• No results found

B-sites for NO and adsorption behavior via in-situ spectroscopy Palladium doped perovskite-based NO oxidation catalysts: The role ofPd Applied Catalysis B: Environmental

N/A
N/A
Protected

Academic year: 2022

Share "B-sites for NO and adsorption behavior via in-situ spectroscopy Palladium doped perovskite-based NO oxidation catalysts: The role ofPd Applied Catalysis B: Environmental"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Catalysis B: Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Palladium doped perovskite-based NO oxidation catalysts: The role of Pd and B-sites for NO x adsorption behavior via in-situ spectroscopy

Zafer Say

a

, Merve Dogac

a

, Evgeny I. Vovk

a,b

, Y. Eren Kalay

c

, Chang Hwan Kim

d

, Wei Li

d

, Emrah Ozensoy

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bBoreskovInstituteofCatalysis,630090Novosibirsk,RussianFederation

cDepartmentofMetallurgical&MaterialsEngineering,MiddleEastTechnicalUniversity,06800Ankara,Turkey

dGeneralMotorsGlobalR&DChemicalSciences&MaterialsSystemsLab,30500MoundRd.,Warren,MI48090,USA

a r t i c l e i n f o

Articlehistory:

Received1November2013

Receivedinrevisedform13January2014 Accepted20January2014

Availableonline28January2014

Keywords:

LaCoO3

LaMnO3

Pd NOx

DeNOx

a b s t r a c t

Perovskite-basedmaterials(LaMnO3,Pd/LaMnO3,LaCoO3andPd/LaCoO3)weresynthesized,character- ized(viaBET,XRD,Ramanspectroscopy,XPSandTEM)andtheirNOx(x=1,2)adsorptioncharacteristics wereinvestigated(viain-situFTIRandTPD)asafunctionofthenatureoftheB-sitecation(i.e.MnvsCo), Pd/PdOincorporationandH2-pretreatment.NOxadsorptiononofLaMnO3wasfoundtobesignificantly higherthanLaCoO3,inlinewiththehigherSSAofLaMnO3.IncorporationofPdOnanoparticleswithan averagediameterofca.4nmdidnothaveasignificanteffectontheamountofNO2adsorbedonfresh LaMnO3andLaCoO3.TPDexperimentssuggestedthatsaturationoffreshLaMnO3,Pd/LaMnO3,LaCoO3

andPd/LaCoO3withNO2at323KresultedinthedesorptionofNO2,NO,N2OandN2(withoutO2)below 700K,whileabove700K,NOxdesorptionwaspredominantlyintheformofNO+O2.Perovskitemateri- alswerefoundtobecapableofactivatingN–Olinkagestypicallyatca.550K(evenintheabsenceofan externalreducingagent)formingN2andN2OasdirectNOxdecompositionproducts.H2-pretreatment yieldedadrasticboostintheNOoxidationandNOxadsorptionofallsamples,particularlyfortheCo- basedsystems.PresenceofPdfurtherboostedtheNOxuptakeuponH2-pretreatment.Increaseinthe NOxadsorptionofH2-pretreatedLaCoO3andPd/LaCoO3surfacescouldbeassociatedwiththeelectronic changes(i.e.reductionofB-sitecation),structuralchanges(surfacereconstructionandSSAincrease), reductionofthepreciousmetaloxide(PdO)intometallicspecies(Pd),andthegenerationofoxygen defectsontheperovskite.Mn-basedsystemsweremoreresilienttowardB-sitereduction.Pd-addition suppressedtheB-sitereductionandpreservedtheABO3perovskitestructure.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

NOx(i.e.predominantlyNO,NO2)isoneofthemainpollutants emittedbydieselandgasoline-poweredenginesandhasasignifi- cantlynegativeinfluenceontheenvironment.Duringthelasttwo decades,emission regulationshavebecometighter,andnumer- oustechnologiesforNOxafter-treatmenthavebeendevelopedand commercialized.Fortheconventionalgasolineengines,three-way catalysts(TWC)canreducetoxicgaseseffectively undera stoi- chiometricairtofuelratio(14.5);howeverTWCisnoteffective inNOxaftertreatmentindieselenginesoperatingunderoxygen- richleanconditions(wheretheairtofuelratiogreaterthan14.5).

NOxstoragereduction(NSR)catalystsweredevelopedasanalter- nativetechnology[1–3].ConventionalNSRcatalystsarecomposed

∗ Correspondingauthor.Tel.:+903122902121;fax:+903122664068.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

ofthreemaincomponents,Pt,Al2O3,and BaOwhereBaOfunc- tionsastheNOxstoragecomponent.AlthoughthepresenceofPt is critical forNO oxidation (animportant stepin NOx storage), itcontributessignificantlytothetotalcostofthecatalyst.These importantdrawbacksledthedirectionofresearchtowardnoble metal-freematerials.

PerovskitesintheformofABO3havebeenconsideredaspromis- ingalternativesforlow-costautomotivecatalystswithexcellent redoxpropertiesandhighthermaldurability[4,5].Thechemical properties ofthe perovskite materialsarealso knownfor their flexiblecharacteristicswhichareassociated withtheirA and/or B site substitution capabilities and availability of a wide vari- etyofsub-stoichiometricstructures[6].Thecatalyticefficiencies ofperovskitematerialsforNOand N2OreductionintoN2 were demonstratedbyseveralstudies[7–13].Moreover,thesematerials playanefficientroleinthecatalyticNOoxidationunderleancon- ditionsevenintheabsenceofanoblemetal[14,15].Recently,Kim etal.[16]reportedthatSr-promotedLa-basedperovskitecatalysts 0926-3373/$seefrontmatter©2014ElsevierB.V.Allrightsreserved.

http://dx.doi.org/10.1016/j.apcatb.2014.01.038

(2)

(La1−xSrxCoO3)exhibithighercatalyticNOtoNO2conversionrates ascomparedtoPt-basedcatalysts.

LaCoO3andPd/LaCoO3basedperovskitematerialsareknown tobehighlysensitivetowardpretreatmentunderreducingcondi- tionsleadingtosignificantstructuralchangesandreconstruction [12,17,18]wherethereductionoftheperovskitelatticeisclosely linked to the nature of the B-site cation in the ABO3 struc- ture.In thecurrent work,the effectof H2(g) pre-treatmenton NOx oxidation and adsorptionover LaCoO3, LaMnO3 as wellas theirPd-enriched forms were investigated by meansof in-situ Fouriertransforminfrared(FTIR)spectroscopy andtemperature programmeddesorption(TPD) in anattempttoprovide funda- mentalknowledgeassociatedwiththeinfluenceofthenatureof theB-sitecationandthePdincorporationontheDeNOxcatalytic chemistryofperovskites.

