• No results found

Reversible, Spatial and Temporal Control over Protein Activity Using Light

N/A
N/A
Protected

Academic year: 2021

Share "Reversible, Spatial and Temporal Control over Protein Activity Using Light"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Reversible, Spatial and Temporal Control over Protein Activity Using Light

Hoorens, Mark W. H.; Szymanski, Wiktor

Published in:

Trends in Biochemical Sciences

DOI:

10.1016/j.tibs.2018.05.004

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Hoorens, M. W. H., & Szymanski, W. (2018). Reversible, Spatial and Temporal Control over Protein Activity

Using Light. Trends in Biochemical Sciences, 43(8), 567-575. https://doi.org/10.1016/j.tibs.2018.05.004

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Opinion

Reversible,

Spatial

and

Temporal

Control

over

Protein

Activity

Using

Light

Mark

W.H.

Hoorens

1,2

and

Wiktor

Szymanski

1,2,

*

Inbiomedicalsciences,thefunctionofaproteinofinterestisinvestigatedby alteringitsnetactivityandassessingtheconsequencesforthecellor organ-ism.Tochangetheactivityofaprotein,awidevarietyofchemicalandgenetic toolshavebeendeveloped.Thedrawbackofmostofthesetoolsisthattheydo not allow for reversible, spatial and temporal control. Here, we describe selecteddevelopments in photopharmacology thataim at establishing such controloverproteinactivitythroughbioactivemoleculeswithphoto-controlled potency.Wealsodiscusswhysuchcontrolisdesiredandwhatchallengesstill needtobeovercomeforphotopharmacologytoreachitsmaturityasa chemi-calbiologyresearchtool.

TheLimitationsoftheTraditionalToolstoStudyProteinFunction

Cells,tissues, and organisms are highly complex systems in which several thousands of proteinsinteractandplayaroleinawidevarietyofprocessessuchasmetabolism,signaling, homeostasis,andcelldivision.Tounderstandthefunctionofaproteinofinterestinbothhealth anddisease,researchersalteritsnetactivityandsubsequentlyobservetheresultingchangesin thebiological system[1–3].Tochangethe proteinactivity, awide varietyof chemical and genetictoolshavebeendeveloped.

Bioactivemoleculesarewidelyusedaschemicaltoolstomodifytheactivityofnativeproteins. Themainadvantageisthattheirsolutionscanconvenientlybeaddedtoacellcultureorinjected intoamodelorganism.Formanyproteins,bioactivemoleculeshavebeendevelopedthatcan activateorinhibittheactivity viaeithercompetitiveorallostericmechanisms.Currently,the Bindingdatabase(www.bindingdb.org)reportsover600000smallmoleculestargetingover 7000proteintargets.However,drawbacksofusingbioactivemoleculesincludethelackof reversibilityandlimitedspatialcontrol:thesolutionsareaddedsystemically,andthereisno easywaytoremovethebioactivemoleculeinacontrolledmanner,onceithasbeenadded. Genetictoolsforproteinactivitymodulation,besidescontrollingtheactivityofnativeproteins, canalsochangetheconcentrationoftheproteinofinterestateitherthetranscriptionlevelorthe translationlevelby(singleordouble)knockout,knockdown,andtheuseofsiRNA[4].However, itisknownformanyproteinsthatknockoutsinmicearelethal[5],whichonlydemonstratesthat theseproteinsarecrucial,withoutelucidatingtheirrole.Decreasingtheactivity canalsobe achievedbymaking specificmutations inthe activesite, bya knockin,which resultsina catalyticallyinactiveproteinthatstillmaintainsitsbindingproperties[6].Increasingthe con-centrationofproteinscanbeachievedthroughoverexpression,resultinginhighernetactivityof theproteinofinterest.Genetictools,whilewidelyapplied,areelaborateinuse.Yet,therapidly growingfieldofclusteredregularlyinterspacedshortpalindromicrepeats/CRISPR-associated protein9(CRISPR/Cas9)mightalloweasiermodification[7].Moreadvancedgenetic techni-ques are inducible expression systems in which addition of a chemical inducer such as

Highlights

Usinglightinmedicineisincreasingly popular,duetothefactthatlight is orthogonal with biological systems and can be regulated and dosed easily.

Inthe past5 years,manybioactive moleculeswithphoto-controlled activ-ityhavebeendeveloped,andthefield of photopharmacology is rapidly expanding.

The chemical toolbox of photo-switches is growing, with a special interest in red-light-operated photo-switches,sinceredandnear-IRlight showsthehighesttissuepenetration.

1

UniversityMedicalCenterGroningen, DepartmentofRadiology,University ofGroningen,Hanzeplein1,9713GZ Groningen,TheNetherlands 2

CentreforSystemsChemistry, StratinghInstituteforChemistry, FacultyofScienceandEngineering, UniversityofGroningen,Nijenborgh7, 9747AGGroningen,TheNetherlands

*Correspondence:

(3)

doxycyclinechangestheactivityofapromotorandtherebytheexpression[8],whichcanbe returnedtoitsoriginallevelbywashingoutofthechemicalinducer.Inconclusion,genetictools aremainlyirreversible,thatis,theconcentrationofknocked-outproteincannotbeconveniently restoredto the naturallevel at a given time. Furthermore,the spatial resolution ofprotein expression modification is limited, meaning that, for example, a protein is knocked out systemicallyandnotinanorgan-ortissue-specificmanner.

