• No results found

Cover Page

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/136538 holds various files of this Leiden University

dissertation.

Author: Hamster, C.H.S

(2)

B

[1] J. Alexander, R. Gardner and C. K. R. T. Jones (1990), A topological invariant

arising in the stability analysis of travelling waves. J. reine angew. Math 410(167-212), 143.

[2] L. Alili, P. Patie and J. L. Pedersen (2005), Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stochastic Models 21(4), 967–980. [3] J. Armero, J. M. Sancho, J. Casademunt, A. M. Lacasta, L. Ramirez-Piscina, and F. Sagu´es (1996), External fluctuations in front propagation. Physical review

letters 76(17), 3045.

[4] D. G. Aronson and H. F. Weinberger (1975), Nonlinear diffusion in population ge-netics, combustion, and nerve pulse propagation. In: Partial differential equations

and related topics. Springer, pp. 5–49.

[5] D. G. Aronson and H. F. Weinberger (1978), Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30(1), 33–76.

[6] M. Beck, H. J. Hupkes, B. Sandstede and K. Zumbrun (2010), Nonlinear Stability of Semidiscrete Shocks for Two-Sided Schemes. SIAM J. Math. Anal. 42, 857–903. [7] M. Beck, B. Sandstede and K. Zumbrun (2010), Nonlinear stability of time-periodic viscous shocks. Archive for rational mechanics and analysis 196(3), 1011–1076.

[8] H. Berestycki, F. Hamel and H. Matano (2009), Bistable traveling waves around an obstacle. Comm. Pure Appl. Math. 62(6), 729–788.

[9] N. Berglund and B. Gentz (2013), Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electron. J. Probab. 18, 58 pp. [10] E. Bernitt and H.-G. D¨obereiner (2017), Spatiotemporal Patterns of Noise-Driven

Confined Actin Waves in Living Cells. Physical review letters 118(4), 048102. [11] W.-J. Beyn and V. Th¨ummler (2004), Freezing solutions of equivariant evolution

equations. SIAM Journal on Applied Dynamical Systems 3(2), 85–116.

[12] L. A. Bianchi, D. Bl¨omker and P. Wacker (2017), Pattern size in Gaussian fields from spinodal decomposition. SIAM Journal on Applied Mathematics 77(4),

(3)

B

224 Bibliography

[13] G. Birzu, O. Hallatschek and K. S. Korolev (2018), Fluctuations uncover a distinct class of traveling waves. Proceedings of the National Academy of Sciences 115(16), E3645–E3654.

[14] S. Brassesco, A. De Masi and E. Presutti (1995), Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise. Ann. Inst. H. Poincar´e Probab. Statist 31(1), 81–118.

[15] P. C. Bressloff and Z. P. Kilpatrick (2015), Nonlinear Langevin equations for wan-dering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical

Systems 14(1), 305–334.

[16] P. C. Bressloff and M. A. Webber (2012), Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems 11(2), 708–740.

[17] E. Brunet and B. Derrida (1997), Shift in the velocity of a front due to a cutoff.

Physical Review E 56(3), 2597.

[18] G. A. Carpenter (1977), A geometric approach to singular perturbation problems with applications to nerve impulse equations. Journal of Differential Equations

23(3), 335–367.

[19] M. Cartwright and G. A. Gottwald (2019), A collective coordinate framework to study the dynamics of travelling waves in stochastic partial differential equations.

Physica D: Nonlinear Phenomena.

[20] S. Cerrai (2005), Stabilization by noise for a class of stochastic reaction-diffusion equations. Probability theory and related fields 133(2), 190–214.

[21] S. Cerrai and M. R¨ockner (2004), Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipshitz reaction term. The Annals of

Probability 32(1B), 1100–1139.

[22] C.-N. Chen and Y. S. Choi (2015), Traveling pulse solutions to FitzHugh–Nagumo equations. Calculus of Variations and Partial Differential Equations 54(1), 1–45. [23] P.-L. Chow (2014), Stochastic partial differential equations. CRC Press.

[24] P. Cornwell (2017), Opening the Maslov Box for Traveling Waves in Skew-Gradient Systems. arXiv preprint arXiv:1709.01908.