2. Experimental 2.1. Catalystpreparation

LaCoO3andLaMnO3,weresynthesizedviacitricacidmethod involving a citrate route as prescribed in a recent GM patent [19].Supportedpalladiumcatalystswerepreparedusingclassi- cal incipientwetness impregnation method utilizing palladium nitratetogether with LaCoO3 or LaMnO3. Pd wasimpregnated ontothesynthesizedperovskitesamplesafterthecalcinationof theperovskites at 973K for 5hin air. The nominalloading of palladiumwasadjusted to1.5wt%Pd. Pd incorporated materi- alsweresubsequentlycalcinedat773Kfor5hinair.TheLa2O3

benchmarkmaterialwassynthesized viadirect calcinationof a La(NO3)3·6H2O(s)(SigmaAldrich)precursorat973Kinanopen-air ovenfor12h.

Priortoin-situFTIRanalysis,perovskitesamplesmountedon thespectroscopicbatchreactorwereinitiallytreatedandactivated withanexposureof2TorrNO2(g)for5minat323Kfollowedby annealingandsurfacecleaninginvacuum(<10−3Torr)at973K.

Finally, samples were cooled to 323K for subsequent NO2(g) adsorptionexperiments.Theperovskitematerialsreferredinthe textaspre-reducedweretreatedwith5.0TorrH2(g)(LindeGmbH, Germany,>99.9)at623Kfor10min.

NO2saturationofthesynthesizedmaterialswascarriedouttyp- icallybydosing5.0TorrNO2(g)overthesamplefor10minat323K.

NO2(g)usedintheexperimentswaspreparedbymixingNO(g) (AirProducts,99.9%)andO2(g)(LindeGmbH,Germany,99.999%) followedbymultiplefreeze-pump-thawcyclesforfurtherpurifi- cation.

2.2. Instrumentation

AlloftheFTIRspectroscopicexperimentswereconductedin transmissionmodeusingaBrukerTensor27spectrometercoupled toabatch-typecatalyticreactorwhosedetailshavebeendescribed elsewhere[20,21].AlloftheFTIRspectrawerecollectedat323K.

Alloftheadsorption/pre-treatmentstepswerealsoperformedin batchmode.

PriortoTPDexperiments,sampleweremountedonthespec- troscopicbatchreactorandthenwereexposedto5.0TorrNO2(g) for10min.TPDexperimentswerecarriedoutinvacuum,witha heatingrateof12K/min.ForTPDexperimentsaquadrupolemass spectrometer(QMS, Stanford Research Systems, RGA 200) was used.TheQMSsignalswithm/zequalto18(H2O),28(N2/CO),30 (NO/NO2),32(O2),44(N2O/CO2),and46(NO2)weremonitored duringtheTPDmeasurements.Itis wellknownthatduetothe hardionizationprocessintheQMS,pureNO2(g)undergoesfrag- mentationyieldingtwomajorcomponentsnamely,NO(m/z=30)

andNO2 (m/z=46).TheNO:NO2 ratiointheNO2 fragmentation patternvariesbetween3.0and4.0asafunctionoftheionization conditions.Underthecurrentexperimentalconditions,fragmen- tationratioofNO:NO2 wasdeterminedtobe3.23.Inthecurrent work,astrictlyquantitateanalysisoftheTPDdesorptionchannels willnotbegiven.However,usingthefragmentationcharacteris- ticsofpureNO2(g),relativecontributionsofpureNO(g)andpure NO2(g)totheoverallm/z=30signalcanbereadilydistinguished.

Ex-situXPSanalysiswasperformedusinga SPECSXPSspec- trometerwithaPHOIBOS-100hemisphericalenergyanalyzerand a DLD detectorutilizing monochromatic AlK␣X-rayirradiation (h=1486.7eV,400W).Instrumentaldetailsregardingtheother utilized experimental techniques (i.e. XRD, TEM, BET, TPD and Ramanspectroscopy)weredescribedelsewhere[20,22].

3. Resultsanddiscussion

3.1. CharacterizationofthesynthesizedsamplesviaXRD,TEM, BET,XPS,andRamanspectroscopy

Fig.1illustratestheex-situXRDprofilesofLaMnO3,Pd/LaMnO3, LaCoO3andPd/LaCoO3materialsobtainedaftersynthesisandcal- cinationat973K.XRDpatternsverifythatsynthesisofperovskite structureswasachievedasindicatedbythepresenceofthechar- acteristic diffractionlinesat 32.56 (LaMnO3)as wellas32.84 and33.21 (LaCoO3)[23].Thismajordiffractionsignalpossesses additional information aboutthe latticestructure of perovskite materialsasshownindetailinFig.1b.WhileMn-basedperovskite structureshaveonlyasinglemajorpeakrelatedtothecubiclattice orpoorlycrystallinerhombohedralstructure,Co-basedperovskites revealadoubletindicatingatransformationfromcubicintorhom- bohedralstructure[24].AnothercriticalfeaturepresentedinFig.1b is theshiftin 2-thetavalue from32.56 to32.84. Thiscanbe explainedbythesmallerlatticespacingofCo-basedmaterialsdue tosmallerionicsizeofCo3+.XRDdatagiveninFig.1pointoutthat afterPdimpregnation,theonlydetectablephaseswereperovskite phasesandnootherorderedphasessuchasLa2O3,MnOx,CoOx,Pd orPdOwerevisible.Lackofsuchsignalsislikelyduetothesmall particlesize,lowvolumepercentileorlackofcrystallographicorder insuchphases.AsillustratedintheTEMimagesofPd-impregnated materialsgiveninFig.2,PdO/PdOxparticlesareclearlyvisibleand aredispersedontheperovskitesurfacewithanaverageparticlesize ofca.4nm.ItisworthmentioningthatPdO/PdOxnanoparticleson thesynthesizednanoparticleshavearelativelylowsurfacemobil- itywhichenablesarelativelygoodPdO/PdOxdispersionevenafter calcinationat773K.AssumingatomicdispersionforPdOxparticles andaLaMnO3 surfaceatomdensityof1015atoms/cm2,asimple estimationrevealsthatsurfacedispersionofPdOxisca.38%.How- ever,TEMimagesinFig.2suggestthataveragePdOxparticlesize is∼4nmindicatingthattheactualPdOxdispersionissmallerthan theestimatedvalue.TheoxidiccharacterofthePdparticles(i.e.the presenceofPdx+/Pd2+species)isevidentbyaca.+1.5eVshiftinthe Pd3dXPSbindingenergy(B.E.)valuesobservedforthePd/LaMnO3

andPd/LaCoO3samples(seetheSupportinginformationsection) comparedtothetypicalmetallicPd3dB.E.of335.3eV.

