solving   the   applicable   differential  equation.  In  particular,  the  differential  equation  is  transformed  into  a  

                                                                                                               

14  The  methods  mentioned  are  by  no  account  exhaustive.  For  a  further  explanation  the  reader  is  

(22)

set   of   difference   equations.   Subsequently   the   difference   equations   are   solved   iteratively.    

       Monte  Carlo  simulation  basically  simulates  a  number  of  possible  price  paths  of   the  underlying  asset.  Then  at  each  time  period  the  payoff  is  calculated.  The  mean   of  the  calculated  payoffs  for  all  simulated  price  paths  is  the  expected  payoff.  The   discounted   payoffs   provide   an   estimate   for   the   derivative.   Monte   Carlo   simulation  can  only  be  applied  to  European  options.  For  American  options  one   should   apply   Monte   Carlo   Least   Squares   (MCLS)   simulation   (Longstaff   and   Schwartz,  2001)  in  order  to  choose  between  the  exercise  value  and  continuation   value.    

       The   choice   of   the   method   depends   on   the   nature   of   the   underlying   process.   When  the  process  is  mean  reverting  or  constant  one  should  use  trinomial  trees   or  finite  differences  Hull  (2012).  In  case  of  more  than  three  underlying  stochastic   processes  MCLS  is  applicable  (Longstaff  and  Schwartz,  2001).    

 

Monte  Carlo  Least  Squares  

       In  order  to  value  an  American  style  option  it  is  necessary  to  choose  between   continuation   and   exercising   at   each   exercise   point   before   maturity.   When   the   exercise  value  exceeds  the  continuation  value  it  is  optimal  to  exercise,  otherwise   it   is   optimal   to   wait.   MCLS   is   an   algorithm   that   facilitates   this   choice   through   finding  the  stopping  times  that  maximize  the  value  of  the  option  (Longstaff  and   Schwartz,  2002).  Table  2  summarizes  the  steps  of  the  algorithm.15  

       The  point  of  departure  is  the  simulation  space  X  with  n  trials  and  i  paths.  The   algorithm   starts   on   the   last   date   and   works   backwards   to   the   origin   at   i=1.   At   each   point   the   algorithm   indicates   whether   the   value   of   continuation   is   higher   than  the  value  of  exercising.  In  fact,  the  continuation  value  is  estimated  based  on   the   conditional   expectation   of   the   payoff   that   results   from   keeping   the   option   alive.              

       We   calculate   the   conditional   expectation   by   regressing   the   ex   post   realized   payoffs   from   continuation   on   functions   of   the   value   of   the   state   variables.   The   fitted   value   of   the   regression   offers   an   estimate   of   the   conditional   expectation   function.  At  each  step  the  exercise  strategy  is  optimized,  resulting  in  one  optimal                                                                                                                  

Referenties

GERELATEERDE DOCUMENTEN

Bij lijnkontakt zal de globale traktiekoëfficiënt (dus over het hele kontakt- oppervlak) bepaald worden door glijdende wrijving. Deze komt voornamelijk tot stand in

Deze zone omvat alle paalsporen met (licht)grijze gevlekte vulling in werkputten 1 en 6 tot en met 16, evenals de veelvuldig aangetroffen smallere greppels die zich in deze

These methods can disentangle mixed tissue voxels in MRSI data acquired from brain tumors, and thus extract representative, tissue-specific spectra (called spectral sources), as

Het doel van de workshop is (1) het inzichtelijk maken van de uitgangspunten van epidemiologie en gezondheidsbevordering en (2) een discussie op gang brengen waarin epidemiologen

Empirical research has been carried out with customers (organizations that have implemented server virtualization) and partners (server virtualization software

Policy decisions could fundamentally alter the structure of carbon markets; this could change the price of emissions allowances or fossil fuels, leading to uncertain returns on

That is, if the manager of the low quality project receives a positive wage, this implies that the manager of the high quality project needs to receive a higher wage in order to

So, in this research, the cases were selected in the first place due to similarities (e.g.. 21 cooperative as organizational model, renewable energy - solar) which are