• No results found

The labyrinth unfolds: architectural rearrangements of the endolysosomal system in antigen-presenting cells

N/A
N/A
Protected

Academic year: 2021

Share "The labyrinth unfolds: architectural rearrangements of the endolysosomal system in antigen-presenting cells"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The

labyrinth

unfolds:

architectural

rearrangements

of

the

endolysosomal

system

in

antigen-presenting

cells

Priscillia

Perrin,

Marlieke

LM

Jongsma,

Jacques

Neefjes

and

Ilana

Berlin

Antigen-presentingcells(APCs)captureandpresent

pathogenstoTcells,thusarousingadaptiveimmune

responsesgearedattheeliminationoftheseinvaders.InAPCs,

pathogensacquiredfromtheextracellularspaceintersectwith

MHCclassII(MHC-II)moleculesintheendolysosomalsystem,

whereprocessingandloadingofantigenicpeptidesoccur.The

resultingcomplexescanthenbedirectedtothecellsurfacefor

recognitionbyTcells.Toachievethis,theendosomalpathway

ofAPCsmustundergodramaticrearrangementsupon

pathogenencounter.Inthisreviewwediscussrecentstridesin

ourunderstandingofhowAPCsmodulatetheorganizationand

functionoftheirendolysosomestobestsuitdifferentstagesof

antigenacquisition,processingandpresentationcascade.

Address

OncodeInstitute,DepartmentofCellandChemicalBiology,Leiden

UniversityMedicalCenter,Einthovenweg20,2333ZC,Leiden,The

Netherlands

Correspondingauthor:Berlin,Ilana(I.Berlin@lumc.nl)

CurrentOpinioninImmunology2019,58:1–8

ThisreviewcomesfromathemedissueonAntigenprocessing

EditedbyJoseVilladangosandJustinMintern

https://doi.org/10.1016/j.coi.2018.12.004

0952-7915/ã2018ElsevierLtd.Allrightsreserved.

Introduction

The endolysosomal system functions as atrading plat-form through which the cell and its environment exchange information and goods in order to maintain homeostasisandcommunicateimpendingpredicaments. To enablereceptionandutilization ofawidevarietyof materialsandsignals,thissystemcomprisesmany differ-ent flavorsof vesicularmembrane carriers, whose inter-actionswithoneanotherdeterminedownstreamcellular outcomes.Followinginternalizationfromthe extracellu-lar space, endosomes undergo progressive maturation, characterizedbyacidificationandsortingofubiquitinated cargoes intointraluminal vesicles (ILVs).The resulting multivesicularbodies(MVBs)cansubsequentlyfusewith lysosomes to deliver the contents of their ILVs for

degradation[1],whilematerialsnotintendedfor degra-dation recycle from the limiting endosomal membrane back to the cell surface. Cytoplasmic cargoes encapsu-latedwithinautophagosomesalsofeedintothisendocytic tract for access to the proteolytic compartment, thus allowingcross-talkbetweenintracellularandextracellular domains[2].Thisdiversesystemofvesiclesmustworkin concerttofulfillitsrolesasthecell’ssensoryplatformand digestive organelle. To ensure controlled uptake and progression of cargoes through the system, cells have evolvedstrategiestoorganizeandmanipulatetheir endo-lysosomalrepertoireinspaceandtime.Inthisreview,we discussthenatureof thesestrategiesandtheir relation-ship(s) to endocytic function at the host–pathogen interface.

(2)

antigen-presentingcells can contributeto the develop-mentofauto-immunity.

‘Class

II’

goes

to

the

MIIC

Following their biosynthesis and association with the invariantchainchaperone(Ii)intheendoplasmic reticu-lum (ER), MHC-II dimers traffic via the trans-Golgi network to theso-called MHC-IIcompartment (MIIC) known to host antigen processing and peptide loading (Figure1)[6].AlthoughMIICscanvaryinstructureand

maturationstate,theygenerallycompriselateendosomes or lysosomes characterized byintraluminal membranes, acidic pH, and mild proteolytic activity—all attributes thatfavorantigenprocessingandpreservationofresulting epitope integrity [4]. When antigens acquired through endocytosis,phagocytosis,macropinocytosis(exogenous), orautophagy(endogenous)entertheendocytictract,they aredirectedtotheMIICfordegradation[7,8].Antigenic peptides produced during this process can then be directlyloadedontoMHC-IIresidinginthesame com-partment.Tofacilitatepeptideloading, MHC-II-associ-ated Ii must undergo proteolysis [9], leaving only the contiguous internal segment of Ii (CLIP) within the MHC-II peptide-binding groove [10]. The endosomal chaperone HLA-DM then mediates removal of CLIP, creatingan opportunityfor antigen-derivedpeptides to bind[11].

