• No results found

Approaches to structure and dynamics of biological systems by electron-paramagnetic-resonance spectroscopy Scarpelli, F.

N/A
N/A
Protected

Academic year: 2021

Share "Approaches to structure and dynamics of biological systems by electron-paramagnetic-resonance spectroscopy Scarpelli, F."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)Approaches to structure and dynamics of biological systems by electron-paramagnetic-resonance spectroscopy Scarpelli, F.. Citation Scarpelli, F. (2009, October 28). Approaches to structure and dynamics of biological systems by electron-paramagnetic-resonance spectroscopy. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/14261 Version:. Corrected Publisher’s Version. License:. Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded from:. https://hdl.handle.net/1887/14261. Note: To cite this publication please use the final published version (if applicable)..

(2) Approaches to Structure and Dynamics of Biological Systems by Electron-Paramagnetic-Resonance Spectroscopy. . 

(3)  !".             ! " # $% #&'&%&&(  

(4) 

(5) $ )

(6)

(7)  % '     * +,  +-- 

(8) ./01$$      .    

(9)

(10)    

(11)   .

(12) Promotiecommissie: Promoter: Prof. dr. Edgar Groenen Copromoter: Dr. Martina Huber Overige leden: Prof. dr. Antoinette Killian (Utrecht University) Prof. dr. Jan van Ruitenbeek Prof. dr. Jan Schmidt Prof. dr. Thomas Schmidt Dr. Marcellus Ubbink.   )" *'*  *"

(13)  #)"+"  ,

(14)  ( 

(15)   &  " +-$.  "  (    -$      "( *

(16) +,*-../+.0 1(2343 /56+/.+67/8+.79+/.

(17)

(18) ai miei genitori, a mio fratello to my parents, to my brother.

(19) Table of Contents. Table of Contents. Chapter 1. Introduction......................................................................... 1 1.1. Background of EPR.................................................................. 2 1.1.1 Spin Hamiltonian.................................................................................... 2 1.2 The anisotropy of the g-tensor of a metal center in a protein: single crystal EPR ................................................................................ 4 1.3 Averaging of the anisotropic spin interactions: spin-label mobility by EPR ................................................................................... 6 1.4 Electron dipole-dipole interaction: distance measurements for structure determination......................................................................... 8 1.4.1 Structure of a disordered system by cw EPR.......................................... 9 1.4.2 Distance measurement by pulsed EPR ................................................. 12. Chapter 2. A single-crystal study at 95 GHz of the type-2 copper site of the M150E mutant of the nitrite reductase of Alcaligens faecalis ............................................................................................................... .17 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4. 2.3 2.4 2.4.1. Introduction ............................................................................ 17 Materials and Methods ........................................................... 19 Sample preparation .............................................................................. 19 EPR experiments .................................................................................. 19 Calculation of the field of resonance.................................................... 19 Simulation............................................................................................. 20 Results .................................................................................... 20 Discussion .............................................................................. 23 Functional implications........................................................................ 29. Chapter 3. Dynamics of surface spin labels in cytochrome c peroxidase studied by EPR.................................................................. 33 3.1 3.2. Introduction ............................................................................ 33 Materials and Methods ........................................................... 34 3.2.1 Sample preparation .............................................................................. 34. (i).

(20) Table of Contents. 3.2.2. EPR experiments .................................................................................. 35. 3.2.3. Simulation of the EPR spectra.............................................................. 35. 3.2.4. Second-moment analysis ...................................................................... 36. 3.2.5. Width of the central line ....................................................................... 36. 3.2.6. Conformational model.......................................................................... 37. 3.2.7. Solvent-accessible surface.................................................................... 37. 3.2.8. Protein rotation-correlation time ......................................................... 37. 3.3 3.4 3.5. Results .................................................................................... 38 Discussion .............................................................................. 45 Summary and conclusions...................................................... 48. Chapter 4. Aggregation of transmembrane peptides studied by spinlabel EPR............................................................................................... 53 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4. 4.3 4.4 4.5. Introduction ............................................................................ 53 Materials and Methods ........................................................... 56 Sample preparation .............................................................................. 56 EPR experiments .................................................................................. 58 Simulation of the EPR spectra.............................................................. 58 Second-moment analysis ...................................................................... 58 Results .................................................................................... 59 Discussion ...............................................................................70 Conclusion.............................................................................. 74. Chapter 5. The RIDME pulse sequence as an effective tool for measurements of electron-electron distances involving paramagnetic centers with strong spectral anisotropy ............................................. 79 5.1 5.2. Introduction ............................................................................ 79 Materials and Methods ........................................................... 82 5.2.1 Sample preparation .............................................................................. 82 5.2.2 EPR experiments .................................................................................. 83 5.2.3 Numerical calculation .......................................................................... 84. (ii).

(21) Table of Contents. 5.3. RESULTS AND D ISCUSSION ..................................................... 85. 5.3.1. Background of the method, dipolar interaction between two electron. spins. ………………………………………………………………………………….. 85. 5.3.2. The standard RIDME sequence............................................................. 87. 5.3.3. Consequences of the dead time for systems with large g-anisotropy .... 88. 5.3.4. Pulse sequence for dead-time free, five-pulse RIDME .......................... 89. 5.3.5. Suppression of unwanted contribution to the RIDME trace.................. 90. 5.3.6. Results for the nitroxide biradical......................................................... 91. 5.3.7. Results for spin labelled Cytochrome f.................................................. 92. 5.4. C ONCLUSION ........................................................................... 96. Appendix A . .......................................................................................... 101 Appendix B . .......................................................................................... 107 Summary . .............................................................................................. 115 Samenvatting . ....................................................................................... 119 List of Publications ............................................................................... 123 Curriculum Vitae . ................................................................................ 125 Nawoord . ............................................................................................... 127. (iii).

(22) Table of Contents. (iv).

(23)

Referenties

GERELATEERDE DOCUMENTEN

Since expression of Serpins may facilitate the immune escape of HLA positive tumors, we next analysed the effect of Serpin expression on survival in cases with normal/partial

Peripheral blood cells were stained with HLA-A2.1 tetramers containing the tyrosinase368–376 peptide followed by staining with a panel of lineage antibodies, as described in

Blades and blade fragments seem to have been especially used for longitudinal motions, mainly on plant material (7/12). Flake and flake fragments are used in different motions on

This shape also occurs in the combination artefacts (see below). The shape is the result of intensive use in a repetitive abrasive motion, carried out from different angles. In

More precisely, an upper bound for the variance of the test statistic R N ∗ is realized by the one-dimensional Moore-Rayleigh null hypothesis, whose distribution is similar to the

The results on simulated data show that the MR3 outperforms permutation tests on Hotelling’s T 2 test (pHT2) in the detection of difference of mean in small sample sizes, since the

In the last decade several pulsed EPR methods have been developed and used to measure distances and to determine the structure of chemical and biological systems from the

The rotation-correlation times of spin labels at different surface sites of proteins provide a better ranking of the spin-label mobility than the lineshape