• No results found

Metabolomics in the natural products field: a gateway to novel antibiotics

N/A
N/A
Protected

Academic year: 2022

Share "Metabolomics in the natural products field: a gateway to novel antibiotics"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

TECHNOLOGIES

DRUG DISCOVERY

TODAY

Metabolomics in the natural products field – a gateway to novel antibiotics

Changsheng Wu

1,2

, Hye Kyong Kim

1

, Gilles P. van Wezel

2

, Young Hae Choi

1,

*

1NaturalProductsLaboratory,InstituteofBiology,LeidenUniversity,Sylviusweg72,2333BELeiden,TheNetherlands

2MolecularBiotechnology,InstituteofBiology,LeidenUniversity,Sylviusweg72,2333BELeiden,TheNetherlands

Metabolomicsisahighthroughputanalyticaltechnique usedtogloballymeasurelowmolecularweightmetab- olites,allowingsimultaneousmetaboliccomparisonof differentbiologicalsamplesandthushighlightingdiffer- entiallyproducedcompoundsaspotentialbiomarkers.

Althoughmicrobesarerenownedasprolificsourcesof antibiotics,thetraditionalapproachfornewanti-infec- tivesdiscoveryistime-consumingandlabor-intensive.In thisreview,theuseofNMR-orMS-basedmetabolomics isproposedasanefficientapproachtofindantimicro- bialsinmicrobialsingle-orco-cultures.

Sectioneditor:

PascaldeTullio– UniversityofLie`ge,Lie`ge,Belgium.

Introduction

Thenumberofmulti-drugresistantbacteriaisrisingalarm- ingly and the treatment of infections caused by these microbes is extremely challenging [1]. Actinomycetes and filamentous fungiarethemajorsourceofthenaturalanti- biotics. Thetraditional methodsused fordrugdiscovery is time-andlabor-intensiveandtherediscoveryratesbecame increasingly demotivating [2,3]. Yet, genome sequencing revealedmanypreviouslyunsuspectedbiosyntheticclusters fornatural productsin long-studiedmodelstrains [4–6]. A major challenge lies in finding the appropriate chemical triggersorecologicalcuestoelicittheproductionofcryptic antibiotics[7,8].

Metabolomics isahigh throughputanalyticaltechnique usedtogloballymeasurelowmolecularweightmetabolitesin

biologicalsamples.Combinationofchemicalprofilesbuiltby LC–HRMS or NMR with multivariate data analysis (MDA) allowsscientiststocompareanddetectdifferentialmetabo- lites in active/inactive biological samples, narrowing the searchtopotentialbiomarkersandavoidingchemicalredun- dancy in an early stage. In this paper, we have reviewed examplesoftheuseofmetabolomicsasaneffectivetoolto increasetheefficiencyofantibioticdiscoveryfrommicrobial sources.

Metabolomics-guideddiscoveryofnewantibiotics Metabolomicsmethodology,eitherNMR-orMS-based,isan idealtoolforthechemicalscreeningandsubsequentdetailed comparisonofthesecondarymetabolomesofasetofbacte- rialfermentations,rapidlyrevealingthedifferences/biomark- ersamongexperimentalgroups.Thenextquestionishowto handlethecompoundsresponsiblefortheseparationinthe scoreplotofsupervisedand/orunsupervisedMDA.Because NMRandMStechniquescangivestructuralinformationof compoundsinanearlystage,therearethreepossibilitiesfor theidentificationofvaluablebiomarkers.Firstly,itispossible tocomparethestructuralinformationprovidedbyNMR(1H NMRchemicalshifts)and/orhigh-resolutionmassspectrom- etry(molecularformulaandisotopicpattern)withliterature and/ordatabases.Ifknownstructures,discriminatorscanbe identified without the need for time-consuming isolation process and thus metabolomics serves as an approach for Editors-in-Chief

KelvinLam–SimplexPharmaAdvisors,Inc.,Boston,MA,USA HenkTimmerman–VrijeUniversiteit,TheNetherlands

Metabolomics in Medicinal Chemistry

*Correspondingauthor:Y.H.Choi(y.choi@chem.leidenuniv.nl)

(2)

dereplication; alternatively, new compounds may possess known structural core but unknown functional groups –