TheresultsoftheBETspecificsurfacearea(SSA)measurements ofthesynthesizedsamplesarepresentedinFig.3.TheMn-based samplescalcinedat973KhavecomparativelyhigherSSAswhich areapproximately20m2/g.Ontheotherhand,SSAsofCo-based samplesare ca. 8m2/g.Temperature-dependent structural evo- lutionbymeansofXRDanalysis(datanotshown)ofperovskite materialsrevealsthatstructuraltransformationfromamorphous toacrystallinestructuretakesplaceatarelativelylowertemper- atureforLaCoO3.WhileLaCoO3hasacubiccrystallinestructure at 873K, LaMnO3 is still amorphous at the same temperature.

(3)

30 32 34 36 LaCoO3

Pd/LaMnO3

LaMnO3 Pd/LaCoO3

10 20 30 40 50 60 70 80

LaCoO3

Pd/LaMnO3

LaMnO3 Pd/LaCoO3

Cubic LaMnO3 Rhombohedral LaCoO3

2 thet a (degrees )

Intensity (a.u.) Intensity (arb. u.)

(a) (b)

32.56o

32.84 33.21

Fig.1. (a)Ex-situXRDpatternscorrespondingtoLaMnO3,Pd/LaMnO3,LaCoO3andPd/LaCoO3samplesaftercalcinationat973Kfor5h.(b)DetailedXRDpatternbetween 29<2<37.

Therefore,itisapparentthatMn-basedperovskitesrevealhigher SSAvaluesandarelessorderedthantheirCo-basedcounterparts.

Interestingly,Co-basedcatalystwasreportedtobesignificantly more active than Mn-based catalyst [16] suggesting that the intrinsicrateofNOoxidationoverLaCoO3catalystcouldbemuch greaterthanthatofLaMnO3.Moreover,Fig.3illustratesthatPd additioncausesonlyaminorincreaseintheSSA(i.e.∼1–2m2/g) forbothMn-andCo-basedperovskites.

Ramanspectroscopycouldbeausefultechnique inorderto identifyvariousphasesinthematerialstructurewhichmightbe elusivetodetectinXRDduetopoorcrystallinityorsmallparticle size.Thus,Ramanspectroscopiccharacterizationofthesynthesized materialshasalsobeenperformedinordertocheckthepresenceof additionalphasesotherthantheperovskitephases.Ramanspectra ofLaMnO3,Pd/LaMnO3,LaCoO3 andPd/LaCoO3arepresentedin Fig.4.LaMnO3andPd/LaMnO3samplesrevealthreemajorRaman

featuresatca.205,421and644cm−1asillustratedinFig.4aand b,respectively.Theformerfeaturesat210and421cm−1 canbe associated withA1g and Eg modes ofoxygencagerotation and vibrationinLaMnO3perovskite,respectively[25].AnotherRaman featureat644cm−1 canbeattributedtoaMn–O–Mnstretching mode(␯Mn–O–Mn)intheperovskitestructureinaccordancewithLi etal.[26]whoreportedasimilarpeakat654cm−1forMn3O4,as wellasAmmundsenetal.[27]whoalsoreportedaRamansignal at647cm−1forMnO2.Furthermore,thisassignmentisalsoconsis- tentwiththepreviouslypublishedRamandataonPd/LaMnO3[28]

whichrevealedamajorsignalat653cm−1.Thereisalsoanother weakfeaturelocatedatca.520cm−1correspondingtotheLaMnO3 andPd/LaMnO3samples.Xietal.reportedthatthisweakfeature mightberelatedtofluorescencebands[29].Moreover,Ilievetal.

assigned thisweakfeaturetotheAg Ramanactivemodeofthe perovskitestructure[30].

Fig.2.RepresentativeTEMimagesfor((a)and(b))Pd/LaMnO3and(c)Pd/LaCoO3thatwereinitiallycalcinedat973Kfor5h.

(4)

Fig.3. BETspecific surface areavalues forLaMnO3, Pd/LaMnO3, LaCoO3 and Pd/LaCoO3aftercalcinationat973Kfor5h.

AsshowninFig.4spectra(c)and(d),LaCoO3andPd/LaCoO3 materialsexhibitaRamanscatteringfeatureatca.409cm−1 and aweakbroadfeatureatca.612cm−1.The409cm−1featurecan beassociatedwiththeperovskite structure.Tanget al.investi- gatedtheRamanspectraofdifferentcobaltcontainingcompounds suchasCoOOH,Co3O4andCoO;andobservedasharpfeatureat ca.650cm−1[31].Thus,itislikelythatthefeatureat615cm−1in spectra(c)and(d)isassociatedwithCo–Ospecies.

Fig.5illustratestherelativesurfaceatomicratiosofthesyn- thesizedmaterialsobtainedvia XPSmeasurements.The atomic ratioswerecalculatedfromthecorrespondingPd3d,La3d,Mn2p, andCo3pspectrabytakingthecorrespondingXPsensitivityfac- torsintoaccount.ForbothPd-freeandPd-containingperovskites, XPSdatarevealthatthesamplesurfacesareenrichedbyLa(i.e.

Mn/Laand Co/Lasurfaceatomicratiosarelessthan1).Laaccu- mulationonthesurfacemostprobablyoccursduetoformation ofLa2(CO3)3,La(OH)3and/oramorphousLa2O3domainstogether

200 400 600 800 1000 (a) (b) (c) (d)

Intensity (arb. u.) 100

Raman Shift (cm-1)

644

421

205 612

409 530

LaMnO3 Pd/LaMnO3 Pd/LaCoO3

LaCoO3

Fig.4.Ex-situRamanspectracorrespondingto(a)LaMnO3,(b)Pd/LaMnO3,(c) LaCoO3and(d)Pd/LaCoO3samplesaftercalcinationat973Kfor5h.

withthe perovskite. As illustrated in a recent study [32], it is possibletocontroltheCo/Lasurfaceatomic ratio,bymodifying thesynthesisparameters.However,thecurrentlyusedsynthesis parameterswerechoseninordertomimicthesyntheticconditions reportedinarecentstudybyGM[16]whichdemonstratedhighly activeperovskitecatalysts.Thepresenceofsurfacecarbonateand hydroxidegroupsisconfirmedbytheC1sandO1sXPspectra(data notshown).Laenrichmentofthesurfacescanalsobeassociated withaLa-terminatedperovskitestructurewhichisconsistentwith recentDensityFunctionalTheory(DFT)calculationsofSchneider etal.,ontheLaCoO3surface,whoreportedthattheLasurfaceter- minationisenergeticallythemostfavorableterminationforthe LaCoO3unitcell[33].ItisworthmentioningthatPdloadingdoes notaffecttheMn/LaandCo/Lasurfaceatomicratios.

