• No results found

Growing up in the city : a study of galaxy cluster progenitors at z>2 Kuiper, E.

N/A
N/A
Protected

Academic year: 2021

Share "Growing up in the city : a study of galaxy cluster progenitors at z>2 Kuiper, E."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Growing up in the city : a study of galaxy cluster progenitors at z>2

Kuiper, E.

Citation

Kuiper, E. (2012, January 24). Growing up in the city : a study of galaxy cluster progenitors at z>2. Retrieved from https://hdl.handle.net/1887/18394

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18394

Note: To cite this publication please use the final published version (if applicable).

(2)

Growing up in the city:

a study of galaxy cluster progenitors at z > 2

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op dinsdag 24 januari 2012 klokke 15.00 uur

door

Ernst Kuiper

geboren te Amersfoort in 1984

(3)

Promotiecommissie

Promotor: Prof. dr. H. J. A. R¨ottgering Co-promotor: Prof. dr. G. K. Miley

Overige leden: Prof. dr. M. Franx dr. H. Hoekstra Prof. dr. F. P. Israel Prof. dr. K. Kuijken

dr. N. H. Hatch (School of Physics and Astronomy, Nottingham) dr. P. Rosati (European Southern Observatory, Garching)

dr. B. P. Venemans (Max Planck Institut f¨ur Astronomie, Heidelberg)

The work presented in this thesis is funded by the Netherlands Organization for Scientific Research (NWO).

(4)

iii

(5)

iv

Cover design by Bakabaka Design, www.bakabaka.nl Photo credit: cocoip, www.flickr.com/photos/cocoip

(6)

v

Table of contents

1. Introduction 1

1.1 The beginning . . . . 1

1.2 Galaxy clusters . . . . 1

1.2.1 The influence of environment . . . . 2

1.2.2 Galaxy clusters and cosmology . . . . 2

1.3 Galaxy clusters across cosmic time . . . . 3

1.4 Galaxy clusters at z > 1.5 . . . . 4

1.5 HzRGs: powerhouses in the early Universe . . . . 5

1.6 This thesis . . . . 6

1.7 Outlook . . . . 8

2. Kinematics of a z ∼ 2 protocluster core 13 2.1 Introduction . . . . 14

2.2 Data . . . . 15

2.3 Results . . . . 18

2.3.1 Cluster membership . . . . 18

2.3.2 Overdensity . . . . 20

2.3.3 Velocity distribution . . . . 23

2.4 Discussion . . . . 26

2.4.1 A galaxy cluster progenitor . . . . 26

2.4.2 Formation scenarios . . . . 28

2.5 Conclusions . . . . 34

3. A galaxy populations study of a radio–selected protocluster at z ∼ 3.1 39 3.1 Introduction . . . . 40

3.2 Data . . . . 41

3.2.1 Ground-based UV-optical imaging . . . . 41

3.2.2 HST/ACS optical imaging . . . . 43

3.2.3 Near-infrared data . . . . 43

3.2.4 Mid-infrared data . . . . 43

3.2.5 Further reduction . . . . 44

3.3 Photometry . . . . 44

3.4 Sample selection . . . . 46

3.4.1 Lyα and [Oiii] excess objects . . . . 46

(7)

vi

3.4.2 Lyman Break candidates . . . . 46

3.4.3 Balmer Break Galaxy candidates . . . . 49

3.4.4 Spectroscopic redshifts . . . . 51

3.4.5 Completeness: photometric redshift selection . . . . 52

3.5 SED fitting . . . . 53

3.6 Results . . . . 55

3.6.1 Number densities of galaxy populations . . . . 55

3.6.2 Properties of protocluster galaxy candidates . . . . 59

3.6.3 Dependance of galaxy properties on location within the proto- cluster . . . . 65

3.7 Discussion . . . . 68

3.7.1 Surface and volume overdensities . . . . 68

3.7.2 Field and cluster ensemble properties . . . . 70

3.7.3 The future of MRC 0316–257 . . . . 72

3.8 Summary and conclusions . . . . 73

4. Spectroscopy of z∼3 protocluster candidates 79 4.1 Introduction . . . . 80

4.2 Sample selection & data . . . . 82

4.3 Results . . . . 83

4.3.1 Redshift determination . . . . 83

4.3.2 Redshift distribution . . . . 84

4.4 Discussion . . . . 89

4.4.1 A possible superstructure and implications for the overdensity 89 4.4.2 Spatial distribution . . . . 90

4.4.3 Influence of protocluster environment on galaxy properties . 91 4.4.4 Interacting or unrelated structures? . . . . 97

4.5 Conclusions . . . . 100

5. Protoclusters with tunable filters 105 5.1 Introduction . . . . 106

5.2 Data . . . . 107

5.2.1 Data reduction . . . . 108

5.2.2 Source detection and photometry . . . . 110

5.3 Results . . . . 110

5.3.1 Selection of LAEs . . . . 110

5.3.2 Redshift distribution . . . . 114

5.3.3 Contamination . . . . 117

5.4 Does 6C0140+326 reside in a protocluster? . . . . 118

5.5 Conclusions & outlook . . . . 122

6. Dissecting high redshift radio galaxies 127

(8)

vii

6.1 Introduction . . . . 128

6.2 Observations . . . . 128

6.3 Results . . . . 129

6.3.1 Colour images . . . . 129

6.3.2 Decomposing the light from HzRGs . . . . 130

6.3.3 Sizes of HzRGs . . . . 134

6.3.4 Large-scale environment . . . . 135

6.4 Discussion . . . . 136

7. Appendix 139 7.1 Data . . . . 140

7.1.1 Integral field spectroscopy . . . . 140

7.1.2 Additional data . . . . 140

7.2 Results . . . . 140

7.2.1 Kinematics of individual objects . . . . 140

Nederlandse samenvatting 155

Curriculum Vitae 163

List of publications 165

Dankwoord 167

(9)

Referenties

GERELATEERDE DOCUMENTEN

Since there are degeneracies between star-formation history parameters the most robust way to present the mass assembly history of this galaxy is to marginalise across this grid

No extended optical line emission is seen at distances larger than ∼ 15 kpc from the radio core and thus these emission lines are likely to originate from the satellite galaxies..

Galaxy clusters are also the home of cD galaxies, the most massive galaxies known with masses exceeding 10 12 M ⊙. The fact that these galaxies are exclusively located in

One of the striking results found in this study, is that the core of the protocluster, which is believed to evolve into a massive cD type galaxy by z = 0, has a similar

The cumulative number density of the LBG candidates in the 0316 field is a factor of 1.6±0.3 larger than for comparable non-protocluster fields at similar redshifts, indicating

The number of 0316 protocluster objects is too small to account for the surface overdensity presented in Chapter 3, but is consistent with the presence of two structures; the

The observed redshift distribution of the emitters is different from the expected distribution of a blank field at the ∼ 3σ level, with the Lyα emitters concentrated near the

Decomposing the light from MRC 0406-244 and TX 0828+193 shows that the nebular emission, scattered AGN light and young stars are aligned with the radio jets and contribute to the