‘knownunknowns’.Inthiscase,theirstructuralcharacteri- zationcanbedonewithinthecontextofthecrudebiological matrix with the aid of various 2D NMR techniques as reviewedin[9,10]. Besidesthis,thefragmentationpatterns observedintheMS/MSspectrainconjunctionwithmolecu- lar networking evaluation can enable the identification of previouslyunknowncloserelativeswithinthesamechemical familiesthroughspectralcorrelations[11,12].Finally,ifthe compounds have unprecedented nuclei, chromatographic isolationisinevitableforfulldenovoNMRstructuralcharac- terization, butatthesametimearethemostpromisingin termsoftrulynewantimicrobialsdiscovery.Forthisstep,the discriminatingsignalsgeneratedinthecomparativeanalysis (MDA)couldbeusedasprobestotrackthetargetofinterest (‘starantibiotic’)throughoutthechromatographicisolation, whichisreferredtoasNMR-[13,14]and/orMS-guided[15,16]

separationmethod.Thiscanpreventlosingtrackofthetarget thatis unfortunately quite commonin conventional TLC- guidedisolation.Furthermore,somedegreeofstructureiden- tification, albeit incomplete, can be achieved beforehand withthe2DNMRmeasurementsbecausetheyallowapartial prediction ofthenovel compounds. Thiscan also provide information onchemicalcharacteristics andhelpoptimize isolationprocedure,whichmakessensesforminimizingthe lossofcompounds(e.g.rulingouttheuseofbaresilicagelfor polyphenolicpolyketidesduetotheirpracticallyirreversible adsorptionasinthecaseofclostrubin[17]).Takentogether, thestrategyofmetabolomics-guideddiscoveryofnewanti- bioticsisillustratedinScheme1.

Theuseofmetabolomicsasamethodologyforde-replica- tionofknownmicrobialsecondarymetabolitesandprioriti- zation of promising candidates is exemplified in the following cases. The LC–MSmetabolome profiling of nine Myxococcusspeciesallowedtherapididentificationofknown myxobacterial metabolitesand thesubsequentcompound- basedprincipal componentanalysis (PCA) wassuccessfully highlightedtheputativenovelcompounddeterminedbyits exactmassandisotopicpattern[18].TimBugniandcollea- gues[19] usedUHPLC–HRMS-based metabolomics todere- plicate knownstructures andpredict novel compounds in microbialcrudeextract.TheythenappliedMS-guidedsepa- rationapproachtotargetthemoleculeshighlightedbymeta- bolomics analysis, and successfully discovered a series of antibiotics with novel skeletons, such as microtermolides [20], bottromycin D [21] and more recently forazoline A [22].ForazolineA(Fig.1)isapotentpolyketidewithahighly unusual skeleton, exhibiting in vivo antifungal efficacy against Candida albicans (MIC 16mg/mL) – comparable to thatofamphotericinBinamousemodelofC.albicansandno obviouscytotoxicity [22].Furthermore,they utilizedaLC–

MS–SPE–NMRhyphenationsystemthatintegratesMS-guided

separation and de novo NMR structure elucidation [23] to facilitate rapid structure elucidation of rare phenyl-acetyl- desferrioxaminesindicatedbymetabolomicsanalysis[19].In caseoflowlyabundantcompounds,targetedLC–MSmicro- isolationstrategy reportedby Jean-Luc Wolfenderandcol- leagues [24,25] for thepurification ofnovel metabolites is necessaryforfullstructuredeterminationbymeansofmicro- flow NMR analysis that just requires micrograms of com- pounds[26,27].

Metabolomicsappliedtomicrobialcocultivation Conventionally, scientists isolate pure strains of microbes collectedfromvariousbiological samples,suchas soil,ma- rine sediments,symbionts ofplants orsponges. Fermenta- tionsarethenscaleduptoaccumulatesufficientmaterialfor the next-stage systematical or bioassay-guided isolation.