Under steady state conditions, most MHC-II dimers, alongwithHLA-DM,aresequesteredontoILVsofthe MIIC[12].IntraluminalsortingofMHC-II, aswellas vesicle budding and scission, is orchestrated by the endosomal sorting complexes required for transport (ESCRT)[13]andlikelyrequiresMHC-II ubiquitina-tionbyligasesofthemembrane-associated RING-CH (MARCH) family [14], although the impact of this modification onantigen presentationremains debated [15].BeforeincorporationintoILVs,ubiquitinmaybe removedandrecycledfromsortedMHC-IIuponaction ofdeubiquitinatingenzymes[16].Eventually,MHC-II reaches intraluminal membranes, whose composition greatly differs from that of the limiting membrane. ILVsarehighlyenrichedincholesterolandtetraspanin proteins(CD63,CD81andothers)[17],and sequestra-tionofMHC-IIinthelumenoftheMIICmay, there-fore, have functional consequences. Indeed, FRET studies have indicated that MHC-II and HLA-DM interactonILVmembranes,ratherthanonthelimiting membrane of the MIIC [18], implying that MHC-II peptideloadingmaycomprehensivelyoccuroninternal vesicles.Whileintraluminaltetraspaninnetworkshave been suggested to stabilize DM-MHC-II interactions andfacilitatepeptideloadingonILVs[19],cholesterol likely plays asubstantial role inMHC-II intracellular traffic[20].

InimmatureAPCs,MHC-II-positiveILVsareeventually degradedin lysosomesorreleased fromthecellas exo-somes[21].Followingencounterwithapathogen, how-ever,MIICstransitionfromILV-richantigen-producing and loading factories to tubular organelles, poised for transport of mature MHC-II complexes to the plasma membraneforrecognitionbyTcellreceptors[22].How theMIICis organizedand remodeledto bestservethe hostduringdifferentstagesoftheinfectionprocess—and howthesesameattributescanbeutilizedbythepathogen togainadvantageoverthehost—isdiscussed below.

Figure1 MHCII ER GOLGI H+ H+ H+ DM H+ H+ H+ H DM Endosome Phagosome Auto phagosome H+ H+ MIIC/endolysosome Myo1e Arl14 Actin Ub RNF26 Ub Arl8b PLEKHM1 Rab7HOPS

CLIP

Ii

Protease Ag

Current Opinion in Immunology

SchematicoverviewofMHC-IIantigenpresentationinAPCsbefore

maturation.

InimmatureAPCs,MHC-IIincomplexwiththeinvariantchainIiexits

thebiosynthetictractviatheTGNandistargetedtotheendosomal

pathwayeitherdirectlyorviatheplasmamembrane.OnceMHC-II/Ii

complexreachestheacidicandproteolyticMHC-IIcompartment

(MIIC),muchofIiistrimmedawayandMHC-II/CLIPawaitsantigens.

AftersortingintoILVs,MHC-IIinteractswithHLA-DMforpeptide

loading.AsAPCssampletheirenvironmentandcollectantigens(Ag)

throughvariouspathways(exogenous:endocytosis,phagocytosis;

endogenous:autophagy),theseareroutedtotheMIICforprocessing,

loading,andpresentation.Thisrequiresretrogradevesicletransport

towardthemicrotubuleminus-endwhereantigenprocessing

compartmentsareretainedbyER-associatedRNF26.Fusionwith

theseendolysosomesisthenorchestratedbythesmallGTPasesRab7

andArl8binconjunctionwiththeireffectorsRILP,PLEKHM1and

HOPS.Additionally,Arl14/Myo1ecomplexinhibitsexportofp-MHC-II

(3)