WhyIsReversible,SpatialandTemporal Controlover ProteinActivity Important?

Currently, the toolbox to alter protein activity relies mainly on irreversible techniques, as discussedpreviously.Yet,reversibilitycanbeofimportanceinelucidatingthe functionofa proteinofinterest.Fromanexperimentalpointofview,reversibilityservesasastrongcontrol, sincethesamesystem(cell,tissue,organism)canbestudiedoverashortperiodoftimewith andwithoutthealteredproteinactivity.Also,reversibilityofmodulationminimizesthe irrevers-ibledownstreameffects,whichareobservedforeveryalterationofabiologicalsystem and dependonthedurationofalteration.Awell-establishedexampleisdrugaddictioninwhichlong dosageofanactivecompoundresultsinadifferentresponsethantheinitialresponse[9,10]. Anothertypicalexampleishowtumorcellscanacquiredrugresistancebyactivatingalternative pathwaystobypasstheinhibitedpathway[11,12].Compensationeffectsandtheirinfluenceon theobservedbiologicaloutcomecouldbebetterunderstoodwhenthedurationoftheinhibition oractivation is precisely controlled. Altogether, reversibility and temporal control over the modulationwillcontributetoabetterunderstandingofproteinfunctioninabiologicalsystem withminimalizedcompensationeffect.

Alteration ofprotein activityby geneticand chemical toolsis mainlysystemic.However,a proteinofinterestmighthaveaspecificfunctioninanorganortissue.Thesystemicalterationof theactivityofaproteinofinterestprovidesobservationsthatcanbedifficulttotracebacktoa specificlocalfunction.Forexample,forhistonedeacetylase2(HDAC2)itwasshownthatthe expressioninthe dorsolateralprefrontalcortexinschizophreniapatientsisdecreased[13]. SinceHDAC2isexpressedinmanytissues[14],systemicinhibitionofHDAC2inananimal modeldoesnothelptoelucidatethespecificroleofHDAC2inthisbrainregion.However,this limitationcouldbeovercomebylocallyinhibitingHDAC2activity,mimickingthepatientsituation morecloselyandcontributingtoabetterunderstandingoftheroleofHDAC2inspecificbrain regionsandtheirconnectiontootherareas.Suchsite-specificalterationsoftheactivitywillalso have large implications in, for example, proving the site of action of drugs, studying cell signaling,andunderstandingadverseeffectsoftherapeutics.

LightIsanEmergingExternalStimulustoControlProteinActivity

Toachievereversible,spatialandtemporalcontroloverproteinactivity,amodulatorisneeded whoseactivitycanbecontrolledwithanexternalstimulus,suchasphotons.Lightisalreadywidely usedinbiologicalstudies,forexample,inopticalandfluorescencemicroscopy,whichisenabled bytheorthogonalityofphotonstowardlivingsystemsandprocesseswithinthem[15].EvenUV lightis,toalargeextent,toleratedincellcultures,asdemonstratedbytheimagingoftheblue fluorescentprotein[16]andDNA-labelingdye40,6-diamidino-2-phenylindole(DAPI)[17].Yet,itis recommendedtodocontrolexperimentsinwhichthebiologicalsystemissubjectedtoirradiation only,tocheckforanyundesiredeffects.Thekeybenefitofusinglightisthatitiseasilypossibleto regulatewhen,where,forhowlong,andwithwhichintensityandwavelengthitisused. Currently,thereareseveraltoolsavailabletouselighttogaincontrolovertheactivityofproteins. A well-established exampleis optogenetics, where responsive elements from photoactive

(4)

proteinsaregeneticallyengineeredintootherproteins,bywhich,forexample,areceptorcan beactivatedwithlightinsteadofachemicalligand[18].Thefieldacknowledgesthedemandof spatialandtemporalcontrolovertheactivityofbiologicalpathways[19].However,expressing engineeredproteinsischallenging.

Achemical approach to acquirephotocontrolisphotocaging. A photocageis a photores-ponsivechemicalgroupthatusestheenergyofaphotonto breakachemicalbond[20].A photocageisplacedatafunctionalgroupofabioactivemolecule[21]oraminoacidofaprotein

[22]bywhichitlosesitsactivity;uponirradiationthephotocageisremoved,resultinginthe releaseofabiologically activemolecule [23].Theapproachof usingphotocagedbioactive compoundswassuccessfullydemonstratedinvivoinamousemodel[24].Adrawbackisthat thephotochemicalprocessofuncagingisirreversible.