However, the isolation of novel antibiotics from microbes bymeansofthiswell-establishedroutineisdifficult.Oneof the reasons is many putative gene clusters remain silent understandardlaboratorygrowthconditionswhenmicrobes arecultivatedsingly.Thus,itmightbefruitfultoconsidernot only single microorganism but more complex biological systems consisting of different organisms. This novel ap- proach in which microbes are grown together (co-culture orconfrontationexperiments)hasreceivedincreasinginter- est foritspotential toproduce newleads, andto decipher specificbiosyntheticpathwaysmainlyrelatedtodefense[28].

Thefocusshouldbesetonantagonisticinteractionsamong thedifferentmicrobes(fungiand/orbacteria)coexistingin thesamedefined environment, because they use chemical warfareconsistinggenerallyofsmallorganiccompoundsfor defense.Insomecases,clearlong-distancegrowthinhibition canbeobservedduringpairwise co-cultureonsolidmedia.

Thisphenomenaisalsoexpectedtobelinkedtotheproduc- tionofantimicrobialcompoundsasadefensemechanismby oneofthetwoco-inhabitingmicroorganisms[25,29].Cocul- turing the fungal endophyte Fusarium tricinctum with the bacterium Bacillus subtilis168 trpC2 onsolid rice medium resultedinupto78timestheproductionofenniatinsA1and B1[30]. Microbialcocultivation isalso effectiveforthein- ductionofnewmoleculeswithantimicrobialeffect,asveri- fiedby thediscoveryofthenew antibioticspestalone[31], emericellamides A and B [32], O-methylmellein [33]. It is quite probably that one microbe produce molecules that could be precursors for biotransformation into other final productsbyitspartner,whichcanincreasethechemodiver- sityofinducedmetabolitesandthusthechanceoffinding novelantibiotic[34].

Consideringthegreatpotentialofcocultivationasafertile sourcefornewantibiotics,itisnecessarytodevelopeffective methodsfor theirdetection andidentificationof induced metabolites. Metabolomics is particularly appropriate for this purpose as indicated in [29]. Untargeted generic

(3)

Microbial extracts (liquid or solid culture)

Chemical profiling (NMR, LC-MS)

Antimicrobial assessment (agar diffusion assay)

Bacillus subtilis and/or Escherichia coli as indicator

Chemometrics analysis (PLS, OPLS, etc)

Targets isolation (silica gel, Sephadex, C18-HPLC, etc)

Structure elucidation (2D NMR, HRMS, X-ray diffraction)

Antimicrobial test (96 well plate, MIC)

New antibiotics

Multi-drug resistant pathogens Validation

Design rational isolation procedure for wanted targets 1. Dereplicate known 2. Indicate structural novelty

Prioritized NMR or MS signals as probe;

Drug Discovery Today: Technologies Scheme1. Metabolomics-guideddiscoveryofnewantibiotics.

O

O O

O

S N H

O HN

O O

bottromycin D forazoline A

N N

NH

H N H

HN

O O

O S

N S

CI O

O O

O O

HN N

O OH

N

Drug Discovery Today: Technologies Figure1. Structurallynovelantibioticsdiscoveredthroughtheframeworkofmetabolomicsmethodology.

(4)

fingerprintingusing1HNMR,butmorebyhyphenatedMS methods(consideredbysometobemorepowerfulbecauseof theirsensitivity) isaimed to capture metabolites compre- hensively.Thecomparisonofthemetabolomeofthecocul- ture with that of the individual microorganisms can highlighttheinducedmetabolitespresentincoculturebut absent in monocultures, because these de novo-produced moleculeshavehighchancesofbeingnewcompounds(or evennewskeletons)withantimicrobialactivity.However,it isimportanttobearinmindthattheconventionalchemo- metricmethods,suchasPCAand(O)PLS-DA,arenotabso- lutelyidealforcoculturemetabolomicsstudies,becausethey mightnoteffectivelyfiltertheup-regulatedmetabolitesin monoculturesandthusnotalwayshighlightthecoculture- inducedmetabolites specifically. A noveldata mining ap- proach referred to as projected orthogonalized chemical encountermonitoring(POChEMon)wasrecentlydeveloped andhasprovedtobemoreappropriateforthispurpose[28].