Before

the

invasion—organization

of

the

endolysosomal

system

in

immature

APCs

InnumerousAPCs,includingmacrophagesandimmature monocyte-derived DCs(moDC), the endolysosomal sys-temfeaturesabilateralarchitecture,comprisedofarather immobileperinuclear(PN)vesiclecluster,or‘cloud’,anda highly dynamic peripheral pool of endosomes and lyso-somes[23].Thefateofindividualvesiclesineitherregion of the cell relies on small GTPases, which determine directionalityoftransportbetweenthePNcloudandthe peripheryandorchestratematurationandcargoexchange [24].Throughinteractions withvariouseffectorproteins, GTPasesoftheRab,Arf,andArlfamiliescouplevesiclesto microtubulemotors fordirectionaltransportandmediate recruitmentofremodelingfactorsrequiredformembrane fusionandfission.AtleasttwoGTPases,Rab7andArl8b, associated with late endosomes and lysosomes, oversee trafficflowalongtheantigenprocessingandpresentation cascade (Figure1) [25,26]. Rab7, in complex withitseffector Rab-interactinglysosomalprotein(RILP)andthe microtu-bule-baseddyneinmotor,transportsmaturingendosomes includingthosecontainingantigenstowardthePNcloud, where degradation occurs. Rab7 then collaborates with Arl8b through a shared effector Pleckstrin homology domaincontainingproteinfamilymember1(PLEKHM1) and its associated homotypic fusion and protein sorting (HOPS) complex to promote fusion betweenlate endo-somesandlysosomes[27],therebyensuringcargo degra-dationandacquisitionofantigenicpeptidesbyMHC-II. Spatiotemporalregulationofendolysosomalorganization and behavior is not only autonomously determined, as described above, but is also influenced by other orga-nelles,mostnotablytheendoplasmicreticulum(ER).For instance, endosomes entering the PN cloud can be anchoredandretainedthroughinteractionswiththe peri-nuclear ER-associatedubiquitin ligase Ring finger pro-tein26(RNF26),andthisERdockingfacilitatesaccessof incomingvesiclestolatecompartments(Figure1)[23]. Furthermore,fissionofendosomesisalsocuratedbythe ER [28,29]. As these processes are crucial for faithful sorting and timelydeliveryof internalizedmaterialsfor proteolysis, it stands to reason that their underlying mechanisms would also influence efficiency of antigen processingandpeptideloading,althoughformal investi-gation thereofremainsto beperformed(Table1).

The

fight

is

on—architectural

changes

in

the

endolysosomal

system

upon

APC

maturation

Intheearlysteps ofpathogenicinvasion,APCsbecome activateduponbindingofinnateimmunereceptors,such asToll-likereceptors(TLRs),topathogenicligandsand integrationofinflammatorymediatorsproducedbyother cell types. As a result, APCs embark on a cell-wide maturation program, which transiently increases MHC-IIbiosynthesis,inhibitsantigenacquisitionthrough non-specific phagocytosis and macropinocytosis [4], and

demands dramatic reorganizationof the MIIC architec-ture[4].Followingactivation,MIICstransitionfromtrue MVBstotubularendolysosomesdevoidofinternal mem-branes in order to allow efficienttrafficking of peptide-loadedMHC-II(p-MHC-II)totheplasmamembranefor presentation [30,31]. How MHC-II is transferred from ILVstothelimitingmembraneoftheMIICisunclear.It hasbeenspeculatedthat,followingAPCactivation, pre-existing multi-vesicular MIICs would fuse with lyso-somes, leading to degradation of pre-loaded MHC-II residingoninternalmembranes.Meanwhile,newly syn-thesized MHC-II would traffic to these late compart-mentsbutavoidbeingsortedintoILVsduetosuppressed ubiquitination [32], remaining instead on the limiting membrane for peptide loadingand transport. However, this supposition is challenged by the observation that most p-MHC-IIcomplexes are deliveredto the plasma membranebeforeMHC-IIubiquitinationandsortingare downregulated[30,33].Sohowthendoespeptide-loaded MHC-IIarriveatthelimitingMIICmembranetoenter tubulesfortransport?Ithasbeenproposedthatinsteadof suffering degradation, ILVs harboring p-MHC-II fuse back withthe limitingmembrane of theMIIC through a process termed ‘retrofusion’ (Figure 2) [34–36]. The existence of such a path for ILVs carrying p-MHC-II complexes would explain a number of observations. Firstly,thenotionthatsurfacep-MHC-IIoriginatesfrom cholesterol-laden ILVs is notably consistent with the finding that MHC-II arrives at the plasma membrane in cholesterol-richmicroclusters[37].Moreimportantly, since APC stimulation occurs concurrently with the acquisition and processing of pathogenic antigens, the abundant luminalpool of p-MHC-II constituted before maturation likely encompasses a myriad of pathogen-specific epitopes,andits eliminationwouldbe counter-productive to antigen presentation. Retrofusion would thus offer a path for rescue of these epitopes from lysosomal degradation, allowing them to be presented. Intheend,thetwomodelsforMHC-IItransferprobably coexist, and p-MHC-II complexes from all possible sources contribute to antigen presentation in order to achieve optimalimmunestimulation.

