• No results found

Massive mimetic cosmology

N/A
N/A
Protected

Academic year: 2021

Share "Massive mimetic cosmology"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Massive

mimetic

cosmology

Adam

R. Solomon

a

,

,

Valeri Vardanyan

b

,

c

,

Yashar Akrami

d

,

b

aDepartmentofPhysics&McWilliamsCenterforCosmology,CarnegieMellonUniversity,Pittsburgh,PA 15213,USA bLorentzInstituteforTheoreticalPhysics,LeidenUniversity,P.O.Box9506,2300RALeiden,theNetherlands cLeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,theNetherlands

dDépartementdePhysique,ÉcoleNormaleSupérieure,PSLResearchUniversity,CNRS,24rueLhomond,75005Paris,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received14March2019

Receivedinrevisedform24May2019 Accepted28May2019

Availableonline30May2019 Editor:H.Peiris

Westudythefirstcosmologicalimplicationsofthemimetictheoryofmassivegravityrecentlyproposed byChamseddineandMukhanov.Thisisanoveltheoryofghost-freemassivegravitywhichadditionally containsamimeticdarkmattercomponent.Inanechoofothermodifiedgravitytheories,thereare self-acceleratingsolutionswhichcontainaghostinstability.Intheghost-freeregionofparameterspace,the effectofthegravitonmassonthecosmicexpansionhistoryamountstoaneffectivenegativecosmological constant,aradiationcomponent,andanegativecurvatureterm.Thisallowsustoplaceconstraintsonthe model parameters—thegravitonmassandthe Stückelbergvacuumexpectationvalue—byinsisting that theeffective radiationandcurvaturetermsbewithinobservationalbounds.Thelate-timeacceleration must be accountedfor by aseparatepositive cosmological constantorother darkenergy sector. We imposefurtherconstraintsatthelevelofperturbationsbydemandinglinearstability.Wecommenton the possibilityof distinguishingthistheory fromCDM withcurrentand future large-scale structure surveys.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Chamseddine and Mukhanov have recently proposed [1,2] a novel ghost-free theory of massive gravity in which one of the fourStückelbergscalars isconstrainedinthesamewayasinthe mimetictheoryofdarkmatter [3],spontaneouslybreakingLorentz invariance.InthisLetter,we studytheimmediateimplicationsof thismimeticmassivegravityforcosmologicaltheoryand observa-tion.

From a field-theoretic perspective, general relativity is the uniquetheory(in fourspacetimedimensions)ofamassless spin-2particle,orgraviton. Itis thereforenaturaltoask whetheritis possibleto endow thegraviton witha non-zero mass, andwhat sort of theoretical structures would result [4]. A closely related lineofinquiryaskswhetheritispossiblefortwo ormore gravi-tonsto interact[5]. Most nonlinear realizations of such theories sufferfromtheso-calledBoulware-Deserghostinstability[6].The pastdecadehasseentheconstructionofmodelswhichavoidthis instability, allowing forthe construction ofghost-free theoriesof

*

Correspondingauthor.

E-mailaddresses:adamsolo@andrew.cmu.edu(A.R. Solomon), vardanyan@lorentz.leidenuniv.nl(V. Vardanyan),akrami@ens.fr(Y. Akrami).

massive gravity [7–13] andbimetric andmultimetric gravity [12,

14,15].Wereferthereadertothereviews[16,17] onmassive grav-ityand[18,19] onbimetricgravity.Thetheoryofmimeticmassive gravityproposedinRefs. [1,2] takesanewandalternativepathto aghost-freenonlineartheoryofmassivegravity.

A generic theory ofmassive gravity propagatessix degreesof freedom,whichshould bethoughtofasthefivehelicitystatesof a massive graviton plus an additional, ghostly scalar. The easiest waytounderstandthedegrees-of-freedom countingisto observe that a graviton mass breaks diffeomorphism invariance.This isa gauge symmetry andso can be restored by the addition of four Stückelberg scalars



A, which propagate in addition to the two (nowpotentiallymassive)tensormodesofgeneralrelativity.

As an illustration, considera Lorentz-invariant theory of mas-sivegravity.Inordertoconstructnon-trivial, non-derivative inter-actions for the metric, one requires a second “reference” metric. The simplestchoiceforthis metricisthat offlat space,

η

μν , but

theadditionofthispriorgeometrybreaksdiffeomorphism invari-ance;forinstance,therearepreferredcoordinatesystemsinwhich

η

μν

=

diag(

1,1,1,1). But diffeomorphism invariance is simply

a redundancy in description, and can be restored by the addi-tion ofredundantvariables, i.e., replacing

η

μν

η

A B

μ



A

ν



B,

where

η

A B

=

diag(

1,1,1,1)andthefourfields



A transformas https://doi.org/10.1016/j.physletb.2019.05.045

(2)

spacetimescalars.Onecanalways,bymeansofadiffeomorphism, choosethe unitary gauge inwhich



A

=

xA,andwe recoverthe originaldescriptionofthetheoryintermsofasymmetry-breaking referencemetric. Generic interaction terms for the graviton, e.g., genericfunctionsof gμα

η

A B

α



A

ν



B,willleadtodynamicsfor

eachofthesefourscalars,inadditiontothetwomodesofgeneral relativity,foratotalofsixdegreesoffreedom.

At thelinear level,i.e., linearizing themetric aboutflat space inunitarygauge, gμν

=

η

μν

+

hμν and



A

=

xA,wefindthatone

of the sixdegrees of freedom leads to a ghost instability unless we specifically arrange the mass term into the Fierz-Pauli form,

L

mass

h2μν

h2,inwhichcasethedynamicsoftheghostlymode

take the form of a total derivative. Continuing thisprocedure at higher orders in perturbation theory—i.e., continually packaging ghostlyoperatorsintototalderivativestructures—leadsuniquelyto thenon-linearmassivegravitytheoryofdeRham,Gabadadze,and Tolley(dRGT)[8,9].

The recent proposal of Chamseddine and Mukhanov takes a novel alternative approach to eliminating the dangerous ghostly mode [1,2]. Noticing that the ghost can be associated to the



0 Stückelberg mode, they propose imposing the constraint gμν

μ



0

ν



0

= −

1. This is motivatedby a similar construction

known as mimetic gravity [3], in which the constrained scalar winds up behaving like dark matter.1 Mimetic massive gravity takesthisconstrainedscalartobeoneoftheStückelbergmodesof amassivegraviton,eliminatingtheghost.Theyproposethe follow-ing action,designedto ensurestability at thelinear level(notice thatthemasstermisnotoftheFierz-Pauliform),

S

=



d4x

g



M2 Pl 2 R

+

m2M2 Pl 8



1 2h

¯

2

− ¯

h2 A B



+ λ(

X

+

1

)



+

Smatter

,

(1) withX

gμν

μ



0

ν



0,and

¯

hA B

gμν

μ



A

ν



B

η

A B

.