[25] P. Cornwell and C. K. R. T. Jones (2018), On the Existence and Stability of Fast Traveling Waves in a Doubly Diffusive FitzHugh–Nagumo System. SIAM Journal

on Applied Dynamical Systems 17(1), 754–787.

[26] G. Da Prato, A. Jentzen and M. R¨ockner (2010), A mild Ito formula for SPDEs.

arXiv preprint arXiv:1009.3526.

[27] G. Da Prato, A. Jentzen and M. R¨ockner (2019), A mild Itˆo formula for SPDEs.

(4)

B

[28] G. Da Prato, S. Kwapieˇn and J. Zabczyk (1988), Regularity of solutions of linear

stochastic equations in Hilbert spaces. Stochastics: An International Journal of

Probability and Stochastic Processes 23(1), 1–23.

[29] R. C. Dalang and L. Quer-Sardanyons (2011), Stochastic integrals for spde’s: a comparison. Expositiones Mathematicae 29(1), 67–109.

[30] G. di Nunno and B. Oksendal (eds.) (2011), Advanced Mathematical Methods for

Finance. Springer.

[31] K. Eichinger, M. V. Gnann and C. Kuehn (2020), Multiscale analysis for traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations. arXiv preprint

arXiv:2002.07234.

[32] L. C. Evans (1998), Partial differential equations. American Mathematical Society, Providence, R.I.

[33] L. C. Evans (2012), An introduction to stochastic differential equations, Vol. 82. American Mathematical Soc.

[34] P. C. Fife and J. B. McLeod (1977), The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361.

[35] C. L. E. Franzke, T. J. O’Kane, J. Berner, P. D. Williams and V. Lucarini (2015), Stochastic climate theory and modeling. Wiley Interdisciplinary Reviews: Climate

Change 6(1), 63–78.

[36] M. I. Freidlin and A. D. Wentzell (1998), Random perturbations. In: Random

perturbations of dynamical systems. Springer, pp. 15–43.

[37] T. Funaki (1995), The scaling limit for a stochastic PDE and the separation of phases. Probability Theory and Related Fields 102(2), 221–288.

[38] J. Garc´ıa-Ojalvo, F. Sagu´es, J. M. Sancho and L. Schimansky-Geier (2001), Noise-enhanced excitability in bistable activator-inhibitor media. Physical Review E

65(1), 011105.

[39] J. Garc´ıa-Ojalvo and J. Sancho (2012), Noise in spatially extended systems. Springer Science & Business Media.

[40] R. A. Gardner (1982), Existence and stability of travelling wave solutions of competition models: a degree theoretic approach. Journal of Differential equations

44(3), 343–364.

[41] E. Gautier (2005), Uniform large deviations for the nonlinear Schr¨odinger equation with multiplicative noise. Stochastic processes and their applications 115(12), 1904–1927.

[42] L. Gawarecki and V. Mandrekar (2010), Stochastic differential equations in infinite

dimensions: with applications to stochastic partial differential equations. Springer

(5)

B

226 Bibliography

[43] K. Gowda and C. Kuehn (2015), Early-warning signs for pattern-formation in stochastic partial differential equations. Communications in Nonlinear Science

and Numerical Simulation 22(1), 55–69.

[44] M. Hairer (2009), An Introduction to Stochastic PDEs. http://www.hairer. org/notes/SPDEs.pdf.

[45] M. Hairer and ´E. Pardoux (2015), A Wong-Zakai theorem for stochastic PDEs.

Journal of the Mathematical Society of Japan 67(4), 1551–1604.

[46] J. Hale, L. A. Peletier and W. C. Troy (1999), Stability and instability in the Gray-Scott model: the case of equal diffusivities. Applied mathematics letters

12(4), 59–65.

[47] C. H. S. Hamster and H. J. Hupkes (2018), Stability of Travelling Waves for Systems of Reaction-Diffusion Equations with Multiplicative Noise. To Appear in

SIAM Journal on Mathematical Analysis.

[48] C. H. S. Hamster and H. J. Hupkes (2019), Stability of Traveling Waves for Reaction-Diffusion Equations with Multiplicative Noise. SIAM Journal on Applied

Dynamical Systems 18(1), 205–278.

[49] C. H. S. Hamster and H. J. Hupkes (2020), Stability of Travelling Waves on Expo-nentially Long Timescales in Stochastic Reaction-Diffusion Equations. Preprint. [50] C. H. S. Hamster and H. J. Hupkes (2020), Travelling waves for reaction–diffusion equations forced by translation invariant noise. Physica D: Nonlinear Phenomena

401, 132233.