Table1

Openissuesonendosomalmodulationinthecontextofantigen

presentation Issue

Endosomalmodulationsinautoimmunediseases

TheregulationofautophagyinTECs

Pathogen-mediatedalterationsoftheendocyticnetworkinAPCs

Themolecularmechanismofretrofusion

FunctionaldifferencesbetweenILVsandthelimitingmembraneofthe

MIIC

ER-mediatedcontrolofendosomalprocessesinprofessionalAPCs

Themolecularpathwayleadingtoendosomaltubulationand

(4)

Given its small physical scale and dynamic nature, the processofretrofusionhasnotyetbeendirectlyobserved (Table 1). However, viruses and toxins have been described to hijack this pathway, following endosomal entry,in order to reach thecytosol ofthe host celland achieve infection[38–40].Similarly, it hasbeen specu-latedthatretrofusionmayallowaccessofexosome encap-sulatedmaterialto thecytosol oftargetcells[41].

‘Ins’

and

‘outs’

of

MHC-II

transport

to

the

cell

surface

Once p-MHC-II complexes have reached the limiting membrane of the MIIC, they are sorted into tubules destinedfortransport tothecellperiphery.Subsequent fusion of p-MHC-II positive tubules with the plasma membrane implants these antigen epitopes for T cell recognition.Whileretrogradetransporttotheperinuclear regionisgovernedbydynein,asdescribedabove, anter-ogradetransport towardtheplasmamembranerelieson

kinesin-1motoractivity[42,43].Intriguingly,both anter-ogradeandretrogradetransportappeartobeessentialfor MHC-II delivery to the cell surface. In macrophages, lysosomaltubulationrequiresbothRab7andArl8b,and lipopolysaccharide(LPS)stimulationtriggersthisprocess inamammaliantargetofrapamycin(mTOR)-dependent manner[44,45].ItisthoughtthatArl8b-mediated kine-sin-1 activity drives lysosomal elongation into tubules, and together with the counter force provided by the Rab7-dyneincomplexresultsintubulefissionand liber-ationofp-MHC-IIcarriers(Figure2)[46].Recentwork revealsthatTLR-dependentengagementofthemTOR axisinducesmembrane accumulationofArl8b [45],but the precise molecular underpinnings thereof remain unexplored (Table 1). The multisubunit BLOC-one-related complex (BORC) known to stimulate Arl8b recruitment and influence positioning of lysosomes in the cell periphery is likely involved [47–49], but the existence of additional regulatory layers cannot be

Figure2 ER GOLGI MHC II cholesterol rich microdomains + Arl8b RILP Rab7 BORC TLR Signalling Retrofusion MHCII Arl14 Actin H+ H+ H+ DM H+ H+ -Kinesin-1 Dynein MIIC/endolysosome Ii Protease

Current Opinion in Immunology

SchematicoverviewofMHC-IIantigenpresentationinmaturingAPCs.