Afullypharmacological,remote,andreversiblecontrolofproteinactivitywithlightisenabled throughtheuseofmolecularphotoswitches,thatis,smallphotoresponsivemoleculesthatupon irradiationchangetheirstructure[25,26](foradetailedexplanation,seeBox1),hencethename photoswitch.A widely used photoswitchis azobenzene in which the diazobond (N¼N) is connectedtotwophenylringsthatcanbeonitsoppositesides(trans-azobenzene)oronthe sameside(cis-azobenzene).Thetransisomeristhermodynamicallystableandbecanswitched intothecisisomerbyirradiationwithUVlight(Box1).Thisprocesscanbereversedspontaneously usingheatorthemoleculecanbeswitchedbackusingvisiblelightirradiation.Theprocessof switchingfromtranstocisandbackcanusuallyberepeatedformanycycles[25,27]. The emerging field of photopharmacology utilizes the differences in shape and chemical properties between photo-isomers of a bioactive moleculethat differ in activity (Figure 1, KeyFigure)andthatcanbeinterconvertedwithlightirradiationand/orspontaneousthermal relaxation[28].Photoswitchessuchasazobenzeneareintroducedintothestructureofthe bioactivemolecule[29].Throughthis,remotecontroloveritsactivity,andthereforetheactivity oftheprotein ofinterest,can beachieved. Photopharmacologymainlyaimsat developing therapeuticsthatareonlyactiveatthetargetandnotinhealthytissue,toeliminateactivityof drugsinhealthy tissueand itsconsequences[30].However,besides this potentialclinical application,bioactivemoleculeswithphotocontrolledactivitycanserveasapowerfultoolin biomedicalresearch.Theseremotelycontrolledbioactivemoleculescansimplybepipettedto acellcultureorinjectedintoamodelorganism;afterwards,bypreciseirradiation,controlover proteinactivityisacquired.Inthefollowing,welookatexamplesfromtheproteinclassesof enzymes,structuralproteins,andreceptorsforwhichphotopharmacologicalcontrolhasbeen establishedeitherinvitroorinvivo.

Photo-controloverEnzymatic Activity

Enzymesaretheworkhorsesofthecellandharbormanyregulatoryfunctionsandprocesses thatareoften dysregulated indisease.To demonstratephotopharmacologicalcontrolover enzymeactivity,thespecificcaseofHDAC2isdiscussedhere.Thisenzymeisamemberofthe histonedeacetylasefamily,whichisinvolvedinepigeneticregulationofgeneexpression[31].In severalcancers,increasedexpressionofHDAC2isobserved,resultingindecreased expres-sionofgeneswithantitumoractivity[14].Therefore,inhibitionofHDAC2hasbeenshowntobe effective in killing tumor cells [32], like, for example, the FDA-approved HDAC2 inhibitor vorinostatforthetreatmentofmetastaticmelanoma[33].

TraditionalgeneticandchemicaltoolboxeshavebeenusedtostudythespecificroleofHDAC2. Unfortunately,HDAC2knockoutmicedieofcardiacmalfunctionthefirstdayafterbirth[32],

(5)

demonstratingtheimportance oftheprotein,butnotitsspecificfunction.Todecreasethe HDAC2 activity pharmacologically, a wide variety of inhibitors have been developed with selectivity for HDAC2 over other HDACs from the same protein family [33]. Recently, a photocagedvariantofvorinostatwasdevelopedbywhichspatialandtemporalcontrolover HDAC2activitycanbeachieved[34],howeverirreversibly.

Box1.UnderstandingLight-ControlledDrugs:MolecularStructureandPhotochemistry

Azobenzene(A)isthemost-often-usedmolecularphotoswitchinphotopharmacologyandserveshereasanexampleto introducethebehaviorofmolecularphotoswitches.Azobenzenehastwoisomers:thethermallystabletransisomer (blue)andthethermallyunstablecisisomer(orange).Thesetwoformsdifferinstructure,polarity,solubility,andmany otherfeatures.

Importantly,theirUV-visiblespectraarealsodifferent(B),whichleadstothepossibilityofselectivelyaddressingeachof theformswithlight.Thetransformshowsastrongabsorptionbandatlowwavelengths(denotedasl1;typically,UV lightof320–370nm),wheretheabsorptionofthecisformislower.Athigherwavelengths(denotedasl2;typically, visiblelightof420–480nm)thecisformabsorbsmorestronglythanthetransform.Usingl1,itisusuallypossibleto selectivelyswitchthetransformtothecisform.Withl2,thecisformcanselectivelybeswitchedbacktotrans. Thefirstoftheseprocessesisdiscussedinmoredetailin(C).Whenlightofl1isapplied,thetransformabsorbsthe photonandenterstheexcitedstate,fromwhichitcanrelaxtothegroundstateofthecisform.Thekineticsofthis processdependson(i)theprobabilityofabsorbingthephoton,representedbytheextinctioncoefficient ;and(ii)the probabilitythat,onceintheexcitedstate,itwillfalltogroundstatewithisomerization,representedbythetrans-to-cis isomerizationquantumyieldwt!c.Whiletheconcentrationofthecisformincreases,italsoabsorbslight,withextinction coefficientof ,andwiththequantumyieldofwc!t,itcanisomerizebacktotrans.Intime,adynamicequilibriumis establishedbetweenthetwoprocesses.Assumingnegligiblethermalcis–transreisomerizationonthetimescaleofthe experiment,thepositionofthisequilibriumisdescribedbythephoto-stationarystate(PSS),whichissimplythe percentageofcompoundsthatareinthecisstateatequilibriumunderirradiation.