(2)

Internal indices (given by capital Roman letters) are raised and loweredwiththeMinkowskimetric.Thefieldequationsare2

Gμν

=

1 M2 Pl Tμν

2

λ

M2 Pl

μ



0

ν



0

+

m2 2



¯

hA B

1 2h

¯

η

A B

 

μ



A

ν



B

1 4h

¯

A Bg μν



,

(3) 0

= ∇

μ



2

λ

M2Pl

μ



0

δ

0 A

m2 2



¯

hA B

1 2h

¯

η

A B



μ



B



,

(4) X

= −

1

.

(5)

The last of thesealigns

˙

0 withthe lapse of gμν . An upshot of

thisconstructionisthattheconstrainedmode behavesasa pres-sureless fluid, i.e., this theory provides a (mimetic) dark matter candidate[1,2].3

1 Foranearlierconstructioninwhichaconstrainedscalarmimicsdarkmatter

anddarkenergy,andwhichcontainsmimeticdarkmatterasasubset,seeRef. [20].

2 Notethesigndifferencesbetweentheright-handsideoftheEinsteinequations

andthe correspondingequationinRef. [1],whichisdue tothe mostlypositive metricconventionweemploy.

3 Oneshouldnotethatthephenomenologyofmimeticdarkmatterisstillinthe

earlystagesofdevelopmentcomparedtotraditionalparticle darkmattermodels suchasweaklyinteractingmassiveparticles(WIMPs)oraxions,anditispremature toconsidermimetic gravity asaserious alternativetothosemodels. For

exam-We endthissection bymakinga connectionwiththeexisting literature on Lorentz-violatingmassivegravity anddemonstrating the absence of certain well-known features of Lorentz-invariant massive gravity, namely the van Dam-Veltman-Zakharov (vDVZ) discontinuity [22,23] andthe Higuchi bound [24]. The vDVZ dis-continuityreferstothefailureoflinearizedLorentz-invariant mas-sive gravity to reduce to general relativityin the massless limit; thisrequiresnonlineareffectsinordertorestoregeneralrelativity in the Newtonian limit [25,26]. The Higuchi bound is a stabil-itybound formassive gravityon de Sitterspace, placing a lower bound on thegraviton mass,m2

2H2,with H the Hubble rate. Itiswell-knownthat breakingLorentzinvariancechangesbothof theseconclusionsdramatically[27,28].

At theleveloflinearperturbations aroundflatspace, the gen-eralSO(3)-invariantmassterminunitarygauge(A

=

xA) canbe writtenas[27]

L

mass

=

1 8M 2 Pl

m20h200

+

2m21h20i

m22h2i j

+

m23hii2

2m24h00hii

.

(6)

Thelinearizedmasstermineq. (1) inunitarygaugeis(treating

λ

asfirst-order)

L

mass

=

m2MPl2 8



1 2h 2 00

+

2h20i

h2i j

+

1 2h 2 ii

h00hii



+ λ

h00

.

(7)

The

λ

equation ofmotion setsh00

=

0, whichwe can impose in theaction4tofind

m20

=

m24

=

0

,

m12

=

m22

=

2m23

=

1

.

(8)

This allows us to easily make contact with the existing litera-tureonLorentz-violatingmassivegravity.TheanalysisofRef. [27] shows that for these mi parameters, the Newtonian limit is the usualone,whilethevDVZdiscontinuityisabsent.Theanalogueof theHiguchiboundinLorentz-violatingmassivegravitywasderived in Ref. [28], andfor ourvalues of the mi parameters, it reduces simplytoH2

>

0,whichistriviallysatisfied.

2. Flat-spaceperturbations

In this section, we briefly review the behavior of perturba-tions aboutflatspaceinmimeticmassivegravity, asdiscussedin Refs. [1,2].Thiswillplacestabilityconditionsonthetheorywhich willberelevantwhenwemovetocosmologicalsolutions.

Theequationsofmotion(3)–(5) invacuumaresolvedby5

gμν

=

η

μν

,



A

=

xA

,

λ

=

0

.

(9)

ple,sincethemimeticdarkmatteronlyinteractsgravitationallywiththeStandard Model,wedonotexpecttohaveathermalproductionmechanism,incontrastto manytraditionaldarkmatterscenariossuchasWIMPs.Indeed,whenthetheoryis shift-symmetricin0,theenergydensityofthiscomponentissetentirelybyan

integrationconstantandsoisdeterminedbyinitialconditions.Itmayalsobe nec-essarytotunetheparametersofthemodelinordertoobtaintherightvaluesof thedarkmatterdensityovertheentirecosmichistory,andhigher-derivative effec-tivefieldtheorycorrectionsplayanimportantrole[21].Wereferthereaderto,e.g., Ref. [21] fordiscussionsoftheconstraintsthatearly-Universeconsiderationsplace onthepropertiesandevolutionofmimeticdarkmatterthroughoutcosmichistory.

4 Thisisjustifiedbecause,onshell,theh

00equationofmotionsimplysetsthe

valueofλ,whileh00 dropsoutofthehi j equationsofmotion.Thedynamicsare

thereforeequivalent.

5 Thisistheonlysolutionthatismanifestlyinvariantunderrotations,i.e.,with gμν=diag(−1,1,1,1)andA= ϕ(t), βxi .Apriori itmaybepossibletohave

flatsolutionswithinhomogeneousStückelbergsA,orequivalentlysolutionswith A=xAandg

(3)

Weexpandtheaction(1) toquadraticorderaroundtheMinkowski solution,focusingonscalarmodes,

g00

= −(

1

+

2

φ),

(10) g0i

= ∂

iB

,

(11) gi j

= (

1

2

ψ )δ

i j

+

2

i

jE

,

(12)



A

=

xA

+

π

0

, ∂

i

π



,

(13)

λ

= δλ.