Thedetectionofantibioticsusingthemicrobialcocultiva- tionstrategymaybefurtherrevolutionizedbytheapplication ofadvanced analyticaltechnologies introduced into meta- bolicprofiling,oneofwhichisimaging massspectrometry (IMS)[35–37].Thistechniquecanprovidedistinctchemical/

structural data on the spatial distributions of metabolites directly on theagar Petri dishes avoidingcomplex sample pre-treatment[38–41].Forthis,theantagonisticinteraction betweentestedmicroorganismsisfavored.Aftertheantago- nistic phenotypes are observed, theinhibition regions are subjectedtoIMSscreeningtovisualizethemetabolites.The microbialmetaboliteswithaspatialdistributionthatissuper- imposed with the zone of inhibition are considered to be potentialanti-infectivecandidates.Theexactmassandiso- topepatternprovidedbyhighresolutioninstrumentssuchas MALDI-TOF-IMS,incombinationwithMS/MSnetworkanal- ysiscanhelpestimatethestructuralnoveltyoftheinduced metabolites[11,42].Thistechniquewasappliedinindividual co-culturesofthepathogensStaphylococcusaureusandStaph- ylococcus epidermidis with Streptomyces roseosporus NRRL 15998. Using matrix-assisted laser desorption ionization (MALDI)imagingmassspectrometry,itwaspossibletoob- serve three molecules (m/z 863, 877 and 891) that were responsiblefortheinhibitionofbothStaphylococcuspatho- gens.Thesestress-inducedionsweresubsequentlyidentified as arylomycins, a class of broad-spectrum antibiotics that targettypeIsignalpeptidases[43].

Metabolomicsreveals naturallyoccurringmicrobial interactions

Throughout thousands of years of evolution and survival adaptation, microorganisms have established all types of closerelationships,includingsymbiosis,parasitism,compe- titionandantagonism.Revealingtheunderlyingmolecular mechanismsinvolvedinthese‘invisible’interactionswould

presumably contribute to the discovery of new chemical entities with antibiotic activity, because virulence factors intheirnatural contextsmight turnout tohavebeneficial applicationsinhumananti-infectivetherapy[44].Particular- ly,decipheringthemicrobialpathogenesis ofsomeecolog- ically relevant systems, such as associations with plants, mushrooms,insects andsponges [45], opens new perspec- tivesfortheexplorationfornewantimicrobials,asexempli- fiedbythediscoveryofthenovelantibiotics,rhizoxin[46]

anddesoxyhavannahine[47](Fig.2).Averypromisingbut yetquiteunexploredreservoirfornewantibioticsdiscoveryis theinsect-associatedmicrobiome.AsreviewedbyHelgeBode [48], insects could be true pioneers as providers of anti- infectivesfor human beings. Paenilamicins (Fig. 2),a class ofnovelhybridnonribosomalpeptide/polyketideantibiotics, werediscoveredinthebeepathogen,Paenibacilluslarvae.Bee larvalco-infectionassaysrevealedthatthepaenilamicinsare employedbyP.larvae tofightecologicalnichecompetitors andarenotdirectlyinvolvedinmortalityofthebeelarvae [49].

Forcultivablesymbionts,secondarymetabolitesproduced inanatural contextareprobably differentfromthosein a standard laboratorysetting, because thegrowth condition considerably influences microbial secondary metabolism.

Manycrypticbiosyntheticgeneclustersencodingmolecules, remain silent in the laboratory setting due to the lack of appropriateenvironmentalstimuli,anditisextremelychal- lengingtoactivatetheirexpressioninthelaboratory. More so, many symbiotic microbes are not even amenable to artificialcultivation.Inotherwords,antibioticsthatwould occurduetoinsitumicrobialinteractionsareimpossibletobe discovered in a traditional culture-dependent approach.

Therefore,weneedtomimicthenaturalsettingtoactivate

‘cryptic’antibiotics.Theadvancesinmetabolomicsprovide an opportunity to make what appeared to be impossible possible,using forexampletheabovedescribed IMS meta- bolomeprofilingtechniques.ThemotileGram-negativebac- terium Janthinobacterium agaricidamnosum causes soft rot diseaseintheculturedbuttonmushroom Agaricusbisporus.