Oncethelightisswitchedoff(D),themolecularphotoswitchreturnstoitsoriginalstate,whichisusually>99%ofthe stabletransform.Thisrecoveryisafirst-orderprocess,andthetimeneededtoisomerizehalfoftheciscompounds backtotransisdescribedashalf-life(t0.5).Thisvaluedependsbothonthestructureofthephotoswitchandonits environment(solvent,temperature,etc.)andcanrangefrommicrosecondstoyears.

(A) (B) (D) (C) Photoswitchable drug PhotoisomerizaƟon UV-visible spectra Trans

Thermally stable Thermally unstableCis

Thermal relaxaƟon

ελ1φt c

ελ1φc t

PSS =[Trans[Cis] + [] Cis]

[Cis] [Cis] [Cis]/2 [Trans] ελ1 ελ1 Trans Cis Conc. Conc. λ1 λ1 t0.5 λ1 λ2 λ2 λ2 Wavelength (nm)

Irradiation time with λ1 Time ε

(6)

Toachievethedesiredreversible,spatialandtemporalcontroloverHDAC2activity,ourlab developed HDAC2inhibitors withphoto-controlled activity [35], as shown inFigure 2. For compound1,thecisisomeris39timesmoreactivethanthetransisomer.Thedifferencein cytotoxicactivitybetweentransandciswasalsoobservedinHeLacells,evenshowingalarger differenceincellviabilitythanfortheindividualHDAC2inhibitor.Also,reversibilityandtemporal controlovertheactivityofHDAC2weredemonstrated,overcomingthelimitationsofthecurrent chemicalandgenetictoolbox.

CanBioactive MoleculeswithPhoto-controlledActivityBeDevelopedfor EveryProtein?

Currently,therearehundredsofthousandsofsmallmoleculecompoundsthatcanmodulate the activity of several thousands of target proteins. In contrast, only several dozens of bioactive molecules with photo-controlled activity have been developed [30]. However, the numberis rapidlygrowing, andthe listof proteintargetsis expanding.Photo-control overtheactivityofmembersofproteinfamiliessuchasenzymes[36,37],receptors[38–42], transporters [43], and structural proteins [44–47] has been achieved, demonstrating the generalityofthisapproach.Thedesignisusuallybasedonknownproteinmodulatorsthatdo notharborphoto-control.AsshownbytwoexamplesinFigure3,chemicalstructuressimilar to azobenzene are replaced by an azobenzene photoswitch in a photopharmacological

KeyFigure

The

Principle

of

Photopharmacology,

Explained

with

the

Example

of

a

Photo-regulated

Enzyme

Inhibitor

(A) (B)

AcƟvity

λ1 λ1 κoff κon κoff κon λ1 λ2 or κBT λ2 or κBT λ2 orκBT

[I]

opt

Log[I]

Figure1.(A)Amodelofphotopharmacology.Aninhibitorcontainingaphotoswitchinits‘off’state(blue)hasnostronginteractionswiththetarget;however,inthe‘on’ state(orange),theinhibitorbindsstrongly.Lightofwavelengthl1switchestheinhibitorfromtheoffstatetotheonstate,andlightofwavelengthl2reversesthisprocess. (B)Dose–responsecurveofabioactivemoleculewithphoto-controlledactivityasshownin(A).Theonstate(orange)ispotentatlowerconcentrationthantheoffstate (blue),anditispossibletoswitchbetweenthosestatesusinglightandthermalrelaxationprocesses.Atacarefullychosenconcentration,[I]opt,theonstatenearlyfully inhibitstheactivity,whiletheproteinofinterestisatalmostfullactivityfortheoffstate.

(7)

(A) (B) (D) (C) CombretastaƟn A4 VU0414374 Compound 2 trans 2a: IC50 = 50 μM 2b: IC50 = 110 μM Compound 3 trans IC50 = 297 nM Compound 3 cis IC50 = 1.49 μM Compound 2 cis 2a: IC50 = 0.16 μM 2b: IC50 = 0.20 μM 2a: R = Methyl 2b: R = Ethyl 390–430 nm 360–400 nm 420–450 nm heat 500–530 nm heat Control 390 nm Dark Dark Illum385nm Vehicle Nai ve 3 Pa w li Ō s (% of con tr ol) 0 50 100 ns ns **** 1.5 μM 2a

Figure3.ExamplesofBioactiveMoleculeswithPhoto-controlledActivity.(A)Lightcontrolofastructuralprotein:formationofmicrotubule.Basedontubulin polymerizationinhibitorcombretastatinA4,compounds2aand2bweredesigned.UponirradiationwithUVlight,compound2bbecomes550timesmoreactive,which canbereversedusingvisiblelightirradiation[46].(B)Compound2ainducedthebreakdownoftubulin(green)andfragmentationofthenucleusuponirradiationwith 390nmtotheactivecisisomerand20-hincubation,whileirradiationwithoutinhibitorandthetransisomerofcompound2adonotchangethephysiologyofthecell. Adaptedfrom[45].(C)Lightcontrolofreceptoractivity:metabotropicglutamatereceptor5(mGlu5).BasedonnegativeallostericmodulatorVU0414374,compound3 wasdesigned.UponirradiationwithUVlight,compound3becomes5.1timeslessactive,whichcanbereversedusingvisiblelight[40].(D)Persistentinflammatorypain wasinducedinamousemodel,andafter10daysthenumberofpawliftswasrecorded(naive)andnormalizedtohealthymice(vehicle)withandwithoutirradiationinthe amygdala.Injectionofcompound3resultedinthesamebehaviorinthemouseasinnaivemice;uponirradiationtothecisisomer,thiseffectcouldbeabolished,tothe samelevelasinthevehiclemice.Adaptedfrom[40].