3.2. NO2adsorption/desorptionbehaviorofperovskitesurfaces

Fig.6presentstheFTIRspectraobtainedforthestepwiseNO2(g) adsorptiononLaMnO3(Fig.6a),LaCoO3(Fig.6b)andLa2O3(Fig.6c) samplesat 323K. FTIRspectra yield a convoluted setof bands correspondingtovarioustypesofnitratesand nitriteswithdif- ferentsurfaceadsorptiongeometries[34–40].Vibrationalfeatures appearing at 1649 and 1009cm−1 are assigned to asymmetric and symmetric stretchingmodes of bridging nitratespecies on theperovskitesurface,respectively[34].Itisevidentthatbridg- ingnitratesarereadilyvisibleontheLaMnO3 perovskite,while thesespeciesarelesspronouncedontheLaCoO3surface.Another typeofadsorbednitrate,revealingvibrationalfeaturesat1530and 1269cm−1canbeassignedtomonodentatenitrates[37].Twochar- acteristicvibrationalmodesofbidentatenitratesarealsoobserved onthesurfacewhicharelocatedat1568and1246cm−1[35,36].The vibrationalbandsat1434,1322and804cm−1inFig.6a(andsimilar bandsinFig.6b)canbeassignedto␯N=O,␯N–Oand␦ONOvibrationsof monodentatesurfacenitrites(–O–N=O),respectively[37–40].The weakabsorptionbandsat1090and1194cm−1whichareapparent onlyattheinitialstageofNO2(g)exposureanddisappearathigher exposurescan beassigned tobridging and/orchelating nitrites [11].Thesimultaneousgrowthofnitrateandnitritespeciescanbe associatedwiththedisproportionationofNO2ontheperovskites surfaces:

2NO2(ads)+O2−(surf)→ NO3(ads)+NO2(ads)

Fig.6 suggeststhat duringthe initialstages ofNO2 adsorp- tion,bridgingnitratesandbridging/chelatingnitritesareformed.

With further NO2 exposure, the bridging/chelating nitrite are transformedintosurfacenitritospecieswhilebridgingnitratesig- nalscontinuetogrowtogetherwithmonodentateandbidentate nitrates.FurtherNO2exposureleadstothesimultaneousgrowth ofthenitratesandmonodentatenitrite(nitrito)speciesuntilthe surfacesaresaturatedwithNOx.Alongtheselines,itisapparent thatontheinvestigatedperovskitesurfaces,NO2adsorptionispre- dominantlyaccompaniedwithitsoxidationtonitratespecies.Thus, thesurfacecoverageofnitratesontheinvestigatedperovskitesnot onlyrevealstherelativeamountofNOxadsorptionbutitcanalso beanindirectindicatorassociatedwiththeinherentNOoxidation capabilitiesofthesesurfaces.

It is visiblethat thegeneralaspects of thevibrational spec- tracorrespondingtoNOxadsorptiongeometriesoftwodifferent perovskitesurfacesshowsignificantresemblances.Thisbehavior canbeexplainedbyconsideringtheXPSresultsgiveninFig.5, which clearlyshowthat both LaMnO3 and LaCoO3 surfacesare La-enriched.Asdiscussedearlier,thiscaneitherbeattributedto La-terminatedperovskite surfacesorthepresence ofadditional amorphousLa2O3 (and/orLa2(CO3)3,La(OH)3)domainsonboth surfacesrevealingsimilaradsorbedNOxspeciesforLaMnO3 and

(5)

Fig.5.QuantitativedeterminationofthesurfaceatomicratiosviaXPSforthesynthesizedLaMnO3,Pd/LaMnO3,LaCoO3andPd/LaCoO3samplesaftercalcinationat973Kfor 5h.

LaCoO3.Inotherwords,onbothLaMnO3andLaCoO3,adsorbedNOx

speciesaremostlyintheformofnitrateswhicharecoordinatedto eitheramorphousLa2O3and/orLa2(CO3)3,La(OH)3domainsorLa- terminatedperovskitesurfaces.Inordertohaveabetterinsight intosurfacefunctionalgroups,benchmarkNOxadsorptionexper- imentswerealsoperformedonpureLa2O3 asshown inFig.6c whichrevealssimilarvibrationalfrequenciestothatofLaMnO3and LaCoO3.ThismaysuggestthatalthoughB-sitesmayplayacrucial roleduringtheinitialstages ofNOx adsorption,finaladsorption sitesofthestoredNOxspeciesonLaMnO3andLaCoO3surfacesare moresensitivetotheA-sitesoftheABO3structure,ratherthanthe B-sites.

AnotherimportantobservationregardingtheFTIRdatagiven inFig.6whichisworthemphasizingisthattotalIRsignalinten- sitiesrelatedtoadsorbedNOxspeciesarequitedissimilarforCo- andMn-basedmaterials.AssessmentoftheIRabsorbancevalues fortheNO2-saturatedLaMnO3andLaCoO3surfaces(i.e.redspectra

inFig.6aandb),immediatelyrevealsthatLaMnO3adsorbssignif- icantlyhigheramountofNOxthanLaCoO3,inaccordancewithits considerablyhigherspecificsurfacearea(Fig.5).

NO2uptakebehaviorsofPd-containingandPd-freeperovskite materialswerealsoinvestigatedinacomparativefashionbymeans ofFTIRspectroscopy.Fig.7showsthecorrespondingFTIRspec- traobtainedafterthesaturationofLaMnO3,Pd/LaMnO3,LaCoO3 andPd/LaCoO3surfaceswith5TorrNO2(g)for10minat323K.It isclearlyvisibleinFig.7thatincorporationofPdspeciesdoesnot significantlyalterthenatureoftheadsorbedNOxspeciesonboth oftheperovskitesurfaces.Inaddition,thepresenceofPdspecies resultinaminorincreaseintheIRabsorptionintensitiesforboth Mn-andCo-basedmaterialswhichisingoodagreementwiththe slightincreaseinthespecificsurfaceareavaluesofthesesurfaces asshowninFig.5.

FurtherinsightregardingtherelationshipbetweenNOoxida- tionandNOxadsorptionaswellasthedesorption/decomposition

800 1000 1200 1400 1600 1800 2000 800 1000 1200 1400 1600 1800 2000

Wavenumber (cm-1)

Absorbance (arb. u.) 1649 1568 1530 1434 1322 12691246 1194 1090 1009 839804

LaMnO3

0.1

800 1000 1200 1400 1600 1800 2000

1565 1526 1441 1327 1272 1242 1194 1010

839 803

0.1 0.2

(a) (b)LaCoO3 (c)La2O3

16321603 1578 1520 1448 1355 1254 1016 806

Wavenumber (cm-1) Wavenumber (cm-1)

Fig.6. FTIRspectracorrespondingtothestepwiseNO2adsorptionat323Konthe(a)LaMnO3(b)LaCoO3and(c)La2O3samples.ThespectracorrespondingtotheNO2-saturated (via5.0TorrNO2(g)overthesamplesurfacefor10minat323K)samplesurfacesaremarkedwithredspectra.

(6)

1000 1200

1400 1600

1800 1800 1600 1400 1200 1000

Wavenumber (cm-1)

Absorbance (arb. u.) Absorbance (arb. u.)