(14)

Threeof thesefields—φ, B,and

δλ—are

auxiliary,asthey appear withouttimederivativesintheaction,andsocanbeintegratedout usingtheirequationsofmotion.Notethattheauxiliarystructureis preciselythesameasingeneralrelativity,sincethemasstermand Lagrangemultiplierdonotintroduceanyderivativesofthemetric. Wecanusediffeomorphisminvariancetoremoveafurthertwo modes.Whengaugefixingattheleveloftheaction,onemusttake care to only eliminate variables whose equations of motion are containedin theequations ofmotion ofthe remaining variables, otherwisewe willloseinformationafterpicking agauge. Follow-ingtheprocedureofRefs. [29,30],weseethat wecansafelytake

π

0andoneof

(

E

,

π

)

tovanish.Pickingunitarygauge,

π

0

=

π

=

0,

weobtaintheflat-spacequadraticaction(inFourierspace),

δ

2S

=



dt M2Pl

− ˙

X

T

K ˙

X

+

X

T

k2

G

+

m2

M

X

,

(15)

where

X ≡ (ψ,

k2E

)

andthematrices

K

,

G

,and

M

aregivenby

K

=



3

+

4k2 m2 1 1 0



,

(16)

G

=



1 0 0 0



,

(17)

M

=

1 4



3 1 1

1



.

(18)

As described in Ref. [2], this system can be diagonalized by replacing

ψ

withtheLagrange multiplier

δλ,

which we had pre-viouslyintegratedoutusing

δλ

=

M 2 Pl 4



(

4k2

+

3m2

+

k2m2E



,

(19) tofind

δ

2S

=



dt 1 4k2

+

3m2



k4m2M2Pl

˙

E2

− (

k2

+

m2

)

E2

1 MPl2



16 m2

δλ

˙

2

4

δλ

2

 

.

(20)

Ifwetakem2

>

0,wecancanonicallynormalize,

δλ

c

4 mMPl



2k2

+

3 2m2

δλ,

(21) Ec

mMPlk2



2k2

+

3 2m2 E

,

(22)

toobtainthefinalaction,

δ

2S

=



dt



1 2E

˙

2 c

1 2

(

k 2

+

m2

)

E2 c

1 2

δλ

˙

2 c

+

1 8m 2

δλ

2 c



.

(23)

The only dynamical degree of freedom here is Ec, which is healthyandhasmassm.Thefield

δλ

c hasthewrongsignonboth

itskineticandmassterms,butdoesnotpropagateduetothe ab-senceofagradientterm;itsequationofmotion,

¨

δλ

c

+

m2

4

δλ

c

=

0

,

(24)

leads toa dispersionrelation

ω

2

=

m2

/4 and

issolved simplyby

[2]

δλ

c

=

C

(

x

)

sin



mt 2



+

D

(

x

)

cos



mt 2



,

(25)

whereC andD are space-dependentconstantsofintegration.The authorsofRef. [2] identifythismodewiththemimeticdark mat-ter.6

When we discusscosmology inthenext section, we will find ourselvestemptedbythepossibilityoftakingm2

<

0.Apriori this

is merely a parameter choice, but the flat-space analysis shows whythiswouldbe apoordecision.Bylookingattheaction(20), we see that, fornegative m2,the overall signin front ofthe ac-tion flips depending onwhetherk2

>

3

|

m2

|/

4 or k2

<

3

|

m2

|/

4,a signofpathologicalbehavior.Inparticular,forscalesk2

>

3

|

m2

|/

4,

uponcanonicallynormalizingwefindtheaction(23) withan over-allminussign,sothatthedynamicalmode Ec isaghost.

3. Cosmologicalsolutions

In this section we investigate Friedmann-Lemaître-Robertson-Walker(FLRW) cosmologicalsolutionsofmimeticmassivegravity. Considerthehomogeneousandisotropicansatz

gμν

=

diag

(

1

,

a

(

t

)

2

δ

i j

),

(26)



A

=

ϕ

(

t

), β

xi



.

(27)

Inprincipleonecouldallow

β

todependontime,butthisbreaks homogeneityandisotropyasitinduces

x-dependenttermsinthe stress-energy tensorof the Stückelberg fields.Note that on-shell, theLagrangemultiplierenforces

ϕ

=

t (uptoaconstant). Wewill include a general matter sector with density

ρ

and pressure p.

Wewillfindthissector needstocontainacosmologicalconstant, muchlikeingeneralrelativity,butdoesnot needtoincludedark matter, as this role can be played by the mimetic dark matter (whichisanexactlypressurelessperfectfluid).

TheEinsteinandscalarequationsofmotionare

3H2

=

ρ

M2Pl

2

λ

M2Pl

3m2 16



β

4 a4

6

β

2 a2

+

5



,

(28) 2H

˙

+

3H2

= −

p M2 Pl

m2 16



3

β

4 a4

2

β

2 a2



,

(29) 0

=

d dt



a3



3m2 4



1

β

2 a2



+

2

λ

M2 Pl



.

(30)

Wecansolvefor

λ

byintegratingthe



0 equationofmotion(30), finding

6 SeeRef. [2] foranargumentforwhythismodeisnotaghost,despitehaving

anoverallwrong-signaction.Inprinciple,onemightworrythatwhenquantizingor consideringnonlinearities,acouplingwillbeinducedbetweenδλcandotherfields

whichwillleadtoanOstrogradskiinstability.Ontheotherhand,duetothelack ofagradienttermthismodeisnotapropagatingdegreeoffreedomintheusual sense.Wewillremainagnosticaboutthisquestionandlimitourselvesto consid-erationsofclassical,linearstability,whichthissystemclearlysatisfiesform2>0.

(4)

2

λ

M2Pl

=

C

a3

+

3m2 4



1

β

2 a2



,

(31)

where

C

is an integration constant. Pluggingthis into the Fried-mannequation(28),weobtain

3H2

=

ρ

M2 Pl

+

C

a3

3m2 16



1

β

2 a2



2

.

(32)

Notethatthecontributionfrom

λ

exactlycancelsoutthatfromthe lasttermoftheEinsteinequation(3),sotheverysimpleformfor

ρ

ϕ

≡ −

3m2MPl2

(1

− β

2

/

a2

)

2

/16 is

entirelyduetotheterm

propor-tionaltogμν inthestresstensor.Theintegrationconstantprovides adust-likecontributiontotheFriedmannequation,whichistobe expectedasthisisatheoryofmimeticdarkmatter.

We can geta better sense of the physicalpicture by expand-ing out the Friedmannequation andabsorbing the mimetic dark matter

C

into

ρ

,finding

3H2

=

ρ

M2 Pl

3m2 16



β

4 a4

2

β

2 a2

+

1



.