(A) (B)

Log[I] (μM)

HeLa cell viability (%)

Vorinostat Compound 1 trans IC50 = 21.7 μM Compound 1 cis IC50 = 555 nM 360–410 nm 460–500 nm heat 0 0 -1 1 2 50 100 TransCis

Figure2.Photo-controlovertheActivityofHistoneDeacetylase2(HDAC2).(A)BasedonknownHDAC2inhibitorvorinostat,compound1wasdesigned. Uponirradiation,compound1switchesfromtranstocisform,becoming39-foldmoreactiveasanHDAC2inhibitor.(B)Dose–responsecurveforcompound1intrans (blue)andcis(orange)formoncellviabilityofHeLacells.Reproduced,withpermission,from[35].

(8)

approach called azologization [48].This approach has been extended toother chemical structureswithlesssimilaritytothestructureofthephotoswitch,guidedbystructure–activity relationship studies and computational support [40,42,49]. So far, the development of bioactive molecules with photo-controlled activity is limited by the availability of known modulatorsandtheexistenceinthosemodulatorsofstructuralfeaturesthatcanbereplaced byaphotoswitchwithoutamajorlossinpotency.

The replacement of a fragment of a molecule by a photoswitch has been convincingly demonstratedbytakingadvantageofthestructuralsimilarityofnaturalcompound combre-tastatin A4 and cis-azobenzene [44,47] (Figure 3A). Combretastatin A4 is an inhibitor of microtubuleformation. Microtubules belong to the family ofstructural proteinsandare an importantcompartmentofthecytoskeleton,playingaroleinmechanicalprocessessuchasthe intracellulartransportofvesiclesandseparationofchromosomesinmitosis[50].Azologization ofcombretastatinA4resultedinaninhibitorwithphoto-controlledactivity(Figure3A),where irradiationoftheinactivetransisomertothecisisomerincreasesthepotencyinHeLacellsin vitrobyanimpressivefactorof550forcompound2b[47].

Reversiblespatialandtemporalcontroloverproteinactivityshowsitsfullpotentialinaninvivo model.Recently,severalinvivostudiesofphotopharmacologicalagentshavebeenreported, mainlyforneurologicaltargets,suchasrestoringthevisualfunctionoftheblindretina[51],and metabotropicglutamatereceptors[40,52].Animpressiveexampleofaninvivo-tested bioac-tivemolecule with photo-controlled activity was reported by the groupsof Gorostiza and Llebaria,targetingmetabotropicglutamatereceptor5[40,49,53–55],whichisapotentialtarget for the treatment of anxiety, depression, and schizophrenia [56,57]. Inspired by negative allostericmodulatorVU0414374, compound3 was designed(Figure 3C)and testedinan invivosystemusinghybridopticandfluidcannulasthatwereimplantedintheamygdalaof persistentinflammatorypainmousemodel.Themousewasinjectedwithcompound3inthe amygdalaintheactivetransconfiguration,resultinginananalgesiceffect.Thispain-relieving effectcouldbeabolishedbyirradiationtotheinactivecisisomer[40].Bythis,photo-control overpaininarodentmodelwas achieved,which opensopportunitiesinstudyingpain,its development,anditstreatment.

TheCurrentLimitationofPhotoswitchableBioactiveMoleculesasa ResearchTool

A challenge inthe development of bioactive molecules withphoto-controlled activity is to acquirelargedifferencesinactivitybetweenthephoto-isomers.AsshowninFigure1B,ata preciselychosenconcentration,[I]opt,oneisomerdoesnotchangetheactivityoftheproteinof

interest,while theotherisomer resultsincompleteinhibitionof proteinactivity; hence,the proteincanbeswitchedfullyonandfullyoff.However,thisoptimalsituationoffullyswitchingis rarelyachieved.Forexample,forcompound1,a39-folddifferenceinactivitybetweenthetrans andcisisomerisnotyetsufficienttoallowforswitchingbetweenfullyactiveHDAC2andfully inhibitedHDAC2 [35].In theoptimizationof photopharmacological agents,everychemical modificationofthebioactivemoleculepotentiallynotonlychangesthebiologicalactivitybut alsothechemicalpropertiesandimportantphotochemicalpropertiessuchastheabsorption maxima,half-lifeofthecisisomer,quantumyield,andthephoto-stationarystates(PSSs).This optimizationprocessischallenging;yet,toreachfullpotentialasaresearchtool,differencesin theactivitybetweenisomersshouldbeenhanced.