Driven by the hypothesis that the pathobiology of this mushroompathogenwaspotentiallycorrelatedtoantifungal search, MALDI-IMS was used for in situ profiling of the secondarymetabolitesharboredinthemushroom-associated ecologicalsystemofA.bisporus vs.J. agaricidamnosum.The visualization of a unique ion of m/z 1181 [M+H]+ in the diseased region of themushroom prompted the effortsto determinethestructureofthiscompoundanditwasidenti- fiedasanunprecedentedcycliclipopeptideproduct,jagaricin (Fig.2).Jagaricinturnedouttobeafungicidethatishighly activeagainsthumanpathogenicfungiincludingC.albicans, AspergillusfumigatusandAspergillusterreusatsubmicromolar concentrations.Notably,jagaricinproductionby thebacte- rium J.agaricidamnosumtendedtooccurexclusively inthe

(5)

mushroom(A.bisporus)andwasotherwiseimpairedundera varietyoflaboratorycultivationconditions[50].Thisexam- pleservesasastrongsupportforourargumentsthatunder- standing naturally occuring microbial pathogenesis is beneficialforantibioticsearch;andthatIMS-basedmetabo- lomicscanbeappliedtorevealthecrypticantibioticsthatare onlyproducedinaparticularnaturalenvironment.

Revealingcrypticnew antibioticsinenvironmentalsam- plesmight benefit fromsinglecell metabolomics, a newly developedtoolformetabolicanalysisatcellularandsubcel- lularlevel(recently reviewedin[51–53]).Ourfocusisonits potential use in unveiling the metabolic communication

betweensymbiontsandhosts.Based onthemorphological phenotypes or other properties such as fluorescence, the selectivemetabolicanalysisofcertainmicrobialcellsinen- vironmentalsamplescouldbeusedtoviewtheuniquesec- ondarymetabolitesgeneratedbymicroorganismsduringthe naturally occuring interspecies interactions. For instance, halogeninsituhybridization-secondaryionmassspectrosco- py(HISH-SIMS)hasallowedthesimultaneousidentification and quantitation of metabolic activities of environmental microbialassemblageatsingle-celllevelwithouttheneedfor traditional microbial separation and laboratory cultivation [54]. Single-cell mass spectrometry (SCMS) is a rapidly N

O

HO O

O O

O O O O

O

O O

O O

O O

O

rhizoxin

Paenilamicin B1

jagaricin

desoxyhavannahine

NH OH OH

OH OH

NH NH

HN

HN

NH HN

NH

N

O

O O OH O

O O O

O O

O O

OH H

HO N

HN H

N NH

O O OH OH

O O

O O

O

NH N

H

HN H

N N H2N H

H2N NH2

NH2 OCH3

N

H N

H

HN H

N

HN

NH2

O OH

Drug Discovery Today: Technologies Figure2. Structuresofseveralnovelantibioticsdiscoveredthroughtheinvestigationofmicrobialinteractions.

(6)

growing fieldin analyticalchemistry,andthere areseveral examplesofitsapplicabilitytodifferentcells[51].Inthiscase, thepossibilityofaccuratemassmeasurementandacquiring structuralinformationasprovidedbytandemMS,facilitate theidentificationofnumerousmetabolitesfromasinglecell.

Conclusion

Metabolomicsmethodsprovideaneffectivestrategyforthe discoveryofnewantibioticsfrommicrobialsources.Allowing thecomprehensive chemometric comparison ofsecondary metabolomes, it makes finding the proverbial needle in a haystack more realistic. The ability to measure the entire microbial metabolomes during symbiotic interactions can becrucialfortheexploitationoftheseuntappedreservoirs ofanti-infectives[55].Correlatinggeneexpressionprofilesto fluctuationsinthemetabolomeallowsrapididentificationof the gene cluster for the (known or unknown) bioactive molecule[56].Thus,metabolomicscomplements(meta-)ge- nomics methodology in accessing previously inaccessible naturalproducts[57],andhastheaddedadvantageofdelving intothebiosyntheticpotentialofunculturablemicroorgan- isms when applied to in situ analysis of live, undamaged biologicalsamples.