Uponrecognitionofpathogensbyreceptors,suchasTLRs,APCsundergoaprocessofmaturation,duringwhichglobalrearrangementsofthe

endolysosomalsystemtakeplace.IntheMIIC,retrofusionofILVsandrestrictionofintraluminalsortingmayallowp-MHC-IIcomplexestoreach

thelimitingmembraneoftheendolysosome.BORC-mediatedrecruitmentofArl8btotheMIICleadstoengagementofkinesin-1motorthatdrives

elongationofMHC-II-positivemembranesintotubulestowardthemicrotubuleplus-end.Concomitantly,Rab7-RILP-dyneintransportcomplex

providesanopposingforcenecessarytoinducemembranefission.OncetheresultingMHC-IIcarriersreachtheperiphery,theyfusewiththe

(5)

excluded.Rab7canalsomediateendolysosomaltransport tothecellperipheryviaitseffectorFYVEandcoiled-coil (CC)domain-containingprotein(FYCO1)[50].Whether thistraffickingrouteparticipatesindeliveryofp-MHC-II complexes to the plasma membrane of APCs is not known.

Collectively, diverse transport systems are needed to properly control traffic of MHC-II-containing vesicles to theplasmamembraneduring APCmaturation. Inter-estingly,althoughthesamemachineriesarealsopresent inimmatureAPCs,intheabsenceofappropriatetriggers, MIICsdonotmigratetothecellsurface,suggestingthe existenceof inhibitory mechanisms.Indeed,in a multi-dimensional depletion screenthe small GTPase Arl14/ Arf7 was identified as a negative regulator of MHC-II export in moDCs [51]. Association of Arl14 with Arf7 effector protein(ARF7EP)causesrecruitment ofmotor myosin1EforanchorageofMIICstotheactin cytoskele-ton(Figure1).Bycontrast,inactivationofthissystemin immature DCs sends MHC-II molecules to the cell surface, recapitulating a mature DC phenotype in the absenceof activation(Figure 2).

Oncetheexportofpeptide-loadedMHC-IIcomplexesis achieved,theirstableresidenceattheplasmamembrane is protectedtoensure longevityof antigen presentation [52].Ifendocytosed, owingtolackof ubiquitination, p-MHC-IIs recycle back to the cell surface, instead of following the degradation route [53]. Hence, MHC-II ubiquitination must be tightly controlled to best serve APC function throughout the immune response. For

example,ingerminalcenters,Bcellsareselectedbased on their ability to capture and present antigens to T helpercells.Inordertofavortheirselectionand prolifer-ation, thesecellsmodulateMARCH1-mediated ubiqui-tination of MHC-II dimers to promote presentation of theirmostrecentlyacquiredantigens[54].Timely tun-ingofMHC-IIturnover,therefore,contributestotherise of high-quality antibody responses. In contrast, when triggeredbypathogens,aberrantubiquitinationand sur-face depletionofmature MHC-IIdimerscanhave dra-maticconsequencesonTcellactivation.Forinstance,the gram-negative bacteria Salmonella enhances MARCH8-dependant ubiquitination of endocytosed p-MHC-IIs, thereby hamperingtheirrecyclingand dampening anti-gen presentation to T cells (Figure 3) [55]. Taken together,thesestudiesillustratethepowerofmodulating ubiquitinationstatusofMHC-IIandsuggestavenuesfor intervention through transient inhibition of the enzy-maticactivitiesinvolved.

Antigen

presentation

and

tolerance:

how

alterations

in

MHC-II

traffic

and

autophagy

set

off

autoimmunity

Because APCsplayapivotalrolein theriseofimmune defenses,tightcontrolovertheirfunctionisessentialfor immunetolerance.DeregulationofMIICdistributioncan leadtoexcessiveantigenpresentationandresultin auto-immune disorders. For instance, the C-type lectin CLEC16Awasidentifiedasafactorresponsibleforsuch deregulations in a genome-wide screen combined with multiplesclerosisdatasets[56].Increasedexpressionof CLEC16A causes abnormal MIIC biogenesis, which

Figure3 SteDD MARCH8 Ub Salmonella Degradation

Multiple Sclerosis

H+ H+ H+ RILP Rab7 DM CLEC16A HOPS

MIIC maturation --> self-Ag loading

Self-Ag Protease MHCII MIIC H+ H+ H+ H H+ H+ H+ H+ H MIIC Auto phagosome Self-Ag CTLA-4 PI3K/Akt/mTOR Foxp3+ Treg Ag AUTOIMMUNITY

(a)IMMUNE EVASION (b) (c)AUTOIMMUNITY PROTECTION

Current Opinion in Immunology

AlterationsintheMHC-IIendocyticpathwaycanpromoteimmuneevasionandleadtoautoimmunity.