(33)

Form2

>

0 (m2

<

0),we seethatthe masstermgenerates an ef-fectivenegative (positive)cosmologicalconstant,an effective neg-ative (positive) curvature, and an effective radiation component withnegative (positive)energydensity.Notethat theseaddonto anycosmologicalconstant,radiation,andcurvaturealreadypresent cosmologically;forexample,whilewehaveassumedaflat cosmol-ogyasouransatz, observational boundsonspatial curvaturewill constrainthesumofanypre-existingcurvatureandthe curvature-liketermgeneratedbythegravitonmass.

Note that for m2

<

0 we have late-time acceleration, with



eff

=

3

|

m2

|/

16.However,asdiscussedintheprevioussection,we

needm2

>

0 inorder to avoida ghost around flat space. Thisis reminiscentofthesituationintheDvali-Gabadadze-Porrati(DGP) model [33], where one branch of solutions has self-accelerating cosmologicalexpansion[34,35] butisplaguedby aghost[36,37], whilethe other branch is healthybut cannot account forcosmic acceleration.

Letus assume that the energydensity

ρ

ineq. (33) contains dust(includingthe mimeticdarkmatter), radiation,anddark en-ergycomponents.Then,intermsofthedensityparameters,



i,0

=

ρ

i,0

3MPl2H02

,

(34)

thecomponentsoftheFriedmannequationwhicharemodifiedby mimeticmassivegravityare



,0

= ¯

,0

m2 16H20 (35)



K,0

=

m2 8H20

β

2

,

(36)



r,0

= ¯

r,0

m2 16H20

β

4

,

(37)

where

¯

,0 and

¯

r,0 arethe densities associatedto darkenergy

andStandardModelradiation.Usingobservationalboundsonthe curvatureandradiationdensities,wecanplaceconstraintsonthe model parameters m2 and

β.

We will not consider any bounds

comingfrom thepresence ofthe effectivecosmologicalconstant, even though it contributes a negative and potentially large (if

m2

H0) amount to



,0.Particle physics also predicts a large

(and potentially negative) vacuum energy, and since we are not worrying about that, it seems inconsistent to worry about the

contributionfrommimeticmassivegravity.Onemightexpectthat whateversolvestheformerproblemwillalsosolvethelatter.7

We will use observational constraints on



K,0 and



r,0 to

boundourtwofreeparameters,m2 and

β.

Planck 2018constrains



K,0

=

0.0007

±

0.0019, which we parametrize as

|

K,0

|

< δ

K, with

δ

K

0.003 [39].Wewilltake thistobea constraintonthe contributionfrommimeticmassivegravityalone,

m2

8H02

β

2

< δ

K

.

(38)

We remind the reader that what we are really bounding is the sum ofthe mimetic massive gravity contribution andany“bare” curvature,butunlessthereissignificanttuningbetweenthesetwo, we can simply take thisas a constrainton the mimetic massive gravitypiecealone.

Toboundthemimeticcontributiontotheradiationdensity,we will use constraintsfrom big bangnucleosynthesis (BBN). At the time of BBN,radiation dominates.The exact value ofthe Hubble rate at the time of nucleosynthesis, which dependson the radi-ation density, determines the freeze-out abundance of neutrons andthereforetheprimordialabundanceofhelium-4,whichis sub-jecttotightobservationalbounds.Theconstraintsareconveniently phrasedintermsofthe“speed-upfactor”

ζ

H

/ ¯

H ,where H and

¯

H are theHubblerateandits expectedvalue, respectively,atthe time of BBN.The difference betweenthe observedandpredicted helium-4 abundance,

|

YP

|

, isrelated to the speed-upfactor by [40]



YP

=

0

.

08

2

1

).

(39) Currentobservationalboundsimply[41]

|

YP

| 

0

.

01

.

(40)

Comparing the Friedmann equation (33) with and without the mimetic radiation contribution, and focusing on radiation domi-nation,wefind

ζ

2

1

= −

m

2

β

4

16

¯

r,0H20

,

(41)

where the value for the present-day radiationdensity associated to photonsandneutrinos,

¯

r,0

10−4,is determinedentirely by

theCMBtemperatureandtheeffectivenumberofneutrinospecies and is therefore not dependent on our modification of gravity.8 Combiningthiswitheq. (40) wearriveattheconstraint

m2 16H20

β

4

< δ

r

,

(42) where

δ

r

max

(

|Y

P

|) ¯

r,0 0

.

08

O

(

10 −5

).

(43)

Wecanrewriteourconstraints(38) and(42) asinequalitiesfor

m

/

H0 and

β

aloneintwodifferentrégimes,

m H0

<

√ 8δK β

, β <



2δr δK 4√δr β2

,

β >



2δr δK

.

(44)

TheseareplottedinFig.1.

7 SeeRef. [38] foraproposedsolutiontothecosmologicalconstantproblemin

thecontextofLorentz-violatingmassivegravity,whichiscloselyrelatedtomimetic massivegravity.

(5)

Fig. 1. Upper limits on m/H0andβfor(δK, δr)= (0.003,10−5). Finally,wenotethatthestrong-couplingscaleforthistheoryis oforder



2

=

mMPl[2].Ifm isoforderthepresent-dayHubble

scale,m

10−33eV,thenthestrongcouplingscaleis



2

meV,

i.e., the theory breaks down slightly below the millimeter scale. Aswe seefrom eq. (44), forsufficiently small

β

,m could poten-tiallybemuchlargerthan H0,leadingtoacorrespondinglylarger strong-couplingscale.

4. Cosmologicalperturbations

As we have seen, atthe background level, cosmological solu-tions in mimetic massive gravity do not differ appreciably from

CDM.

Wethereforeproceedtostudycosmologicalperturbations aroundthe FLRWbackground.This willtell ushowcosmological large-scalestructure(LSS)evolvesinthistheory incomparisonto

CDM.

Since mimetic massive gravity differs from general rela-tivity,we wouldexpectmodifications tothe gravitationalPoisson equationandthe sliprelation,whichcould inprinciple allow for observational tests of this alternative model against

CDM

and distinguishthetwousingthecurrentandfutureLSSsurveys. How-ever,aswewillsee,stabilityofcosmologicalperturbationsandthe bounds(44) placestrongconstraintsonthe modelwhichsuggest that thistheory should be observationally indistinguishablefrom GRinthelinearrégime.