AnotherchallengeisthatmostofthephotopharmacologicalagentsneedUVlightintheregionof 350–400nmtoswitch[30].Suchlighthasalimitedpenetrationdepthofonlyafewmillimetersin

(9)

softtissue[58].Thisissufficientforexperimentsinmonolayercellculture,butnotforanimal models,sincemostinnerorganscannotbereachedinanoninvasivemanner.However,redand near-IRlighthasdeeperpenetrationdepthinsofttissue,uptoseveralcentimeters[58].Therefore, red-light-responsivephotoswitchesandphotopharmacologicalagentsareindevelopment[59– 61].Recently,anelegantexamplewaspublishedbytheFeringagroup[62],whereanantibiotic wasdevelopedthatincreaseseighttimesinpotencyuponirradiationwithredlight.

ConcludingRemarksandFutureProspects

Inadditiontothethreeexamplesdescribedhere,formanyotherproteins,bioactivemolecules withphoto-controlledactivity have beendevelopedin recentyears.Besides theirpotential clinicalapplicationsinphotopharmacology,thesearepowerfultoolsforbiomedicalresearch, becauselightisorthogonalwithbiologicalsystems,nogeneticmodificationsarerequired,and spatialand temporal controlcan be achievedina reversiblemanner. Thebroad rangeof proteinsthat can be altered by photopharmacology and especially the reversibility of the modificationcanmakeitasuperiortoolcomparedtotheexistingtoolbox.

Morebioactive moleculeswithphoto-controlledactivity will bedeveloped,witha focuson visiblelightswitchingandoptimizationofthedifferenceinactivitybetweenisomers.Inparallel, newphotoswitchesthatcanbeoperatedwithvisiblelightorthathaveenlargeddifferencesin structurebetweenisomersarebeingdiscovered.Thesedevelopmentswill,moreandmore, allowphoto-controlledbioactivemoleculesinbiomedicalresearchtocontributetothe under-standingoftheroleofaproteinofinterestinhealthanddisease.

Acknowledgments

ThisOpinionarticlewasfinanciallysupportedbytheNetherlandsOrganizationforScientificResearch(NWO-CW)VIDI grant723.014.001toW.S.

AppendixA SupplementalInformation

Supplementalinformationassociatedwiththisarticlecanbefound,intheonlineversion,athttps://doi.org/10.1016/j.tibs. 2018.05.004.

References

1. Müller,U.(1999)Tenyearsofgenetargeting:targetedmouse mutants,fromvectordesigntophenotypeanalysis.Mech.Dev. 82,3–21

2. Boyden,E.S.etal.(2005)Millisecond-timescale,genetically tar-getedopticalcontrolofneuralactivity.Nat.Neurosci.8,1263– 1268

3. Sen,G.L.andBlau,H.M.(2006)AbriefhistoryofRNAi:the silenceofthegenes.FASEB20,1293–1299

4. Wang,F.etal.(2018)AcomparisonofCRISPR/Cas9and siRNA-mediatedALDH2genesilencinginhumancelllines.Mol.Genet. Genomics293,769–783

5. Perez-Garcia,V.etal.(2018)Placentationdefectsarehighly prevalent in embryonic lethal mouse mutants.Nature 555, 463–482

6. Hagelkruys,A.etal.(2016)Essentialnonredundantfunctionof thecatalyticactivityofhistonedeacetylase2inmouse develop-ment.Mol.Cell.Biol.36,462–474

7. Hille,F.etal.(2018)ThebiologyofCRISPR-Cas:backwardand forward.Cell172,1239–1259

8. Das,A.T.etal.(2016)Tet-onsystemsfordoxycycline-inducible geneexpression.Curr.GeneTher.16,156–167

9. Fornasari,D.(2017)Pharmacotherapyforneuropathicpain:a review.PainTher.6,25–33

10.Kalinichenko,L.S.etal.(2018)Theroleofsphingolipidsin psycho-activedruguseandaddiction.J.NeuralTransm.125,651–672

11.Rexer,B.N.andArteaga,C.L.(2012)Intrinsicandacquired resistancetoHER2-targetedtherapiesinHER2gene-amplified breastcancer:mechanismsandclinicalimplications.Crit.Rev. Oncog.17,1–16

12.vanBeijnum,J.R.etal.(2015)Thegreatescape;thehallmarksof resistancetoantiangiogenictherapy.Pharmacol.Rev.67,441– 461

13.Hagelkruys,A.etal.(2014)AsinglealleleofHdac2butnotHdac1 issufficientfornormalmousebraindevelopmentintheabsence ofitsparalog.Development141,604–616

14.Krämer,O.H.(2009)HDAC2:acriticalfactorinhealthand dis-ease.TrendsPharmacol.Sci.30,647–655

15.VonDiezmann,A.etal.(2017)Three-dimensionallocalizationof singlemoleculesforsuper-resolutionimagingandsingle-particle tracking.Chem.Rev.117,7244–7275

16.Subach,O.M.etal.(2011)Anenhancedmonomericblue fluo-rescentproteinwiththehighchemicalstabilityofthe chromo-phore.PLoSOne6,e28674

17.Farahat,A.A.etal.(2010)Synthesis,DNAbinding,fluorescence measurementsandantiparasiticactivityofDAPIrelated diami-dines.Bioorg.Med.Chem.18,557–566

18.Deisseroth,K.(2015)Optogenetics:10yearsofmicrobialopsins inneuroscience.Nat.Neurosci.18,1213–1225

19.Zhang,K.andCui,B.(2015)Optogeneticcontrolofintracellular signalingpathways.TrendsBiotechnol.33,92–100

OutstandingQuestions Currently, most bioactive molecules withphoto-controlledactivityhavea difference in activity between the photo-isomers of about 10–50-fold. So,howdowerationallydesignnew compoundswithalargerdifferencein activity?

