• No results found

Frequency conversion in two-dimensional photonic structure Babic, L.

N/A
N/A
Protected

Academic year: 2021

Share "Frequency conversion in two-dimensional photonic structure Babic, L."

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation

Babic, L. (2011, May 17). Frequency conversion in two-dimensional photonic structure.

Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/17642

Version: Not Applicable (or Unknown)

(2)

Frequency conversion in

two-dimensional photonic structures

Ljubiša Babić

(3)

Publisher: Casimir Research School, Delft, the Netherlands Cover Design: Aileen Kartono

ISBN: 978-90-8593-100-3

(4)

Frequency conversion in

two-dimensional photonic structures

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op dinsdag 17 mei 2011 klokke 13:45 uur

door

Ljubiša Babić

geboren te Dubrovnik, Croatia in 1982

(5)

Promotiecommissie:

Promotor: Prof. Dr. J. P. Woerdman Universiteit Leiden Copromotor: Dr. M. J. A. de Dood Universiteit Leiden

Leden: Prof. Dr. J. Gómez Rivas Technische Universiteit Eindhoven Prof. Dr. H. W. M. Salemink Technische Universiteit Delft Dr. Ir. T. H. Oosterkamp Universiteit Leiden

Prof. Dr. D. Bouwmeester Universiteit Leiden en University of California at Santa Barbara (UCSB) Prof. Dr. E. R. Eliel Universiteit Leiden Prof. Dr. J. M. van Ruitenbeek Universiteit Leiden

The work presented in this thesis has been made possible by financial support from the Dutch Organization for Scientific Research (NWO) and is part of the scientific program of the Foundation for Fundamental Research of Matter (FOM).

An electronic version of this dissertation is available at the Leiden University Repository (https://openaccess.leidenuniv.nl).

Casimir PhD series, Delft-Leiden 2011-10

(6)

S ljubavlju mojim roditeljima, Nikolini i Nedeljku With love to my parents, Nikolina and Nedeljko

(7)
(8)

Contents

1 Introduction 1

1.1 Photonic structures . . . 1

1.1.1 Photonic crystals . . . 1

1.1.2 Nanowires . . . 4

1.2 Frequency conversion . . . 5

1.3 Thesis outline . . . 6

2 Second harmonic generation in gallium phosphide nanowires 11 2.1 Introduction . . . 11

2.2 Sample description . . . 12

2.3 Setup . . . 15

2.3.1 Description of the setup . . . 15

2.3.2 Second harmonic generation from BBO . . . 17

2.4 SHG in samples with GaP nanowires . . . 19

2.4.1 Tensor properties of nanowires . . . 20

2.4.2 Second harmonic generation at 425 nm . . . 24

2.5 Conclusion . . . 25

3 Second harmonic generation in freestanding AlGaAs photonic crystal slabs 27 3.1 Introduction . . . 27

3.2 Fabrication of photonic crystals . . . 29

3.3 Setup . . . 32

(9)

3.3.2 Second harmonic generation . . . 34

3.4 Linear optical characteristics . . . 34

3.5 Nonlinear optical properties . . . 42

3.6 Conclusion . . . 48

4 Method to transfer photonic crystals to a transparent gel sub- strate 51 4.1 Introduction . . . 51

4.2 Sample preparation . . . 53

4.3 Experiment . . . 57

4.4 Results and Discussion . . . 57

4.4.1 Leaky modes of photonic crystal slabs before and after the transfer to the gel substrate . . . 57

4.4.2 Interaction between the leaky modes of photonic crystal slabs transferred to a gel substrate . . . 61

4.5 Conclusions . . . 68

5 Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs 71 5.1 Introduction . . . 71

5.2 Experiment . . . 73

5.3 Results . . . 74

5.4 Discussion . . . 76

5.4.1 Scattering matrix formalism . . . 78

5.4.2 Example: 2-port asymmetric slab . . . 80

5.4.3 Asymmetry reversal with nonzero background . . . 84

5.5 Conclusions . . . 90

6 Second harmonic generation in transmission from photonic crystals on a gel substrate 91 6.1 Introduction . . . 91

6.2 Sample preparation . . . 93

6.3 Experiment . . . 94

6.4 Results and discussion . . . 96

6.5 Conclusions . . . 107

Bibliography 109

Summary 117

Samenvatting 121

(10)
(11)

Referenties

GERELATEERDE DOCUMENTEN

The linear transmission and reflection spectra of two-dimensional photonic crystal slabs are well-known, and show a number of asymmetric, dispersive lineshapes [58, 59] due to

By a proper choice of the parameters of the multilayer structure the dispersion of light can be tuned in such a way that the waves at the fundamental and the second harmonic

Figure 2.6 shows the measured power of the signal at a frequency of 390.9 THz (wavelength of 767.5 nm) as a function of the power of the incident fundamen- tal beam (black

Figure 3.10 shows the second harmonic power (blue dots) generated by the s-polarized fundamental beam inside sample D4, as a function of the in-plane wave vector k ||.. The

Figure 4.8 shows the quality factor (Q) for the s-polarized (1,0) mode as a function of the wave vector k || oriented along the ΓX symmetry direction (blue circles), as obtained

To emphasize that in the asymmetric case the direct reflectivity does not reach zero while the asymmetry of the Fano lineshape is reversed, Figure 5.6 shows the calculated

The solid gray line in Figure 6.4 is the second harmonic signal calculated using Equation 6.3 with no adjustable parameters. We use the dispersion relation of the s-polarized leaky

Prather, Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,