(a)SalmonellabacteriaevadehostantigenpresentationbymanipulatingtheendocyticrouteofMHC-II.Salmonella’seffectorSteDpositively

regulatesMARCH8-mediatedubiquitinationofendocytosedp-MHC-IIcomplexes,preventingtheirrecyclingtothecellsurface.(b,c)Malfunctions

inMHC-IIand/orantigentraffickingpathwaycanresultinaberrantantigenpresentationandleadtoautoimmunity.(b)Inmultiplesclerosis,theC

typelectinCLEC16AenhancesmaturationofMHC-IIpositiveendosomes,likelythroughinteractingwithRILPandtheHOPScomplex.Altered

MIICbiogenesisallowsforloadingandpresentationofself-antigensandmaytriggeranautoimmuneresponse.(c)Theautophagypathway

deliversauto-antigenstotheMIICforloadingandpresentationbyMHC-II.Inordertopreventautoimmunity,regulatoryTcellsdisruptthe

(6)

couldaffectCD4Tcellactivationandresultin autoim-muneresponse(Figure3).SinceitassociatestoRILPand the HOPS complex, CLECL16A may affect transport and fusion of MHC-II-carrying endosomes with lyso-somesand thus alter MHC-IIpeptide loadingand pre-sentation of autoantigens. Hence, conservation of self-tolerance not only requires proper MHC-II trafficking, butalsodependsonthedeliveryofself-antigensto MHC-II carriers. This can be achieved by macroautophagy, when cytosolic substrates reach the endocytic network inautophagosomalmembranes.InDCs,fusionof autop-hagosomeswithMIICsleadstoprocessingandloadingof cytosolicself-antigens ontoMHC-II for presentation to effectorTcells.Interestingly,Foxp3+Tregcellsdisrupt autophagyin DCs (draining lymph nodes, splenic, and bone marrow-derived DCs) through CTLA-4 engage-mentandconsecutiveactivationofthePI3K/Akt/mTOR pathway (Figure 3) [57]. The resulting deficiency reduces CD4T cellauto-reactivity and lowersthe risk ofautoimmunity.

Incontrast, autophagyin thymicepithelial cells (TEC) drivespresentationofself-antigenstothymocytesandhas thus been implicated in T cell selection [58,59]. CLEC16Awasrecentlyfoundtoinfluencethymic selec-tionvia autophagy, and its depletioncould counterthe development of autoimmunity [60]. Precisely how CLEC16A regulates TEC autophagy is unknown, but itmayinvolvemodulationofmTORactivity[61],aswell asimplicateRILP andHOPS. Thelatteroptionis sub-stantiated by the finding that transport and fusion of autophagosomes with late endosomes and lysosomes are timed by several Rab7 effectors, including RILP, PLEKHM1 and the cholesterol sensor ORP1L [62]. Specifically,theseprocessesaresensitivetothepresence of cholesterol in endolysosomal membranes, as choles-terol depletion forces Rab7-bound ORP1L to mediate contacts with the ER. As a consequence, retrograde transport and maturation of autophagosomes are inhib-ited.Itis,therefore,plausible thatCLEC16A interven-tionatthisjuncturemayalterdecisivestepsinautophagy toinfluenceimmunetolerance.

Conclusions

and

perspectives

Theendosomalpathwaysofcellsentrustedwith respon-sibilitiesofantigenprocessingandpresentationaremore diverse and dynamic than originally anticipated. The architectureanddynamicsof theendolysosomalsystem in APCs are controlled by various factors, which ulti-mately determine healthy MHC-II responses. New insightsonthiscomplexnetworkofvesicularorganelles discussedinthisreviewexpandourperceptionof MHC-IIfunction,and itsnumerousforms ofmodulation, and edifyourunderstandingoftheMHC-IIcompartmentto illustratehowendosomalregulatorscontributeto scrupu-lousimmuneresponsesandtolerance.Decipheringhow theendolysosomalarchitectureismodifiedinthecourse

ofinfectionsandautoimmunediseases(Table1)willhelp definetherapeutictargetsandultimatelytodesign appro-priateclinical strategies.The firstexamples are now at hand.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

ThisworkwassupportedbyanERCAdvancedgrantandtheNWOGravity

grantawardedtoJN.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview,

havebeenhighlightedas:

 ofspecialinterest

ofoutstandinginterest

1. WoodmanPG,FutterCE:Multivesicularbodies:co-ordinated progressiontomaturity.CurrOpinCellBiol2008,20:408-414.

2. MolinoD,ZemirliN,CodognoP,MorelE:Thejourneyofthe autophagosomethroughmammaliancellorganellesand membranes.JMolBiol2017,429:497-514.