Eventhoughthereisadifferencein activitybetweenbothphoto-isomers, usually bothcan bindtothe target. Does the bioactive molecule with photo-controlledactivityswitchwhile bound,ordoesitfirsthaveto dissoci-atefromthetargetprotein? Howcaneffectiveandpreferably non-invasiveirradiationofbioactive mole-culeswithphoto-controlledactivitybe achieved in deep organs of model organisms?

Howdoesdiffusionofbioactive mole-culescompromisethespatial resolu-tionprovidedbylight?Andinwhich rangeshouldthehalf-lifeofthe bioac-tivemoleculesbetopreventthis? Sincethephotochemicalpropertiesof acompoundstrongly dependon its environment,howcanwedetermine theratioofphoto-isomersinvivo?

(10)

20.Klan,P.etal.(2012)Photoremovableprotectinggroupsin chem-istryandbiology:reactionmechanismsandefficacy.Chem.Rev. 113,119–191

21.Reessing,F.andSzymanski,W.(2017)Beyondphotodynamic therapy:light-activatedcancerchemotherapy.Curr.Med.Chem. 24,4905–4950

22.Liaunardy-Jopeace,A.etal.(2017)Encodingopticalcontrolin LCKkinasetoquantitativelyinvestigateitsactivityinlivecells.Nat. Struct.Mol.Biol.24,1155–1163

23.Hansen,M.J.etal.(2015)Wavelength-selectivecleavageof photoprotectinggroups:strategiesandapplicationsindynamic systems.Chem.Soc.Rev.44,3358–3377

24.Font,J.etal.(2017)Opticalcontrolofpaininvivowitha photo-activemGlu5receptornegativeallostericmodulatore.eLIFE6, e23545

25.Beharry,A.A. andWoolley,G.A. (2011)Azobenzene photo-switchesforbiomolecules.Chem.Soc.Rev.40,4422–4437 26.Bléger,D.andHecht,S.(2015)Visible-light-activatedmolecular

switches.Angew.Chem.Int.Ed.Engl.54,11338–11349 27.Sadovski,O.etal.(2009)Spectraltuningofazobenzene

photo-switchesforbiologicalapplications.Angew.Chem.Int.Ed.Engl. 48,1484–1486

28.Velema,W.A.etal.(2014)Photopharmacology:beyondproofof principle.J.Am.Chem.Soc.136,2178–2191

29.Broichhagen,J.etal.(2015)Aroadmaptosuccessin photo-pharmacology.Acc.Chem.Res.48,1947–1960

30.Lerch,M.M.etal.(2016)Emergingtargetsin photopharmacol-ogy.Angew.Chem.Int.Ed.Engl.55,10978–10999 31.Stojanovic,N.etal.(2017)HDAC1andHDAC2integratethe

expressionofp53mutantsinpancreaticcancer.Oncogene36, 1804–1815

32.Eckschlager,T.etal.(2017)Histonedeacetylaseinhibitorsas anticancerdrugs.Int.J.Mol.Sci.18,1–25

33.Iwamoto,M.etal.(2013)Clinicalpharmacologyprofileof vorino-stat,ahistonedeacetylaseinhibitor.CancerChemother. Phar-macol.72,493–508

34.Parasar,B.andChang,P.V.(2017)Chemicaloptogenetic mod-ulationofinflammationandimmunity.Chem.Sci.8,1450–1453 35.Szymanski,W.etal.(2015)Light-controlledhistonedeacetylase (HDAC)inhibitors:towardsphotopharmacological chemother-apy.Chem.Eur.J.21,16517–16524

36.Hansen,M.J.etal.(2014)Proteasomeinhibitorswith photocon-trolledactivity.Chembiochem15,2053–2057

37.Ferreira,R.etal.(2015)Design,synthesisandinhibitoryactivityof photoswitchableRETkinaseinhibitors.Sci.Rep.5,9769 38.Lachmann,D.etal.(2017)Photochromicdopaminereceptor

ligandsbasedondithienylethenesandfulgides.Chem.Eur.J. 23,13423–13434

39.Barber,D.M.etal.(2017)OpticalcontrolofAMPAreceptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chem.Sci.8,611–615

40.Gomez-Santacana,X.etal.(2017)Illuminating phenylazopyri-dinestophotoswitchmetabotropicglutamatereceptors:from theflasktotheanimals.ACSCent.Sci.3,81–91