4.1.Stabilitybound

We begin by studying the stability of cosmological pertur-bations using the second-order action formalism. Since, as dis-cussedin section 3,this theory doesnot possessghost-free self-accelerating solutions, we include a cosmological constant, al-thoughitwillnotaffectanyoftheresultsinthissection.Sincethe theory alreadycontains a pressurelessfluid, namely themimetic darkmatter,weneednotintroduceanadditionalmatterfield.Our analysisisthereforevalidforalltimesaftermatter-radiation equal-ity.

We define the linearized metric, Stückelberg fields, and La-grangemultiplieras ds2

= −(

1

+

2

φ)

dt2

+

2a

iBdtdxi

+

a2



(

1

2

ψ )δ

i j

+

2

i

jE



dxidxj

,

(45)



0

=

t

+

π

0

,

(46)



i

= β

xi

+ ∂

i

π

,

(47)

λ

= ¯λ + δλ,

(48)

wherewe are restrictingourselves toscalar perturbations, and

¯λ

isthe background value given ineq. (31). The calculation of the

quadratic action proceeds analogously to the flat-space case dis-cussedinsection2.Expandingtheaction(1) (withacosmological constant)toquadraticorderinperturbations,wefindthatthe vari-ables

φ,

B,and

δλ

areauxiliary—thatis,theyappearwithouttime derivatives—andcanthereforebe integratedout usingtheir equa-tions ofmotion. To safelyfix a gauge at the level of the action, weagainfollowtheprocedureofRefs. [29,30],findingthatwecan eliminateoneeachof(ψ,

π

0)and(E,

π

).Wewillchoosetowork

inunitarygauge,

π

0

=

π

=

0,sothat



A

= (

t

,

β

xi

)

isunperturbed. Thefinalaction,inFourierspaceandafterintegrationsbyparts,is

δ

2S

=



dt MPl2a3



− ˙

X

T

K ˙

X

+

X

T



k2 a2

G

+

m 2

M



X



,

(49)

where

X ≡ (ψ,

k2E

)

andthematrices

K

,

G

,and

M

aregivenby

K

=



3

8a2 β23a2 k 2 m2β2 1 1 0



(50)

G

=



1 0 0 0



(51)

M

=

1 8

β

2 a2



1

+

β

2 a2

 

3 1 1

1



(52)

Sinceweareinterestedintheimplicationsofmimeticmassive gravityforthegrowthandpropertiesoflarge-scalestructureinthe late Universe, let usfocus on subhorizon scales (i.e., k2

a2H2) and assume the quasi-static (QS)approximation. In order to use thisapproximation,wefirstneedtoensurethatfluctuationsinthis régime are stable. Ignoring time variation in a

(

t

),

which will be subdominant in the limit k2

a2H2, and assuming solutions of

theform

X =

X

0eiωt,theequationsofmotionfollowingfromthe action(49) are



ω

2

K

+

k 2 a2

G

+

m 2

M



X

=

0

.

(53)

We canthen derive stability conditionsfromthe dispersion rela-tions,obtainedbysolving

0

=

det



ω

2

K

+

k 2 a2

G

+

m 2

M



=

ω

4 a2

+ β

2

ω

2k2 a2

(

3a2

− β

2

)

5

ω

2m2

β

2 8a4

+

k2m2

β

2 8a6

+

m4

β

4

(

a2

+ β

2

)

16a8 (54) for

ω

2.

The dispersionrelations arisingfromeq. (54) arecomplicated, butsimplifysignificantly in thelimit k

aH whenwe take into account theconstraints(44) onm

/

H0,whichwe obtainedby re-quiringthattheradiationandcurvaturedensitiesgeneratedbythe masstermnotexceedobservationalbounds.Consider replacingm

and

β

ineq. (54) withthefollowingtwoparameters,9



1



m

β

k



2

,



2



m

β

2 ka



2

.

(55)

Weproceedtoshowthatthebounds(44) implythateachofthese ismuchsmallerthanunityonsubhorizonscalesforalltimesafter matter-radiationequality.

9 Todothisreplacement, firstreplacem

1β/k,and thenreplaceany

(6)

Forboth



1 and



2 wecan putupperboundson the

numera-torsandlower boundsonthedenominators.Letusstartwiththe numerators. For



1, multiply each side of eq. (44) by

β

.We see

thereisastrictupperboundonthecombinationm

β

,

m

β



8

δ

KH0

0

.

15H0 (56)

wherewehavetaken

δ

K

0.003 asarepresentativevalue.Wecan similarlyfindaboundonthenumeratorof



2 bymultiplyingboth

sidesofeq. (44) by

β

2,finding

m

β

2

4



δ

rH0

10−2H0 (57)

for

δ

r

10−5.

Now we move on to the denominators. The subhorizon limit isgivenbyk

aH .Forthesake ofargumentlet usbe conserva-tiveandassumethatk isonlyslightlysubhorizon,k

/

a

O(1)

H .10

At any giventime frommatter-radiation equality to the present, wherewe can trustour analysis, theHubblerate H is relatedto itspresent-dayvalue H0 byH

=

H0





,0

+ 

m,0a−3.Puttingthis

together with the boundswe have derived on m

β

andm

β

2, we find



1



0

.

02



,0a2

+ 

m,0a−1

1

,

(58)



2



10−4



,0a4

+ 

m,0a

1 for z



3000

.

(59)

Note that while the upper bound on



1 is always much smaller

thanunityfor0

<

a

1,the upperboundon



2 infactgrows as a−1 atearly times.However, itgrows slowly and hasa factorof 10−4tocompetewith,sothat max(



2

)

doesnotreachunityuntil z

3000,rightaroundmatter-radiationequality.Thereforein prin-cipletheremightbeahandfulofmodes—rightaroundthehorizon scaleandattheearliestmomentsofmatterdomination—forwhich termsgoingas



2 affectthesubhorizondispersionrelation,if m

β

2

takes the largest value allowed by the constraints. We will con-tinuetotake



2

1,withtheunderstandingthatifthisparticular

situation is realized,then atthose very early times we are only consideringmodeswithk



10aH ,forwhich



2iscertainlysmaller

thanunity.

Droppingtermssubdominantin



1 and



2,thedispersion

rela-tion(54) becomes 0

ω

4 a2

+ β

2

ω

2k2 a2

(

3a2

− β

2

)

+

k2m2

β

2 8a6

.

(60)

Solving for

ω

2, and again dropping terms subleading in



1

=

(

m

β/

k

)

2,wefindthedispersionrelationsforourtwomodes,

ω

2

k 2 a2 a2

+ β

2 3a2

− β

2

,

(61)

ω

2

m2

β

2 8a2



3

β

2 a2



.