[51] S. P. Hastings (1976), On travelling wave solutions of the Hodgkin-Huxley equa-tions. Archive for Rational Mechanics and Analysis 60(3), 229–257.

[52] E. Hausenblas, T. A. Randrianasolo and M. Thalhammer (2020), Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray–Scott equations. Journal of Computational and Applied

Mathe-matics 364, 112335.

[53] A. Hoffman, H. J. Hupkes and E. Van Vleck (2015), Multi-dimensional stability of waves travelling through rectangular lattices in rational directions. Transactions

of the American Mathematical Society 367(12), 8757–8808.

[54] A. Hoffman, H. J. Hupkes and E. Van Vleck (2017), Entire solutions for bistable lattice differential equations with obstacles. American Mathematical Society

250(1188).

[55] T. Hyt¨onen, J. Van Neerven, M. Veraar and L. Weis (2018), Analysis in Banach

Spaces: Volume II: Probabilistic Methods and Operator Theory, Vol. 67. Springer.

[56] M. Iannelli and A. Pugliese (2015), An Introduction to Mathematical Population

(6)

B

[57] J. Inglis and J. MacLaurin (2016), A general framework for stochastic traveling

waves and patterns, with application to neural field equations. SIAM Journal on

Applied Dynamical Systems 15(1), 195–234.

[58] J. Jacod (2006), Calcul stochastique et problemes de martingales, Vol. 714. Springer.

[59] M. Jeanblanc, M. Yor and M. Chesney (2009), Mathematical methods for financial

markets. Springer Science & Business Media.

[60] C. K. R. T. Jones (1984), Stability of the travelling wave solution of the FitzHugh-Nagumo system. Transactions of the American Mathematical Society 286(2), 431–469.

[61] C. K. R. T. Jones (1995), Geometric singular perturbation theory. In: Dynamical

systems. Springer, pp. 44–118.

[62] C. K. R. T. Jones, N. Kopell and R. Langer (1991), Construction of the FitzHugh-Nagumo pulse using differential forms. In: Patterns and dynamics in reactive

media. Springer, pp. 101–115.

[63] S. Kadar, J. Wang and K. Showalter (1998), Noise-supported travelling waves in sub-excitable media. Nature 391(6669), 770.

[64] T. Kapitula (1997), Multidimensional Stability of Planar Travelling Waves. Trans.

Amer. Math. Soc. 349, 257–269.

[65] T. Kapitula and K. Promislow (2013), Spectral and dynamical stability of nonlinear

waves. Springer.

[66] A. Karczewska (2005), Stochastic integral with respect to cylindrical Wiener process. arXiv preprint math/0511512.

[67] C. Knoche and K. Frieler (2001), Solutions of stochastic differential equations in infinite dimensional Hilbert spaces and their dependence on initial data. Diplom-arbeit, BiBoS-Preprint E02-04-083, Bielefeld University.

[68] J. Kr¨uger and W. Stannat (2017), A multiscale-analysis of stochastic bistable reaction–diffusion equations. Nonlinear Analysis 162, 197–223.

[69] C. Kuehn (2019), Travelling Waves in Monostable and Bistable Stochastic Partial Differential Equations. Jahresbericht der Deutschen Mathematiker-Vereinigung pp. 1–35.

[70] C. Kuehn and J. M. T¨olle (2019), A gradient flow formulation for the stochastic Amari neural field model. Journal of Mathematical Biology 79(4), 1227–1252. [71] R. Kuske, C. Lee and V. Rottsch¨afer (2017), Patterns and coherence resonance

(7)

B

228 Bibliography

[72] E. Lang (2016), A multiscale analysis of traveling waves in stochastic neural fields.

SIAM Journal on Applied Dynamical Systems 15(3), 1581–1614.

[73] E. Lang (2016), Traveling waves in stochastic neural fields. Ph.D. thesis, TU Berlin.

[74] E. Lang and W. Stannat (2016), L2-stability of traveling wave solutions to nonlocal evolution equations. Journal of Differential Equations 261(8), 4275–4297. [75] M. R. Leadbetter, G. Lindgren and H. Rootz´en (2012), Extremes and related

properties of random sequences and processes. Springer Science & Business Media.