References

1. RiceLB.Federalfundingforthestudyofantimicrobialresistancein nosocomialpathogens:noESKAPE.JInfectDis2008;197:1079–81.

2. CooperMA,ShlaesD.Fixtheantibioticspipeline.Nature2011;472:32.

3. PayneDJ,GwynnMN,HolmesDJ,PomplianoDL.Drugsforbadbugs:

confrontingthechallengesofantibacterialdiscovery.NatRevDrugDiscov 2007;6:29–40.

4. BentleySD,etal.Completegenomesequenceofthemodelactinomycete Streptomyces.Nature2002;3:141–7.

5. Cruz-MoralesP,etal.ThegenomesequenceofStreptomyceslividans66 revealsanoveltRNA-dependentpeptidebiosyntheticsystemwithina metal-relatedgenomicisland.GenomeBiolEvol2013;5:1165–75.

6. VandenBergMA,etal.Genomesequencingandanalysisofthefilamentous fungusPenicilliumchrysogenum.NatBiotechnol2008;26:1161–8.

7. YoonV,NodwellJR.Activatingsecondarymetabolismwithstressand chemicals.JIndMicrobiolBiotechnol2014;41:415–24.

8. ZhuH,etal.Triggersandcuesthatactivateantibioticproductionby actinomycetes.JIndMicrobiolBiotechnol2014;41:371–86.

9. KimHK,etal.NMR-basedplantmetabolomics:wheredowestand,where dowego?TrendsBiotechnol2011;29:267–75.

10.VerpoorteR,etal.NMR-basedmetabolomicsatworkinphytochemistry.

PhytochemRev2007;6:3–14.

11.WatrousJ,etal.Massspectralmolecularnetworkingoflivingmicrobial colonies.ProcNatlAcadSciUSA2012;109:1743–52.Reason:

Metabolomicscombinedwithmolecularnetworkingwereusedtodirectly visualizethesecondarymetabolitesproducedbymicroorganismsonPetri disheswithoutcomplexsamplepre-treatment.

12.SidebottomAM,etal.Integratedmetabolomicsapproachfacilitates discoveryofanunpredictednaturalproductsuitefromStreptomyces coelicolorM145.ACSChemBiol2013;8:2009–16.

13.GrkovicT,etal.NMRfingerprintsofthedrug-likenatural-productspace identifyiotrochotazineA:achemicalprobetostudyParkinson’sdisease.

AngewChemIntEdEngl2014;53:6070–4.

14.WilliamsDE,etal.PadanamidesAandB,highlymodifiedlinear tetrapeptidesproducedinculturebyaStreptomycessp.isolatedfroma marinesediment.OrgLett2011;13:3936–9.

15.GengC-A,etal.LC–MSguidedisolationof()-sweriledugeninA,apairof enantiomericlactones,fromSwertialeducii.OrgLett2014;16:370–3.

16.KerstenRD,etal.Amassspectrometry-guidedgenomeminingapproach fornaturalproductpeptidogenomics.NatChemBiol2011;7:794–802.

17.PidotS,etal.Discoveryofclostrubin,anexceptionalpolyphenolic polyketideantibioticfromastrictlyanaerobicbacterium.AngewChemInt EdEngl2014;53:7856–9.

18.KrugD,etal.Efficientminingofmyxobacterialmetaboliteprofilesenabled byliquidchromatography-electrosprayionisation-time-of-flightmass spectrometryandcompound-basedprincipalcomponentanalysis.Anal ChimActa2008;624:97–106.

19.HouY,etal.Microbialstrainprioritizationusingmetabolomicstoolsfor thediscoveryofnaturalproducts.AnalChem2012;84:4277–83.

20.CarrG,etal.MicrotermolidesAandBfromtermite-associatedStreptomyces sp.andstructuralrevisionofvinylamycin.OrgLett2012;14:2822–5.

21.HouY,etal.StructureandbiosynthesisoftheantibioticbottromycinD.

OrgLett2012;14:5050–3.

22.WycheTP,etal.ForazolineA:marine-derivedpolyketidewithantifungal invivoefficacy.AngewChemIntEd2014;53:11583–86.Reason:MS-based metabolomicswasappliedinstrainprioritizationfromamicrobial collection.MS-guidedseparationoftargetsignalsindicatedby metabolomicsanalysisenablednewantibioticsdiscoverywithnovel skeletonandpronouncedantimicrobialactivity.