(62)

Eachoftheseimpliesthesamestabilitycondition,

β

2

a2

<

3

.

(63)

Thistellsusthatnomatterwhatthevalueof

β

is,our cosmologi-calsolutionsareunstable atsufficientlyhighredshifts,

10 Ofcourse,the deeperinthesubhorizon régimek is,the smaller 1 and2

become.

z

>

3

β

−1

1

.

(64)

This early time instability can howeverbe safely pushed back to unobservably early times by taking the parameter

β

to be suffi-ciently small.11 Becauseweareassuming matteranddarkenergy domination, we can trust our stability condition as far back as matter-radiation equalityat zeq

3400.Demandingstabilityfrom

zeq onward,wefindaconstrainton

β

,12

β



5

×

10−4

.

(65)

4.2. Cosmologicaltensormass

Another possible cosmological bound on the parameters m

and

β

comes from constraints on the graviton mass. The tight-estboundscurrentlycomefromLIGO,mT

7.7

×

10−23eV[44].13

To compute the mass of tensor fluctuations on a cosmological background,we linearizethe Einsteinequation (3) around gμν

=

¯

gμν

+

hμν ,withgμν

¯

=

diag(

1,a2

δ

i j

),

h00

=

0,andhi j transverse andtraceless,i.e.,hii

= ∂

ihi j

=

0.TheEinsteinequationis

¨

hi j

+

3Hh

˙

i j

2 a2hi j

+

m 2 Thi j

=

0 (66)

withthetensormassgivenby

m2T

m 2 2

β

2 a2



1

+

β

2 a2



(67)

The structureoftheEinstein equation issuchthat m2T

/

m2 has to be a (quadratic) polynomial in

β

2

/

a2. What is non-trivial is that thedegree-zeroterminthat polynomialcancelsout, i.e.,the expressionform2

T

/

m2 startsatorder

β

2

/

a2.Thismeansthat

grav-itational waves propagating over cosmological distances (at low redshift,i.e.,a

O(

1))donotdependonm alone;insteadthey in-volvethecombinationsm

β

andm

β

2 which,aswehaveseen,are stronglyconstrainedbythecosmologicalbackground.Inparticular, recalling that m2

β

2



10−2H2

0 andm2

β

4



10−4H 2

0,we see that mT atthepresenteraisatmostoforder10−1H0

10−34eV,far belowtheLIGObounds.Moreover,ourstabilitycondition (65) has no bearingon mT. No matter howtiny

β

is,the constraints(44) placeaconstantupperboundonm

β

,sothatthesmaller

β

is,the largerm isallowedtobe,leavingmT

m

β/(

2a)fixed.Itis inter-esting to note that, without demanding that thismodelprovides cosmic acceleration, the tensormass isnevertheless forcedtobe smallerthan theHubblescale.Finally,we notethat arounda flat background,thetensormassissimplym, solocaltestsofgravity mightbeabletoplaceconstraintsonm thatarenotpossiblewith gravitationalwavesthatpropagateovercosmologicaldistances.

4.3. Quasistaticlimit

Finally, let uscomment on the testability ofmimetic massive gravity using near-future LSSsurveys. We willfind it convenient

11 Thisissimilartomassivebimetricgravity,whichpossessesanearly-time

in-stabilitythatcanberenderedsafeinthelimitwheretheratioofthetwoPlanck massesbecomessmall [43].

12 Itisplausiblethattheresult(63) holds,atleastonanorder-of-magnitudebasis,

throughradiationdominationaswell(see,again,theexampleofbigravity[43]).In thiscase,weshoulddemandthattheinstabilitybepushedbacktobeforebigbang nucleosynthesis,withzBBN≈3×108,whichwouldimplyastrongerconstraintof

β10−8.Wedonothavemuchobservationalhandleonthepresumably

radiation-dominatederabeforeBBN,andthereforeshouldnotdemandthattheinstabilitybe absentthen;indeed,amildenoughinstabilitymighthaveinterestingconsequences, suchastheformationofprimordialblackholes.

13 SeeRef. [45] forahelpfulsummaryofboundsonthe gravitonmassfroma

(7)

towork in Newtonian gauge, B

=

E

=

0.Linearizing the Einstein equations (3), and leaving in a generic stress-energy tensor Tμν

forcompleteness,weobtain

6H2

φ

2 a2

i

i

ψ

+

6H

˙ψ

=

1 MPl2

δ

T 0 0

+

2

δλ

M2Pl

m2 4

β

2 a2



3

β

2 a2



3

ψ

+ ∂

i

i

π

,

(68)

2

i

 ˙

ψ

+

H

φ



=

1 MPl2

δ

T 0 i

+

2

¯λ

MPl2

i

π

0

+

m2 4



3

β

2 a2



i

π

0

− β

2

i

π

˙

,

(69) 6



¨ψ +

3H

˙ψ +

H

˙ + (

3H2

+

2H

˙



+

2 a2

i

i

− ψ)

=

1 M2 Pl

δ

Tii

m 2 4

β

2 a2



1

+

β

2 a2



3

ψ

+ ∂

i

i

π

,

(70) 1 a2

i

j

− φ) =

1 M2Pl

δ

T i j

+

m2 2

β

2 a2



1

+

β

2 a2



i

j

π

,

i

=

j

.

(71)

MovingtoFourierspace, specializingtoa pressurelessfluid with-outanisotropic stress,andtakingthequasistaticlimit, X

¨

HX

˙

H2X

k2X for any perturbation X , eqs. (68), (70) and (71)

be-come 2k2 a2

ψ

=

1 MPl2

(

2

δλ

− ¯

ρ

δ)

m2 4

β

2 a2



3

β

2 a2



3

ψ

k2

π

,

(72) 2k2 a2

− ψ) =

m2 4

β

2 a2



1

+

β

2 a2



3

ψ

k2

π

,

(73) 1 a2

− ψ) = −

m2 2

β

2 a2



1

+

β

2 a2



π

,

(74)

where

ρ

¯

and

δ

arethebackgrounddensityandoverdensity ofthe dustcomponent.Notethatthesearedegeneratewiththemimetic darkmatter,asexpected.

Combining these equations, we obtain the modified Poisson equationandthesliprelation,

k2

ψ

=

4

π

G

μ

(

a

,

k

)

a2

ρ

2

δλ),

(75)

ψ

=

η

(

a

,

k

)φ,

(76)

wherethemodified-gravityparameters

μ

and

η

aregivenby

μ

(

a

,

k

)

=

1 1

+

12m2β2 k2

3

β2 a2

,

(77)

η

(

a

,

k

)

=

1 1

+

12m2β2 k2

1

+

β2 a2

.