Wavenumber (cm-1) (b)

(a)

1648 1575 1526 1442 1323 1250 1012 1561 1523 1446 1334 1271 1243 1014

LaMnO3 Pd/LaMnO3

LaCoO3 Pd/LaCoO3

0.1 0.1

Fig.7.FTIRspectracorrespondingtotheNO2-saturated(a)LaMnO3andPd/LaMnO3and(b)LaCoO3andPd/LaCoO3at323K.BlackspectraineachpanelrepresentthePd-free materialsandredspectracorrespondtoPd-containingmaterials.

pathwaysoftheadsorbedNOxspeciescanbeobtainedviaTPD.

Fig.8illustratestheTPDprofilesforLaMnO3,Pd/LaMnO3,LaCoO3

and Pd/LaCoO3 samplesobtained after saturationof these sur- faceswithNO2at323K(5.0TorrNO2exposurefor10min)where someof themajordesorptionchannels(m/z=28, 30,32,44, 46

correspondingtoN2,NO,O2,N2OandNO2,respectively)areshown.

WiththehelpoftheTPDdata,NOxadsorptiononLaMnO3 and LaCoO3canbecompared.Suchacomparisonclearlyindicatesthat LaMnO3adsorbsagreateramountofNOxthanLaCoO3inexcellent agreementwiththecurrentBET(Fig.3)andin-situFTIR(Fig.6)

300 400 500 600 700 800 900 1000 28 32 30 44 46

300 400 500 600 700 800 900 1000

28 32 30 44 46

300 400 500 600 700 800 900 1000 28 32 30 44 46

LaMnO3

LaCoO3

Pd/LaMnO3

300 400 500 600 700 800 900 1000 28 32 30 44 46

Temperature (K)

Temperature (K)

Temperature (K)

Temperature (K)

QMS Intensity (arb. u.)QMS Intensity (arb. u.)

Pd/LaCoO3

(a) (b)

(c) (d)

NO N2O

O2

NO2 N2

NO N2O O2

NO2 N2

NO N2O

O2 NO2 N2

NO N2O O2

NO2 N2

395 460 565 740 395 460 540 790

395 490 550 740 395 635 690 840

440

2E-7 2E-7

2E-7 2E-7

Fig.8.TPDprofilesobtainedfrom(a)LaMnO3,(b)Pd/LaMnO3,(c)LaCoO3and(d)Pd/LaCoO3samplesaftersaturationwith5TorrNO2(g)at323Kfor10min.

(7)

measurements.Moreover,integratedNO+NO2+N2+N2OTPDsig- nalsofLaMnO3wasfoundtobe48%higherthanthatofLaCoO3(see theSupportinginformationsectionfordetails).Adetailedanalysis ofthedesorbingspeciesobservedintheTPDdatagiveninFig.8 suggeststhatNOdesorptionoccursinabroadtemperaturewindow (i.e.400–800K)yieldingmultipleandconvoluteddesorptionfea- turesandaglobaldesorptionmaximumatca.650K.Theseconvo- lutedNOdesorptionfeaturescanbebetterinterpretedbyanalyzing thesimultaneouslyrecordedadditionaldesorptionchannels.

NO2(m/z=46)desorptionprofilesgiveninFig.8aandbcorre- spondingtoLaMnO3andPd/LaMnO3samplespossessalineshape where at leasttwo desorption states arediscernible at ca. 460 and565K.Itiswell-knownthatpureNO2(g)canbereadilyfrag- mentedinsideaQMSduetoelectronimpactionizationyieldingNO andNO2asthemajorsignals,whereNO:NO2ratioisfoundtobe typicallybetween3:1and4:1.Thus,thecharacteristicNOdesorp- tionfeaturesinFig.8aandbappearingat460and565Kcanbe attributedpredominantlytoNO2desorptionfromtheLaMnO3and Pd/LaMnO3surfaceswithsomecontributionfromNOdesorption.It isimportanttonotethatthesedesorptionstatesdonotrevealany simultaneousO2(g)desorptionsignal.Temperature-programmed FTIRexperiments (Supporting information Fig. 1)performed in a parallelfashion tothecurrent TPDexperiments indicatethat nitratesand nitritospecies disappearin agradual anda simul- taneous mannerduring theheating ramp withouta significant changeinthelineshapeoftheFTIRspectra.Thus,forthedesorption windowwithin460–570K,itcanbearguedthatontheLaMnO3and Pd/LaMnO3surfaces,nitritoandnitratespeciesdesorb/decompose intheformofNO2+NO(withoutO2)wheretheOspeciesgenerated duringnitratedecompositioniscapturedbytheperovskite cur- ingoxygendefectsorinthecaseofPd/LaMnO3,possiblyoxidizing Pd/PdOxsitesintoPdO.

Anotherclearlyvisible signalappearing simultaneouslywith theNOandNO2 desorptionchannelsintherangeof490–570K inFig.8aandbisN2O(m/z=44).N2Odesorptionchannelhasa desorptionmaximum atca. 565Kwhich is coincidingwiththe high-temperatureNO2desorptionsignal.DetectionofN2Oisquite noteworthyasitindicatesthatevenintheabsenceofanexternal reducingagent,LaMnO3andPd/LaMnO3surfacescandirectlyacti- vateN–Olinkagesinaratherefficientmannerandpartiallyreduce nitrate(NO3)andnitrite(NO2)speciesabove500K.AstheN2O formationimpliesthepresenceofatomicNspeciesgeneratedon thecatalystsurface,recombinativedesorptionofatomicNinthe formofN2asthedirecttotalreductionproductisalsolikely.Asa matteroffact,m/z=28desorptionchannelinFig.8aandbclearly revealsthepresenceofN2desorptioninaverybroadtemperature windowwithalocalmaximumatca.565K.ObservationofN2O andN2 intheNO2TPDofLaMnO3 andPd/LaMnO3 clearlyshows thatthesesurfacescanbepromisingmaterialsasDeNOxcatalysts, astheycandirectlyreducestoredNOx species(i.e.nitratesand nitrites)evenintheabsenceofanexternalreducingagent.

Athighertemperatures,anadditionalTPDfeatureinthem/z=32 channelbecomesapparentinFig.8aandb.ThisstrongO2desorp- tion signallocated within750–800Kis detectedtogether with anintenseNOdesorptionsignalappearingatthesametemper- ature.In otherwords,inthis temperatureinterval,NOx species remainingonthesurfacedecomposeasNO+O2withalesssignif- icantcontributionfromN2andN2O(notethatNO2desorptionis notdetectedatthistemperature).Temperature-programmedFTIR studies(SupportinginformationFig.2)suggestthatatthistemper- aturenitritospeciesaretheprominentlyexistingNOxspecieson LaMnO3andPd/LaMnO3withasmallercontributionfromnitrates.