23.SegerC,etal.LC–DAD–MS/SPE–NMRhyphenation.Atoolfortheanalysis ofpharmaceuticallyusedplantextracts:identificationofisobariciridoid glycosideregioisomersfromHarpagophytumprocumbens.AnalChem 2005;77:878–85.

24.GlauserG,etal.Optimizedliquidchromatography-massspectrometry approachfortheisolationofminorstressbiomarkersinplantextractsand theiridentificationbycapillarynuclearmagneticresonance.JChromatogr A2008;1180:90–8.

25.BertrandS,etal.Denovoproductionofmetabolitesbyfungalco-cultureof TrichophytonrubrumandBionectriaochroleuca.JNatProd2013;76:1157–65.

26.WolfenderJ-L,etal.PhytochemistryinthemicrogramdomainaLC–

NMRperspective.MagnResonChem2005;43:697–709.

27.SchroederFC,GronquistM.ExtendingthescopeofNMRspectroscopy withmicrocoilprobes.AngewChemIntEdEngl2006;45:7122–31.

28.BertrandS,etal.Metaboliteinductionviamicroorganismco-culture:a potentialwaytoenhancechemicaldiversityfordrugdiscovery.Biotechnol Adv2014;32:1180–204.

29.BertrandS,etal.Detectionofmetaboliteinductioninfungalco-cultures onsolidmediabyhigh-throughputdifferentialultra-highpressureliquid chromatography-time-of-flightmassspectrometryfingerprinting.J ChromatogrA2013;1292:219–28.

30.OlaA,ThomyD.Inducingsecondarymetaboliteproductionbythe endophyticfungusFusariumtricinctumthroughcoculturewithBacillus subtilis.JNatProd2013;76:2094–9.

31.CuetoM,etal.Pestalone,anewantibioticproducedbyamarinefungusin responsetobacterialchallenge.JNatProd2001;64:1444–6.

32.OhD-C,etal.InducedproductionofemericellamidesAandBfromthe marine-derivedfungusEmericellasp.incompetingco-culture.JNatProd 2007;70:515–20.

33.GlauserG,etal.Differentialanalysisofmycoalexinsinconfrontation zonesofgrapevinefungalpathogensbyultrahighpressureliquid chromatography/time-of-flightmassspectrometryandcapillarynuclear magneticresonance.JAgricFoodChem2009;57:1127–34.

34.ScherlachK,etal.Symbioticcooperationinthebiosynthesisofa phytotoxin.AngewChem2012;124:9753–6.Reason:Secondary metabolitewasjointlybiosynthesizedbytwopartnersinan

endosymbioticrelationship.Thebacterialendosymbiontproducesthe rhizoxinmacrolidebackbone,whichistailoredbyanoxygenaseprovided bythefungalhost.Thereferredcooperativebiosynthesisisprobably widespreadinnature.

35.WatrousJD,DorresteinPC.Imagingmassspectrometryinmicrobiology.

NatRevMicrobiol2011;9:683–94.

36.KrugD,Mu¨llerR.Secondarymetabolomics:theimpactofmass spectrometry-basedapproachesonthediscoveryandcharacterizationof microbialnaturalproducts.NatProdRep2014;31:768–83.

37.ShihC-J,etal.Bringingmicrobialinteractionstolightusingimagingmass spectrometry.NatProdRep2014;31:739–55.

(7)

38.HsuC-C,etal.Real-timemetabolomicsonlivingmicroorganismsusing ambientelectrosprayionizationflow-probe.AnalChem2013;85:7014–8.

39.WatrousJ,etal.Capturingbacterialmetabolicexchangeusingthinfilm desorptionelectrosprayionization-imagingmassspectrometry.Anal Chem2010;82:1598–600.

40.LiuW-T,etal.Imagingmassspectrometryofintraspeciesmetabolic exchangerevealedthecannibalisticfactorsofBacillussubtilis.ProcNatl AcadSciUSA2010;107:16286–90.

41.HoeBC,etal.Enzymaticresistancetothelipopeptidesurfactinas identifiedthroughimagingmassspectrometryofbacterialcompetition.

ProcNatlAcadSciUSA2012;109:13082–87.