(78)

Theseparametrizeobservabledeviationsfromgeneralrelativity,in which

μ

=

η

=

1.

Theconstraintswehavealreadyderived onm and

β

preclude

μ

and

η

fromdeviating fromunity ata levelaccessible to near-futureobservations.Thestabilityconstraint(63) requirestheterms inparenthesesto be

O(

1),while the backgroundconstraint(56) setsm2

β

2



0.02H2 0,sothat

μ

1

η

1

O



m2

β

2 k2





10−2



H0 k



2

.

(79)

It istherefore highly unlikely that cosmologicalobservations will be able to test this model against

CDM

in the linear and sub-horizonrégime.

5. Conclusions

In this Letter we have studied the first cosmological implica-tions of the recently-proposed theory of mimetic massive grav-ity. We find that the theory is unable to self-accelerate without introducinga ghost.Itseffects on Friedmann-Lemaître-Robertson-Walker cosmological backgrounds are tointroduce effective radi-ation, curvature, and cosmological constant terms, as well as a dust-like mimetic dark matter component. We place constraints (44) on the theory parameters by demanding that the effective radiationandcurvatureterms bewithin observational bounds.In theghost-freeregionofparameterspace,m2

>

0,theeffective

cos-mologicalconstant isnegative-definite, soa separate darkenergy sector,whichwetaketobeapositivecosmologicalconstant,is re-quiredtoexplainthelate-timeaccelerationoftheUniverse.

Wefurther studiedthebehaviorofcosmologicalperturbations inthe subhorizon,quasistaticlimit.The modelgenerically suffers fromaninstabilityatearlytimes.However,sinceouranalysisonly includeda pressurelessdustcomponent (inaddition toa cosmo-logicalconstant),thecalculationcanonlybetrustedasfarbackas matter-radiation equality.This allowedusto place afurther con-straintonthetheoryparametersbyinsistingthattheinstabilitybe absentthroughoutmatterdomination.Withtheseconstraints,the deviationsfrom

CDM

inthelinear,subhorizonrégimeare likely toosmalltobeobservable.

Notsurprisingly,sincethisisatheoryofmassivegravity,it pre-dicts massive tensormodes. We have calculatedthe tensormass around cosmologicalbackgrounds andfoundthat, takinginto ac-count the constraints imposed by the cosmological background, thismassmustbeatleastanorderofmagnitudebelowthe Hub-ble scale, far outside the currently-available constraints on the graviton mass. Unlikeother theoriesof massivegravity, in which the graviton mass is comparableto the Hubblescale in order to providelate-timeacceleration,thisbound onthegraviton massis solelyduetotherequirementthattheeffectiveradiationand cur-vaturetermsintheFriedmannequationnotbetoolarge.

What are the remaining prospects for cosmological tests of mimetic massive gravity? We emphasize that our analysis does notapply intwoimportantrégimes:horizon-sizescalesand non-linearscales. Oneor bothofthesemaypossesssignatures which couldbeusedtodistinguishmimeticmassivegravityfrom

CDM,

or otherwise to rule out additional regions of parameter space. OneexpectsthatnonlinearscaleswillrequireN-bodysimulations, while at horizon-size scales we cannot apply the quasistatic ap-proximation andwouldneed to solvethe perturbation equations numerically,asinother theoriesofmodified gravity[46]. Forthe latter, we note that themass scales appearing in theaction (49) forcosmologicalperturbationsarenotsimplym,whichcanbe ar-bitrarily large (in the limit of small

β

), butrather m

β

andm

β

2, which we haveshownmust bothbe at leastan order of magni-tudesmallerthantheHubblescale.Itthereforemightbe difficult forthistheory toproduceeffectsathorizonscalesthatarelarger than cosmic variance. Note that scales k

m

β

and k

m

β

2 are super-horizonandthereforenotobservable.

Acknowledgements

(8)

helpful discussions. We thank the referee for useful comments on the draft. A.R.S. is supported by DOE HEP grants DOE DE-FG02-04ER41338 and FG02-06ER41449 and by the McWilliams Center for Cosmology, Carnegie Mellon University. V.V. is sup-ported by a de Sitter PhD fellowship of the Netherlands Organi-zation for Scientific Research (NWO). Y.A. is supported by LabEx ENS-ICFP:ANR-10-LABX-0010/ANR-10-IDEX-0001-02PSL*.Y.A.also acknowledges support fromthe NWO and the Dutch Ministryof Education, Culture and Science (OCW), and also from the D-ITP consortium,aprogramoftheNWOthatisfundedbytheOCW.

References

[1]A.H.Chamseddine,V.Mukhanov,J.HighEnergy Phys.06(2018)060,arXiv: 1805.06283 [hep-th].

[2]A.H.Chamseddine,V.Mukhanov,J.HighEnergy Phys.06(2018)062,arXiv: 1805.06598 [hep-th].

[3]A.H.Chamseddine,V.Mukhanov,J.HighEnergy Phys.11(2013)135,arXiv: 1308.5410 [astro-ph.CO].

[4]M.Fierz,W.Pauli,Proc.R.Soc.Lond.A173(1939)211. [5]C.Isham,A.Salam,J.Strathdee,Phys.Rev.D3(1971)867. [6]D.Boulware,S.Deser,Phys.Rev.D6(1972)3368.

[7]P.Creminelli,A.Nicolis,M.Papucci,E.Trincherini,J.HighEnergyPhys.0509 (2005)003,arXiv:hep-th/0505147 [hep-th].

[8]C.deRham,G.Gabadadze, Phys.Rev.D82(2010) 044020,arXiv:1007.0443 [hep-th].

[9]C.deRham,G.Gabadadze,A.J.Tolley,Phys.Rev.Lett.106(2011)231101,arXiv: 1011.1232 [hep-th].

[10]S. Hassan, R.A. Rosen, Phys. Rev.Lett. 108(2012) 041101, arXiv:1106.3344 [hep-th].

[11]S.Hassan,R.A.Rosen,A.Schmidt-May,J.HighEnergyPhys.1202(2012)026, arXiv:1109.3230 [hep-th].

[12]S.Hassan,R.A.Rosen,J.HighEnergyPhys.1204(2012)123,arXiv:1111.2070 [hep-th].