Thus,itis apparentthatthesethermallystablebridgingnitrites decomposemostlyintheformofNO+O2.Itisworthmentioning thatthehightemperatureO2desorptionfeatureappearingwithin 750–800Kcanalsobeassociatedtothedirectoxygenevolution

fromLaMnO3andPd/LaMnO3andtheformationofoxygenvacan- ciesintheperovskitestructureorduetothedecompositionofPdO [41,42].Asa finalnoteonFig.8aandb, itisworthmentioning thatthetotalNOxadsorptionisnotsignificantlyaltereduponPd additiontotheMn-basedperovskitesystemwherepresenceofPd increasestheintegratedtotal NOx(NO+NO2+N2+N2O)desorp- tionsignalbyonlyabout11%(Fig.9).Forthedetailedcalculation oftheintegratedtotalNOxTPDsignals,readerisreferredtothe Supportinginformationsection.

GeneraldesorptioncharacteristicsobservedfortheNO2 TPD experimentsperformedonLaMnO3andPd/LaMnO3surfacesare translatedtoalargeextentontheLaCoO3andPd/LaCoO3samples aswell(Fig.8candd).Asdiscussedearlier,totalintegratedNOx

desorptionsignalisabout48%smallerfortheLaCoO3withrespect tothatofLaMnO3 (Fig.9).Ontheotherhand,Pd-incorporation seems to have a larger positive influence on the NOx adsorp- tion for the Co-based systems where the integrated total NOx

(NO+NO2+N2+N2O) desorption signalincreases by about 16%

(Fig.9).Furthermore,Pdadditionalsoincreasesthethermalsta- bilityofthestoredNOxspeciesshiftingtheirdesorptionsignals tohighertemperatures.Inparticular,Fig.8dalsoillustratesthat Pdadditionleadstoasharplow-temperatureNOdesorptionsig- nallocatedat400K.Correspondingtemperature-dependentFTIR dataindicatethat,atthesetemperaturesmonodentateandbridg- ingnitratesarepartiallydestroyed.Itisalsoworthemphasizing thatthisenhancedlow-temperatureNOdesorptionsignaliscon- comitanttoN2OandN2signalsappearingatthesametemperature.

Thus,itisclearthatPdincorporationhasaminorbutdetectable positiveinfluenceonthelow-temperaturedirecttotal/partialNOx

reductionontheCo-basedperovskitesystems.Thisisconsistent withthefactthatunlikeRh-basedcatalysts,itiswellknownthat Pd-basedcatalystsarenotveryactiveindirectNOdissociation.

CombinationofXPSandTPDdatarevealsaninterestingcorrela- tionbetweentheB-sitecation/La3+ratio(i.e.therelativenumberof B-sitecationsandLa3+cations)intheperovskitestructureandthe correspondingNOxadsorptionquantities.XPSdata(Fig.5)suggests thatincorporationPdintoCo-basedperovskitestructurecausesan increaseinCo/Laatomicratioby16%whichisfollowedbyasim- ilarrelativeincrease(i.e.16%)inthetotalNOxadsorption(Fig.9).

Inasimilarfashion,PdadditiontotheMn-basedperovskitestruc- tureleadstoanincreaseinMn/Laratioby8%,whichleadsto11%

increaseintotalNOxadsorption.ThesetrendssuggestthatB-site cationsplayacrucialroleintheinitialNO2adsorptionandoxida- tionintheformofnitratesandnitrites.Itisfeasiblethattheinitial adsorptionandoxidationofNO2isgovernedbyB-sitecationswhile uponformationofnitrates/nitrites,theseNOxspeciesspilloveron thesurfaceLa–Osites.

3.3. Effectofreductivepre-treatmentonNOxuptakeandcatalyst structure

Structuralintegrityanddurabilityaresomeofthemostcriti- calcharacteristicsofalonglastingcatalyticsystem.Preservation ofthestructuralandfunctionalpropertiesofperovskitesisrather challengingduetothestoichiometricflexibilityofthesesystems allowinga vast number of compositional variationsoriginating fromthealterationsintheoxygendefectdensityandthechanges intheoxidationstatesofB-sitecationsintheABO3structure.Since manycatalyticprocessesincludesequentialoxidationandreduc- tioncycles,wehavealsoinvestigatedtheNOxadsorptionbehavior of the currently synthesized LaMnO3, Pd/LaMnO3, LaCoO3 and Pd/LaCoO3 samplesupontheirexposuretoreducingconditions.

ItisknownthattreatmentofCoandMn-basedperovskiteswith anaggressivereducingagentsuchasH2(g)athighenoughtem- peraturesmaycausereversibleorirreversiblestructuralchanges [6,43].ThiswasfoundtobeparticularlyvalidforLaCoO3,where

(8)

Fig.9.IntegratedtotalNOxTPDdesorptionsignalsobtainedforvariousNO2-saturatedperovskitematerials(seetextfordetails).

DacquinandDujardinshowedthatdestructionoftheperovskite structureduetothetwo-stepreductionoftheB-sitecation(via Co3+→Co+2→Co0)ledtotheformationofmetallicCoandLa2O3

[44–46].

Thus,inthecurrentstudy,wehavealsoinvestigatedtheNOx

uptakeandreleasepropertiesofLaMnO3,Pd/LaMnO3,LaCoO3and Pd/LaCoO3surfacesafterpretreatingthemwithH2.Itshouldbe notedthat pre-reduction wasperformedwith 5.0Torr H2(g) at 623Kfor10mininbatchmodeconsistentwithsimilarformerstud- iesintheliterature[46].Fig.10presentssuchexperimentswhere fresh(redspectra)andH2pre-reduced(blackspectra)perovskite surfacesweresaturatedwith5.0TorrNO2(g)for10minat323K.

Fig.10illustratesthatonthepre-reducedsurfaces,abundance of nitrite/nitrito species increases as evident from the relative strengtheningofthevibrationalfrequenciesat1487,∼1450and 1330cm−1whilenitrate-relatedvibrationalfeatures(e.g.1567and 1270cm−1)attenuateinarelativefashion[35,36].

Moreimportantly,itisvisibleinFig.10thatH2-pretreatment leadstoa drastic increase in theNOx uptake of both Mn- and Co-basedperovskites.BlackspectruminFig.10cshowsthatthe radicalincreaseintheNOxadsorptionontheLaCoO3surfaceupon H2pretreatmentisaccompaniedbyacharacteristicchangeinthe spectralbaselineintheFTIRdatawhichmaybeassociatedwithan alterationintheelectronicstructureofthesample.Theseobser- vationscanbeexplainedbythereductionoftheLaCoO3 sample andtheformationofCo0/CoO/La2O3phases[17].Implicationsof suchstructuralalterationsarealsoevidentbytheformationoftwo additionalspectralfeatureslocatedat1897and1818cm−1 cor- respondingtodinitrosylspeciesonCo+2[47–49](Fig.10c,black spectrum).Furthermore,itcanbeseenthatPd-incorporationboth enhancestheNOxoxidation(therebyfacilitatingNOxadsorption) afterH2-pretreatment(Fig.10d,blackspectrum)andhindersthe completeB-sitereduction bypreservingthestructuralintegrity oftheperovskitelatticetoacertainextent,evidentbyasmaller changeintheIRspectralbaseline(forinstance,compareFig.10c, blackspectrumwithFig.10d,black spectrum).Influence ofthe

PdsitesontheNOxadsorptionafterH2treatmentcanbeassoci- atedwithmultiplereasons.Forinstance,PdsitesinthePd/LaCoO3 systemcanfacilitateH2 activationandleadtotheformationof reactive CoOx surface species which can present high activity toward NO oxidation and NOx uptake without forming a fully reducedformofCo(i.e.Co0).Alternatively,metallicPdsites(i.e.