42.TraxlerMF,etal.Interspeciesinteractionsstimulatediversificationofthe Streptomycescoelicolorsecretedmetabolome.MBio2013;4:1–12.

43.LiuW,etal.Imagingmassspectrometryandgenomeminingviashort sequencetaggingidentifiedtheanti-infectiveagentarylomycinin Streptomycesroseosporus.JAmChemSoc2011;133:18010–13.

44.SchmidtEW.Tradingmoleculesandtrackingtargetsinsymbiotic interactions.NatChemBiol2008;4:466–73.

45.PidotSJ,etal.Antibioticsfromneglectedbacterialsources.IntJMed Microbiol2014;304:14–22.

46.Partida-MartinezLP,HertweckC.Pathogenicfungusharbours endosymbioticbacteriafortoxinproduction.Nature2005;437:884–8.

47.KelmanD,etal.Chemicalwarfareinthesea:thesearchforantibioticsfrom RedSeacoralsandsponges.PureApplChem2009;81:1113–21.

48.BodeHB.Insects:truepioneersinanti-infectivetherapyandwhatwecan learnfromthem.AngewChemIntEdEngl2009;48:6394–6.

49.Mu¨llerS,etal.Paenilamicin:structureandbiosynthesisofahybrid nonribosomalpeptide/polyketideantibioticfromthebeepathogen Paenibacilluslarvae.AngewChemIntEdEngl2014;53:1–6.

50.GraupnerK,etal.Imagingmassspectrometryandgenomemining revealhighlyantifungalvirulencefactorofmushroomsoftrot pathogen.AngewChemIntEdEngl2012;51:13173–77.Reason:This researchservesasagoodexamplethatIMS-basedmetabolomicsreveals thecrypticantibioticsthatareonlyproducedinaparticularnatural environment.

51.RubakhinSS,etal.Progresstowardsinglecellmetabolomics.CurrOpin Biotechnol2013;24:95–104.

52.TrouillonR,etal.Chemicalanalysisofsinglecells.AnalChem 2013;85:522–42.

53.ZenobiR.Single-cellmetabolomics:analyticalandbiologicalperspectives.

Science2013;342:1201–11.Reason:Perspectivesrelatedtosingle-cell metabolomicsarewellreviewedinthispaper.

54.MusatN,etal.Asingle-cellviewontheecophysiologyofanaerobic phototrophicbacteria.ProcNatlAcadSciUSA2008;105:17861–66.

55.Peric´-ConchaN,LongPF.Miningthemicrobialmetabolome:anew frontierfornaturalproductleaddiscovery.DrugDiscoveryToday 2003;8:1078–84.

56.GubbensJ,etal.Naturalproductproteomining,aquantitativeproteomics platform,allowsrapiddiscoveryofbiosyntheticgeneclustersfordifferent classesofnaturalproducts.ChemBiol2014;21:707–18.

57.BradySF,etal.Metagenomicapproachestonaturalproductsfromfree- livingandsymbioticorganisms.NatProdRep2009;26:1488–503.

Referenties

GERELATEERDE DOCUMENTEN

stamineus fractions obtained from a simple extraction method were applied to TLC and then further subjected to OPLS to study the correlation between chemical profile

In another study, 20 g/kg diet of green tea extract added into a high-fat diet did not affect the body weight gain and food intake of experimental rats but prevented the

mulberry stem bark, temulawak, and temukunci have high binding activity for both receptors; piment and turmeric showed high inhibition of TNF-α accumulation,

In order to investigate whether the bioactivities exhibited by Orthosiphon stamineus could be justified by the presence of compounds with this type of activity, a

Most NP drug discovery work follows „the silver bullet‟ approach as is usual in present Western medicine, in which the search is focused on single compounds with a particular

Khatib and Yuliana et al., Identification of possible compounds possessing adenosine A1 receptor binding activity in the leaves of Orthosiphon stamineus using TLC and multivariate

Based on this, we hypothized that by either making different extracts from the same plant or fractionation of an extract and measuring the activities of all extracts

Identification of compounds was performed by cross-checking 1 H NMR, J-res, COSY and HMBC NMR data from flavonoids previously reported to be active to the adenosine A1