• No results found

creation of interstellar comets

N/A
N/A
Protected

Academic year: 2021

Share "creation of interstellar comets"

Copied!
37
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/87515 holds various files of this Leiden University dissertation.

Author: Torres Rodriguez, S.

Title: Dynamics of the Oort cloud and formation of interstellar comets Issue Date: 2020-04-30

(2)

Credit: ESO/L. Calçada

(3)

Chapter 3

Galactic tide and local stellar perturbations on the Oort cloud:

creation of interstellar comets

S. Torres, M. X. Cai,

S. Portegies Zwart, and A. G. A. Brown Astronomy & Astrophysics

629, A139 2019a

(4)

<

14 659 50

! 1

2.5 ±10

a! 0.25 a! 0.5

∼ 1.1

a > 0.5 20

(5)

1 000

a > 40 1/a

a > 104 i ω Ω

a < 20 000 a > 20 000

0.5 1012

∼ 3 × 1025

(6)

1 400

±10

< 50

∼ 0.3

∼ 1.3

M! # 0.15 ! 0.25+0.11−0.07

50

(7)

0.064

7.2

5 15

∼ 1 20±2 −1

11.7± 1.3 −1 ∼ 1

−1

∼ 2

±10

2.5

(8)

0.13 −1

∆v > v v

v! v

M

v

∆V

(9)

S.T M M" v −1 v" −1 venc −1 ρ 10−3pc−3

∆V≈ 2GM v

%

r2c! r!2

&

, rc r!

r

∆V∝ Mr vr2!.

∆V∝ M vrc .

(10)

f = πr2v ρ,

r v '

v!2 + v2 v!

v ρ

r

N= r2 t .

r

12.5 −1 11.7 −1

0.1 2.5

(11)

Gyr

f1 −1 ∆V⊥,∗1 −1 N1

(12)

±10

(13)

! 50 2356

11 307 1092

149 14 659

! 1/!

u2 < 1.44× [1, (−0.4(G − 19.5))],

1.0 + 0.015(G − G )2< E < 1.3 + 0.06(G − G )2,

G G G

(14)

G G G

u = (χ2/ν)1/2 E

14 659

v =

' v2 + v2 t =−cv

!v2 d = 103

! v v , v = 4.74(

α2+ µδ2)0.5/!)

v

! c = 103 −1 −1

14 659 50 2.5

20

10 10

±3

2.5

(15)

2.5

∼ 3550 6900 G = 14

(16)

2.5

(17)

15 5 5 5

1 20± 2 −1

2.5 10

Z! = 27 R! = 8.34 Vc,!= 240 −1

(U!, V!, W!) = (11.1, 12.24, 7.25) −1

106

(18)

2.5

±3

20 80 −1

(19)

2.5± ttddv1vT"v1 1.2821.1231.488 1.6701.5951.742 0.3650.3520.378 0.4790.4620.500 0.5520.5720.534 0.7390.7570.723 2.3902.6452.158 0.5080.4760.548 0.4650.4950.436 0.1670.1650.171 2.2532.0492.486 0.1330.1390.127 0.5160.5440.485 0.7280.7130.742 0.2970.3040.290 1.1341.0661.209 0.9100.8510.968 1.4731.4121.544 0.5110.5720.458 0.7790.7430.816 0.7020.5860.882 1.0410.9971.090 0.3350.3310.338 0.3950.4050.385 0.8280.8560.803 0.4790.5030.456 1.2161.1631.272 1.3311.2501.413 1.9512.0391.862 0.3720.3790.366 0.6560.6700.643

(20)

2.5

10−3 10−4 −1

∼ 0.13 −1

(21)

(22)

0.33 1.38

0.062 1.35

0.054 1.28

∼ ∼

a > 100 000

(23)

!±±± µα±±± µδ±±± µtot±±± vrad± ± ±∗∗ tph dph ∗∗

(24)
(25)
(26)

10, 000

i ω Ω M e

p(e)∝ e q

q > 32 a

a−1.5 3× 103 105

r−3.5 r

(27)

2.5 ±10

20 10, 000

a! 100 000

∼ 0.91

a >

∼ 0.02

∼ ∼ 0.38

(28)
(29)

0.01

0.03

∼ 1.12 a "

100 000

a " 100 000

∼ 80 000 100 000

50 000

∼ 1.20 a > 50 000

a

a ! 100 000

a ! 50 000

∼ 20

(30)

50, 000

(31)

±10

(32)
(33)

∼ 80 000 100 000

3000 50 000

(34)

1014 −3 8× 1014 −3 2×1015 −3

100, 000

(35)

14, 659

50 ±10

2.5

2.5

10−3 10−4 −1

N

20 ±10

a !

0.91

0.38 a !

1.12

(36)

∼ 1.20

±10

(37)

Referenties

GERELATEERDE DOCUMENTEN

The reason for this is that the photodissociation of N 2 , simi- larly to CO, is initiated by line absorptions at wavelengths be- low 1000 Å (1100 Å for CO), where

In both cases the cumulative effect of distant stellar encounters together with the Galactic tidal field raises the semi-major axis of ∼ 1.1% of the comets at the edge of the Oort

cusses the astrophysical implications of the results in relation to the 4.62 µm “XCN” feature observed in ices towards various YSO’s and aims to provide a more solid base for the

If HNCHO is formed in a similar radical ad- dition reaction as NH 2 CO (i.e. NH + CHO), reduction or hydrogenation reactions can result in HNCO and NH 2 CHO formation. Since

Abstract. Molecular oxygen, O 2 , was recently detected in comet 67P by the ROSINA instru- ment on board the Rosetta spacecraft with a surprisingly high abundance of 4% relative to H

Comets in the Oort cloud evolve under the influence of internal and external pertur- bations from giant planets to stellar passages, the Galactic tides, and the interstellar

Therefore, large planar PAHs are even more dif ficult to form in reality in comparison to covalently bonded systems, as shown in Figure 6.. Figure 7 compares the calculated

On the other hand, Oort Cloud comets are in fact born in the region of the solar nebula where the giant planets appeared (5–30 AU from the Sun). In any case, since these two