Pd0) createdafterreduction with H2 canalso directlyfunction asactive redoxsites providing additionalsites forNOx adsorp- tion.

It is interesting tonote that although H2-pretreatmentalso booststheNOxuptakefortheLaMnO3surface(Fig.10a,blackspec- trum)toacertainextent,itisnotaccompaniedbyaseverebaseline changeintheFTIRspectrasuggestingthelackofa drasticelec- tronicstructuralmodification.Furthersupportforthisargument willbealsoprovidedtogetherwiththecorrespondingNO2 TPD datafortheH2-pretreatedsurfaces(Fig.11).Inotherwords,Mn- basedsamplesseemlesspronetoB-sitereductionandtheboost intheNOxadsorptionuponH2-pretreatmentand/orPdaddition islessprominentinMn-basedsystems.Yet,indicationsofB-site reductionstillexistsasseenfromthepresenceofthe1773cm−1 givenintheinsetsofFig.10aandb(blackspectra),corresponding tonitrosylspeciescoordinatedtoMn2+siteswhicharegenerated uponreduction[50].

Itisworthmentioningthattheex-situXPSandXRDmeasure- mentsobtainedimmediatelyaftertheH2-pretreatmentdidnot revealanyindications ofthepresence ofreduced La,CoorMn species.Thus,itislikelythatduringthetransferofthesamples fromtheFTIR/TPDreactor(wherein-situH2-pretreatmentwasper- formed)totheXPSorXRDsetup,sampleswereexposedtoambient atmosphericconditions whichresultedinthere-oxidation.This suggeststhatthein-situreductionphenomenaandthestructural changesobservedfortheperovskitesamplesindirectlyviaFTIRand TPDexperimentsoccurmostprobablyonthesurfacesofthemate- rialsratherthaninthebulk.Furthermore,itisapparentthatthe reducedsurfacescanreadilybere-oxidizedinaratherreversible fashionunderambientconditions.

(9)

800 1000 1200 1400 1600 1800 2000

1897 1818 1567 1487 1441

1330 1270 1031 839

0.2

800 1000 1200 1400 1600 1800 2000

0 0 8 1 0 0 0 2

1773

1649 1567

1487 1453 1330

1270 1029 803

0.2

800 1000 1200 1400 1600 1800 2000

1901 1818

1561 1470 1334 1271 1028 804

0.2

800 1000 1200 1400 1600 1800 2000

0 0 8 1 0 0 0 2

1771

1571 1488 1334 1251 1023 804

0.2

(a) (b)

(d)Pd/LaCoO (c)

LaMnO

3

LaCoO

3

Pd/LaMnO

3

3

Wavenumber (cm

-1

) Wavenumber (cm

-1

)

Absorbance (arb. u.) Absorbance (arb. u.)

Fig.10. FTIRspectracorrespondingtotheNO2saturatedsurfacesof(a)LaMnO3,(b)Pd/LaMnO3,(c)LaCoO3and(d)Pd/LaCoO3samplesat323K.Redspectraineachpanel correspondtofreshperovskitesurfacesandblackspectracorrespondtopre-reduced(via5.0TorrH2(g)at623Kfor10min)perovskitematerials.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Complementary TPD experiments were also performed in orderto havea clearunderstandingof theeffectof a reducing treatmentonNOxuptake.TPDprofilesobtainedbysaturatingthe pre-reducedLaCoO3,Pd/LaCoO3,LaMnO3andPd/LaMnO3surfaces withNO2 at 323K are illustratedin Fig. 11. Although theTPD profilescorrespondingtofreshLaMnO3andLaCoO3(Fig.11aand d)werealreadypresentedinFig.8aandc,thesedataarerevisited (and plotted using a different scale) in Fig. 11 for thesake of comparisonwiththepre-reducedsamples.TPDprofilesinFig.11 areinvery goodagreementwiththeFTIRdatagiven inFig.10 confirmingthe drasticincrease in theNOx uptake of all ofthe H2-pretreatedsamples.Quantitativelyspeaking,incomparisonto thefreshLaMnO3sample,integratedtotalNOxdesorptionsignal inTPDincreasesby46%inthecaseofpre-reducedLaMnO3 and by82%inthecaseofpre-reducedPd/LaMnO3(Fig.9).Inasimilar fashion,incomparisontothefreshLaCoO3sample,integratedtotal NOxdesorptionsignalinTPDincreasesby101%inthecaseofpre- reducedLaCoO3andby196%inthecaseofpre-reducedPd/LaCoO3 (Fig. 9). Furthermore, indications of the radical compositional

andelectronicchangesinferredbytheFTIRdatagiveninFig.10 arealsoapparentintheTPDprofileof thepre-reducedLaCoO3 (Fig.11b),wheretheTPDlineshapeandthedesorptionmaxima undergoasignificantalteration.Thisisinlinewiththedestruction of the perovskite ABO3 lattice to a certain extent upon H2(g) pre-treatmentandtheformationofCo0/CoO/La2O3[17].Another very important aspect of the pre-reduced LaCoO3 TPD results (Fig.11b)isthestronglowtemperature(i.e.420K)N2 andN2O evolution,indicatingthecapabilityofthispre-reducedsurfaceto directlyreducestored-nitrate/nitritespecies.Itispossiblethatthe reduced Co0/Co2+ species generated upon H2-pretreatment are responsiblefortheenhanceddirectNOxreduction.Theseintense low-temperaturedesorptionsignalscanalsobeassociated with thedesorption/decompositionofweaklybounddinitrosylspecies (illustratedintheFTIRresultsgiveninFig.10)whichareformed onthereducedCo0/Co2+species.Howeveritisworthemphasizing thatduetotherelativelylowdesorptiontemperatureofallofthe NOxspecies,pre-reducedLaCoO3sampledoesnotseemtopossess asignificanthigh-temperatureNOxadsorptioncapability.