[76] K.-J. Lee, W. D. McCormick, J. E. Pearson and H. L. Swinney (1994), Experi-mental observation of self-replicating spots in a reaction–diffusion system. Nature

369(6477), 215.

[77] W. Liu and M. R¨ockner (2010), SPDE in Hilbert space with locally monotone coefficients. Journal of Functional Analysis 259(11), 2902–2922.

[78] G. J. Lord, C. E. Powell and T. Shardlow (2014), An introduction to computational

stochastic PDEs. Cambridge University Press.

[79] G. J. Lord and V. Th¨ummler (2012), Computing stochastic traveling waves. SIAM

Journal on Scientific Computing 34(1), B24–B43.

[80] L. Lorenzi, A. Lunardi, G. Metafune and D. Pallara (2004), Analytic semigroups and reaction-diffusion problems. In: Internet Seminar, Vol. 2005. p. 127. [81] J. N. MacLaurin and P. C. Bressloff (2020), Wandering bumps in a stochastic

neural field: A variational approach. Physica D: Nonlinear Phenomena p. 132403. [82] C. Mascia and K. Zumbrun (2002), Pointwise Green’s function bounds and

sta-bility of relaxation shocks. Indiana Univ. Math. J. 51(4), 773–904.

[83] H. Matano, Y. Mori and M. Nara (2019), Asymptotic behavior of spreading fronts in the anisotropic Allen–Cahn equation on Rn. Annales de l’Institut Henri

Poincar´e C, Analyse non lin´eaire 36(3), 585 – 626.

[84] G. F. Mazenko, O. T. Valls and P. Ruggiero (1989), Front propagation into an unstable state in the presence of noise. Physical Review B 40(1), 384.

[85] C. Mueller, L. Mytnik and J. Quastel (2011), Effect of noise on front propagation in reaction-diffusion equations of KPP type. Inventiones mathematicae 184(2), 405–453.

[86] C. Mueller and R. B. Sowers (1995), Random travelling waves for the KPP equation with noise. Journal of Functional Analysis 128(2), 439–498.

[87] A. G. Nobile, L. M. Ricciardi and L. Sacerdote (1985), Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. Journal of Applied Probability

(8)

B

[88] B. Oksendal (2013), Stochastic differential equations: an introduction with

appli-cations. Springer Science & Business Media.

[89] M. Or-Guil, M. Bode, C. P. Schenk and H. G. Purwins (1998), Spot Bifurcations in Three-Component Reaction-Diffusion Systems: The Onset of Propagation.

Physical Review E 57(6), 6432.

[90] S. Peszat and J. Zabczyk (1997), Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes and their Applications 72(2), 187–204.

[91] J. Pickands (1969), Asymptotic properties of the maximum in a stationary Gaus-sian process. Transactions of the American Mathematical Society 145, 75–86. [92] G. Prato and J. Zabczyk (1992), Stochastic equations in infinite dimensions.

Cambridge University Press, Cambridge New York.

[93] C. Pr´evˆot and M. R¨ockner (2007), A concise course on stochastic partial

differ-ential equations, Vol. 1905. Springer.

[94] M. Reed (1980), Methods of modern mathematical physics. Academic Press, New York.

[95] D. Revuz and M. Yor (2013), Continuous martingales and Brownian motion, Vol. 293. Springer Science & Business Media.

[96] L. M. Ricciardi and S. Sato (1988), First-passage-time density and moments of the Ornstein-Uhlenbeck process. Journal of Applied Probability 25(1), 43–57. [97] J. Rinzel and J. B. Keller (1973), Traveling wave solutions of a nerve conduction

equation. Biophysical journal 13(12), 1313–1337.

[98] M. Salins and K. Spiliopoulos (2019), Metastability and exit problems for systems of stochastic reaction-diffusion equations. arXiv preprint arXiv:1903.06038. [99] B. Sandstede (2002), Stability of travelling waves. In: Handbook of dynamical

systems, Vol. 2. Elsevier, pp. 983–1055.

[100] D. H. Sattinger (1976), On the stability of waves of nonlinear parabolic systems.

Advances in Mathematics 22(3), 312–355.