41.Dolles,D.etal.(2018)Thefirstphotochromicaffinityswitchforthe humancannabinoidreceptor2.Adv.Ther.1,170032 42.Hauwert,N.J.etal.(2018)Synthesisandcharacterizationofa

bi-directional photoswitchable antagonist toolbox for real-time GPCRphotopharmacology.J.Am.Chem.Soc.140,4232–4243

43.Cheng,B.etal.(2017)Photoswitchableinhibitorofaglutamate transporter.ACSChem.Neurosci.9,1668–1672

44.Engdahl,A.J.etal.(2015)Synthesis,characterization,and bio-activityofthephotoisomerizabletubulinpolymerizationinhibitor azo-combretastatinA4.Org.Lett.4,4546–4549

45.Borowiak,M.etal.(2015)Photoswitchableinhibitorsof microtu-buledynamicsopticallycontrolmitosisandcelldeath.Cell162, 403–411

46.Sheldon,J.E.etal.(2016)Photoswitchableanticanceractivityvia trans-cisisomerizationofacombretastatinA-4analog.Org. Biomol.Chem.14,40–49

47.Rastogi,S.K.etal.(2018)Photoresponsiveazo-combretastatin A-4analogues.Eur.J.Med.Chem.143,1–7

48.Schoenberger,M.etal.(2014)Developmentofanew photochro-micionchannelblockerviaazologizationoffomocaine.ACS Chem.Neurosci.5,514–518

49.Dalton,J.A.R.etal.(2016)ShininglightonanmGlu5 photo-switchableNAM:atheoreticalperspective.Curr. Neuropharma-col.14,441–454

50.Akhmanova,A.andSteinmetz,M.O.(2015)Controlof microtu-buleorganizationanddynamics:twoendsinthelimelight.Nat. Rev.Mol.CellBiol.16,711–726

51.Tochitsky,I.etal.(2017)Restoringvisualfunctiontotheblind retinawithapotent,safeandlong-lastingphotoswitch.Sci.Rep. 7,45487

52.Zussy,S.etal.(2018)Dynamicmodulationofinflammatory pain-relatedaffectiveandsensorysymptomsbyopticalcontrolof amygdalametabotropicglutamatereceptor4.Mol.Psychiatry 23,509–520

53.Pittolo,S.etal.(2014)Anallostericmodulatortocontrol endog-enousGprotein-coupledreceptorswithlight.Nat.Chem.Biol. 10,813–817

54.Rovira,X.etal.(2016)OptoGluNAM4.1,aphotoswitchable allo-stericantagonistforreal-timecontrolofmGlu4receptoractivity. CellChem.Biol.23,929–934

55.Gómez-Santacana,X.etal.(2017)Positionalisomersof bispyr-idinebenzenederivativesinduceefficacychangesonmGlu5 negativeallostericmodulation.Eur.J.Med.Chem.127,567–576 56.Stansley,B.J.andConn,P.J.(2018)Thetherapeuticpotentialof metabotropicglutamatereceptormodulationforschizophrenia. Curr.Opin.Pharmacol.38,31–36

57.Chaki,S.andFukumoto,K.(2018)mGlureceptorsaspotential targetsfornovelantidepressants.Curr.Opin.Pharmacol.38,24– 30

58.Weissleder,R.(2001)Aclearervisionforinvivoimaging:progress continuesinthedevelopmentofsmaller,morepenetrableprobes forbiologicalimaging.Nat.Biotechnol.19,316–317 59.Yang,Y.etal.(2014)Near-infraredlightactivatedazo-BF2

switches.J.Am.Chem.Soc.136,13190–13193

60.Dong,M.etal.(2017)Near-infraredphotoswitchingof azoben-zenesunderphysiologicalconditions.J.Am.Chem.Soc.139, 13483–13486

61.Klaue,K.etal.(2018)Takingphotochromismbeyondvisible: directone-photonNIRphotoswitchesoperatinginthebiological window.Angew.Chem.Int.Ed.Engl.57,1414–1417 62.Wegener,M.etal.(2017)Photocontrolofantibacterialactivity:

shiftingfromUVtoredlightactivation.J.Am.Chem.Soc.139, 17979–17986

Referenties

GERELATEERDE DOCUMENTEN

46,47 Protease activity was also inhibited upon coordination of the same ions to two histidine residues introduced on parallel strands of aqualysin I (Figure 9b). 48

This lack of activity could be attributed to the fact that supramolecular interactions between the cyclodextrins and the bisadamantyl phosphate are not strong

The formation of a chelate complex between the two bipyridines and the metal ions was expected for the conjugates containing bipyridine units located in the

complex and in vivo incorporation of the metal binding amino acid (2,2 - bipyridin-5yl)alanine (BpyA) by stop codon suppression methods were used to create

Even though catalysis in cells with the protein that appears to bind metal ions in vivo was not successful yet, the presence of a genetically incorporated metal binding

The preparation of mDHFR fragments containing a metal binding moiety was described using two different strategies: (1) genetic incorporation of a metal

Reversible, spatial and temporal control over protein activity using light, Trends Biochem.. Gl utamate Tra nsporter Inhibitors with Photo- Control led

decrease the HDAC2 activity pharmacologically, a wide variety of inhibitors have been developed with selectivity for HDAC2 over other HDACs from the same protein