(10)

1000 900 800 700 600 500 400 300

32 30 44 46

1000 900 800 700 600 500 400 300

28 14 32 30 44 46

1000 900 800 700 600 500 400 300

28 14 32 30 44 46

1000 900 800 700 600 500 400 300

32 30 44 46

1000 900 800 700 600 500 400 300

28 14 32 30 44 46

1000 900 800 700 600 500 400 300

28 14 32 30 44 46 420

NO

N2 N2O

N

LaCoO3 LaCoO3(pre-reduced)

1.25E-6 580

430

NO

N2 N2O

N

1.25E-6

Pd/LaCoO3(pre-reduced)

NO N2O

470

LaMnO3(pre-reduced)

510 NO

Pd/LaMnO3(pre-reduced)

1.25E-6

1.25E-6

Temperature (K) Temperature (K)

QMS Intensity (arb. u.)QMS Intensity (arb. u.)

Temperature (K) Temperature (K)

Temperature (K) Temperature (K)

LaMnO3

(a) (b) (c)

(d) (e) (f)

1.25E-61.25E-6

Fig.11.TPDprofilesobtainedafterNO2saturation(via5TorrNO2(g)at323Kfor10min)of(a)LaCoO3,(b)pre-reducedLaCoO3,(c)pre-reducedPd/LaCoO3,(d)LaMnO3,(e) pre-reducedLaMnO3and(f)pre-reducedPd/LaMnO3surfaces.

ComparisonoftheTPDdatafor thepre-reducedLaCoO3 and pre-reducedPd/LaCoO3samples(Fig.11bandc,respectively)sug- gestthatPdadditionhasthreemajoreffectsontheNOxuptake behavioroftheCo-basedperovskitesystems.First,Pdadditionand H2-pretreatment(Fig.11c)furtherbooststheNOxuptakeofthe pre-reducedLaCoO3(Fig.11b)byabout52%basedonthetotalNOx

desorptionsignalinTPD(Fig.9).Second,throughPdadditionand H2-pretreatment(Fig.11c),pre-reducedPd/LaCoO3systemgains bothlow-temperature(i.e.430K)aswellashigh-temperature(i.e.

580K)NOxstoragecapabilitieswithoutcompromisingitsability towarddirectNOxreduction andN2/N2Oproduction.Asamat- teroffact,comparisonofFig.11bandcimmediatelyrevealsthat theamountofN2/N2OgeneratedviadirectNOxreductionissig- nificantlyenhanceduponPdadditionandpre-reduction.Third,Pd additiontendstopreservetheABO3perovskitestructuretoacer- tainextent,sincethedesorptionprofilesofpre-reducedPd/LaCoO3 system(Fig.11c)somewhatresemblesthedesorptioncharacter- isticsoffreshLaCoO3 (Fig.11a)whilethis isclearlynottruefor thepre-reducedLaCoO3(Fig.11b).Itislikelythatinthepresence ofPd,H2 canreadilybeactivatedanddissociatedonthePdsites [51].H-speciesgeneratedthiswaycaneitherreducethelocalPdO speciesandformmetallicPd[52]orspillovertheperovskiteto generateoxygendefects.Suchoxygendefectsitescanfunctionas strongadsorptionsitesforNO2(g)species,formingadsorbednitro- sylsandnitriteswhichboosttheoverallNOxuptake.Inasimilar fashion,metallicPdsitesformeduponH2-pretreatment(whichare wellknowntobeefficientoxidationcatalysts)mayalsoassistthe oxidationofNO2intonitratesandenhancetheNOxadsorption.

AsimilaranalysiscanalsobeperformedfortheNO2TPDprofiles offreshLaMnO3,pre-reducedLaMnO3andpre-reducedPd/LaMnO3

(Fig.11d–f,respectively).Suchananalysisbringsthreemainpoints intoattention.First,bothpre-reductionandPdadditionprocesses haveanoticeablypositiveinfluenceonNOxuptakeofMn-based

perovskitesystems.Second,pre-reductionprocess(inthepresence orabsenceofPd)doesnotsignificantlyaltertheTPDdesorptionline shapesorshiftthedesorptionmaxima,suggestingthattheABO3 structureispreservedtoagreaterextentforMn-basedsystems.

Third,relative amountof direct NOx reduction and the forma- tionofN2/N2OislesspronouncedinMn-basedperovskitesystems (Fig.11d–f).

Inoverall,thesignificantboostinNOoxidationandimproved NOx adsorption over Pd promoted and H2 pretreated Co- and Mn-basedperovskitesareconfirmedbybothFTIRandTPDexperi- ments.Althoughtheseexperimentsdonotrevealaclearevidence fortheoriginofthisbehavior,itisplausiblethattheincreasein theNOxuptakeuponH2-pretreatmentcanbeassociatedwiththe reduction-inducedmorphologicalchangessuchassurfacerecons- tructions,whichmayincreasethespecificsurfaceareaandhence theNOxadsorption.Alternatively,theincreaseintheNOxuptake uponreductioncanalsobecloselyrelatedtotheelectronicand compositionalchangesoccurringonthesesurfacessuchasthepar- tial/total reductionof theB-site cation(particularly in thecase ofCo),reductionofPdOspeciesintoPdand/ortheformationof surface oxygen defects which may act as additional anchoring sitesfor NOxspecies. Considering thefactthat manyheteroge- neouscatalyticapplicationsrelevanttoautomotiveindustrysuch asNSR/LNTprocessesconsistsofa NOxstorage(lean)cyclefol- lowedbyareduction(rich)cycle;MnandCo-basedsystemscanbe consideredaspromisingcatalyticmaterialswhoseNOxuptakecan beboosted/regeneratedviaonboardcyclicreduction(rich)treat- ments.

4. Conclusions

In the current work, perovskite-based materials (LaMnO3, Pd/LaMnO3, LaCoO3 and Pd/LaCoO3) were synthesized,

Referenties

GERELATEERDE DOCUMENTEN

This need has been outlined in two major efforts to improve available information for agriculture and development: the call from the UN for a Data Revolution in Sustainable

Localization of stem cells can be done by cell tracking; a process in which the cells are ‘labeled’ with a contrast agent or tracer material and a corresponding

In order to evaluate the effects of the different feature selection methods, we used as baseline the results (MCC = 0.7492 for the DRIVE data set and MCC = 0.7537 for the STARE

Sub-supplier integration by first-tier suppliers foster the innovation level of first-tier suppliers at the buying firm level Benefits of sub-supplier integration depend on

With a signal peptide screening for the heterologous enzyme cutinase (Cut) from the fungus Fusarium solani pisi ( Martinez et al., 1992 ), we could demon- strate that

From the example of the Democratic Republic of Congo, it can be seen that states described in terms of failure or fragility have other sorts of strengths, which can bring important

This paper described an exploratory study to test the feasibility of employing an information security vocabulary test to assist management in identifying specific areas or topics

So lässt sich auch die CCT als weiteres wichtiges Feld der BCC interpretieren, da die Bedeutung eines Produkts oder einer Dienstleistung durch Austausch pro zes­ se