[101] C. P. Schenk, M. Or-Guil, M. Bode and H. G. Purwins (1997), Interacting Pulses in Three-component Reaction-Diffusion Systems on Two-Dimensional Domains.

Physical Review Letters 78(19), 3781.

[102] L. Schimansky-Geier and C. Z¨ulicke (1991), Kink propagation induced by multi-plicative noise. Zeitschrift f¨ur Physik B Condensed Matter 82(1), 157–162.

[103] T. Shardlow (2005), Numerical simulation of stochastic PDEs for excitable media.

(9)

B

230 Bibliography

[104] W. Stannat (2013), Stability of travelling waves in stochastic Nagumo equations.

arXiv preprint arXiv:1301.6378.

[105] W. Stannat (2014), Stability of travelling waves in stochastic bistable reaction-diffusion equations. arXiv preprint arXiv:1404.3853.

[106] M. Talagrand (2006), The generic chaining: upper and lower bounds of stochastic

processes. Springer Science & Business Media.

[107] A. Tonnelier and W. Gerstner (2003), Piecewise linear differential equations and integrate-and-fire neurons: insights from two-dimensional membrane models.

Physical Review E 67(2), 021908.

[108] K. Twardowska (1996), Wong-Zakai approximations for stochastic differential equations. Acta Applicandae Mathematica 43(3), 317–359.

[109] P. van Heijster, A. Doelman, T. J. Kaper and K. Promislow (2010), Front interac-tions in a three-component system. SIAM Journal on Applied Dynamical Systems

9(2), 292–332.

[110] N. Van Kampen (1981), Itˆo versus Stratonovich. Journal of Statistical Physics

24(1), 175–187.

[111] M. Veraar and L. Weis (2011), A note on maximal estimates for stochastic convo-lutions. Czechoslovak mathematical journal 61(3), 743.

[112] J. Vi˜nals, E. Hern´andez-Garc´ıa, M. San Miguel and R. Toral (1991), Numeri-cal study of the dynamiNumeri-cal aspects of pattern selection in the stochastic Swift-Hohenberg equation in one dimension. Physical Review A 44(2), 1123.

[113] A. I. Volpert, V. A. Volpert and V. A. Volpert (1994), Traveling wave solutions

of parabolic systems, Vol. 140. American Mathematical Soc.

[114] L. Weis (2006), The H∞ holomorphic functional calculus for sectorial operators -a survey. In: P-arti-al differenti-al equ-ations -and function-al -an-alysis. Springer, pp. 263–294.

[115] E. Zemskov and I. Epstein (2010), Wave propagation in a FitzHugh-Nagumo-type model with modified excitability. Physical Review E 82(2), 026207.

[116] J. Q. Zhang, A. V. Holden, O. Monfredi, M. R. Boyett and H. Zhang (2009), Stochastic vagal modulation of cardiac pacemaking may lead to erroneous iden-tification of cardiac “chaos”. Chaos: An Interdisciplinary Journal of Nonlinear

Science 19(2), 028509.

[117] K. Zumbrun (2011), Instantaneous Shock Location and One-Dimensional Nonlin-ear Stability of Viscous Shock Waves. Quarterly of applied mathematics 69(1), 177–202.

Referenties

GERELATEERDE DOCUMENTEN

These extra nonlinear diffusive terms cause short-term regularity issues that prevent a direct analysis of (1.4) in a semigroup

(1994) the zero dynamics are found for a class of parabolic systems defined on an interval with collocated boundary control and observation.. However, no other results on zero

3 ~b!, we have drawn a case with two stationary and symmetric sources, each generating waves with different wave numbers and frequencies, and one sink moving according to the

In particular, we view such systems as singular perturbations of spatially homogeneous LDEs, for which stable traveling wave solutions are known to exist in various settings..

Recent studies have shown that in the presence of noise, both fronts propagating into a metastable state and so-called pushed fronts propagating into an unstable state,

Traveling waves and pattern formation for spatially discrete bistable reaction- diffusion equations (survey).. Bichromatic travelling waves for lattice

27, 1983.The invention relates to a process for preparing substituted polycyclo-alkylidene polycyclo-alkanes, such as substituted adamantylidene adamantanes, and the

In Section 3.2, we derive a de-coupled compensation scheme for the case where there is no transmit IQ imbalance, and where the estimation and compensation of receiver IQ imbalance