[13]S.Hassan,A.Schmidt-May,M.vonStrauss,Phys.Lett.B715(2012)335,arXiv: 1203.5283 [hep-th].

[14]S.Hassan,R.A.Rosen,J.HighEnergyPhys.1202(2012)126,arXiv:1109.3515 [hep-th].

[15]K.Hinterbichler, R.A.Rosen,J.HighEnergyPhys.07(2012)047,arXiv:1203. 5783 [hep-th].

[16]K.Hinterbichler,Rev.Mod.Phys.84(2012)671,arXiv:1105.3735 [hep-th]. [17]C.deRham,LivingRev.Relativ.17(2014)7,arXiv:1401.4173 [hep-th]. [18]A.R.Solomon,CosmologyBeyondEinstein,Ph.D.thesis,CambridgeU.,Cham,

2015,arXiv:1508.06859 [gr-qc].

[19]A.Schmidt-May,M.vonStrauss,J.Phys.A49(2016)183001,arXiv:1512.00021 [hep-th].

[20]E.A.Lim,I.Sawicki,A.Vikman,J.Cosmol.Astropart.Phys.1005(2010)012, arXiv:1003.5751 [astro-ph.CO].

[21]L.Mirzagholi,A.Vikman,J.Cosmol.Astropart.Phys.1506(2015)028,arXiv: 1412.7136 [gr-qc].

[22]H.vanDam,M.J.G.Veltman,Nucl.Phys.B22(1970)397.

[23]V.I.Zakharov,JETPLett.12(1970)312;Pis’maZh.Eksp.Teor.Fiz.12(1970) 447.

[24]A.Higuchi,Nucl.Phys.B282(1987)397. [25]A.Vainshtein,Phys.Lett.B39(1972)393.

[26]E.Babichev,C.Deffayet,Class.QuantumGravity30(2013)184001,arXiv:1304. 7240 [gr-qc].

[27]S.L.Dubovsky,J.HighEnergyPhys.10(2004)076,arXiv:hep-th/0409124 [hep -th].

[28]D.Blas,D.Comelli,F.Nesti,L.Pilo,Phys.Rev.D80(2009)044025,arXiv:0905. 1699 [hep-th].

[29]M.Lagos,M.Bañados,P.G.Ferreira,S.García-Sáenz,Phys.Rev.D89(2014) 024034,arXiv:1311.3828 [gr-qc].

[30]H.Motohashi,T.Suyama,K.Takahashi,Phys.Rev.D94(2016)124021,arXiv: 1608.00071 [gr-qc].

[31]S.Dubovsky,T.Gregoire,A.Nicolis,R.Rattazzi,J.HighEnergyPhys.03(2006) 025,arXiv:hep-th/0512260 [hep-th].

[32]S.Endlich,A.Nicolis,R.Rattazzi,J.Wang,J.HighEnergyPhys.04(2011)102, arXiv:1011.6396 [hep-th].

[33]G.R.Dvali,G.Gabadadze,M.Porrati,Phys.Lett.B485(2000)208,arXiv:hep -th/0005016 [hep-th].

[34]C.Deffayet,Phys.Lett.B502(2001)199,arXiv:hep-th/0010186 [hep-th]. [35]C.Deffayet,G.R.Dvali,G.Gabadadze, Phys.Rev.D65(2002)044023,arXiv:

astro-ph/0105068 [astro-ph].

[36]D.Gorbunov,K.Koyama,S.Sibiryakov,Phys.Rev.D73(2006)044016,arXiv: hep-th/0512097 [hep-th].

[37]C.Charmousis,R.Gregory,N.Kaloper,A.Padilla,J.HighEnergyPhys.10(2006) 066,arXiv:hep-th/0604086 [hep-th].

[38]J.Khoury,J.Sakstein,A.R.Solomon,J.Cosmol.Astropart.Phys.1808(2018)024, arXiv:1805.05937 [hep-th].

[39]N.Aghanim,etal.,Planck,arXiv:1807.06209 [astro-ph.CO],2018.

[40]X.-l.Chen,R.J.Scherrer,G.Steigman,Phys.Rev.D63(2001)123504, arXiv: astro-ph/0011531 [astro-ph].

[41]R.H.Cyburt,B.D.Fields,K.A.Olive,T.-H.Yeh,Rev.Mod.Phys.88(2016)015004, arXiv:1505.01076 [astro-ph.CO].

[42]D.J.Fixsen,Astrophys.J.707(2009)916,arXiv:0911.1955 [astro-ph.CO]. [43]Y.Akrami,S.F.Hassan,F.Könnig,A.Schmidt-May,A.R.Solomon,Phys.Lett.B

748(2015)37,arXiv:1503.07521 [gr-qc].

[44]B.P.Abbott,etal.,LIGOScientific,VIRGO,Phys.Rev.Lett.118(2017)221101, arXiv:1706.01812 [gr-qc];Erratum:Phys.Rev.Lett.121 (12)(2018)129901. [45]C.de Rham,J.T. Deskins, A.J.Tolley, S.-Y.Zhou,Rev.Mod. Phys. 89 (2017)

025004,arXiv:1606.08462 [astro-ph.CO].

Referenties

GERELATEERDE DOCUMENTEN

Alle man- telzorgers hebben het compliment per post ontvangen, in tegenstelling tot vorige jaren, toen dit persoonlijk aan huis kon worden bezorgd door de inzet van collega’s en

For the purposes of risk appetite, risk limits are the allocation of the firms’ aggregate risk appetite statement to business line, legal entity levels, specific risk

JKLMMNONKPQRMSQSMRKPM*KSKTUSKVMWQKPXXQKYNKZXWQQ[OKONMMNKPXXQ *KRQXXNKSLK\*KYNKN]*KPM*K^QX*\*R*_KJX*SQSMRW\SSMRK`OaQ]NKS mVM KPQONd Q]\8 *RK ne P,M*K Z$$ *K

[r]

defghigjgefkfllhkmngeiogkpqekdrsgektunveqiwhgx yqiwszk{|{}~}}~}k}€z{z‚kƒ„

The results from a meta-analysis, that is based on the results of more than 100 research reports between 1967 and 1996, of Marzano, Marzano and Pickering (2003) show that there are

The discretes allow for high output swing at the 10-MV gain node, so that a 0 to 5V output swing remains

Toch zou het van kunnen zijn te preciseren dat deze aanvrager verantwoordelijk is voor de verwezenlijking van de verwerking met naleving van de juridische bepalingen waaraan