3. GruenbergJ,vanderGootFG:Mechanismsofpathogenentry throughtheendosomalcompartments.NatRevMolCellBiol 2006,7:495-504.

4. RochePA,FurutaK:TheinsandoutsofMHCclassII-mediated antigenprocessingandpresentation.NatRevImmunol2015, 15:203-216.

5. TemmeS,Eis-HubingerAM,McLellanAD,KochN:Theherpes simplexvirus-1encodedglycoproteinBdivertsHLA-DRinto theexosomepathway.JImmunol2010,184:236-243.

6. BertolinoP,Rabourdin-CombeC:TheMHCclassII-associated invariantchain:amoleculewithmultiplerolesinMHCclassII biosynthesisandantigenpresentationtoCD4+Tcells.CritRev Immunol1996,16:359-379.

7. VyasJM,VanderVeenAG,PloeghHL:Theknownunknownsof antigenprocessingandpresentation.NatRevImmunol2008, 8:607-618.

8. SchmidD,PypaertM,MunzC:Antigen-loadingcompartments formajorhistocompatibilitycomplexclassIImolecules continuouslyreceiveinputfromautophagosomes.Immunity 2007,26:79-92.

9. NeefjesJJ,PloeghHL:Inhibitionofendosomalproteolytic activitybyleupeptinblockssurfaceexpressionofMHCclassII moleculesandtheirconversiontoSDSresistancealphabeta heterodimersinendosomes.EMBOJ1992,11:411-416.

10. WuS,GorskiJ:TheMHCclassII-associatedinvariant chain-derivedpeptideclipbindstothepeptide-bindinggrooveof classIImolecules.MolImmunol1996,33:371-377.

11. KropshoferH,VogtAB,MoldenhauerG,HammerJ,BlumJS, HammerlingGJ:EditingoftheHLA-DR-peptiderepertoireby HLA-DM.EMBOJ1996,15:6144-6154.

12. KleijmeerMJ,OssevoortMA,vanVeenCJ,vanHellemondJJ, NeefjesJJ,KastWM,MeliefCJ,GeuzeHJ:MHCclassII compartmentsandthekineticsofantigenpresentationin activatedmousespleendendriticcells.JImmunol1995, 154:5715-5724.

13. SchonebergJ,LeeIH,IwasaJH,HurleyJH:Reverse-topology membranescissionbytheESCRTproteins.NatRevMolCell Biol2017,18:5-17.

(7)

15. McGeheeAM,StrijbisK,GuillenE,EngT,KirakO,PloeghHL: Ubiquitin-dependentcontrolofclassIIMHClocalizationis dispensableforantigenpresentationandantibody production.PLoSOne2011,6:e18817.

16. ClagueMJ,UrbeS:Integrationofcellularubiquitinand membranetrafficsystems:focusondeubiquitylases.FEBSJ 2017,284:1753-1766.

17. EscolaJM,KleijmeerMJ,StoorvogelW,GriffithJM,YoshieO, GeuzeHJ:Selectiveenrichmentoftetraspanproteinsonthe internalvesiclesofmultivesicularendosomesandon exosomessecretedbyhumanB-lymphocytes.JBiolChem 1998,273:20121-20127.

18. ZwartW,GriekspoorA,KuijlC,MarsmanM,vanRheenenJ, JanssenH,CalafatJ,vanHamM,JanssenL,vanLithMetal.: SpatialseparationofHLA-DM/HLA-DRinteractionswithin MIICandphagosome-inducedimmuneescape.Immunity2005, 22:221-233.

19. HoornT,PaulP,JanssenL,JanssenH,NeefjesJ:Dynamics withintetraspaninpairsaffectMHCclassIIexpression.JCell Sci2012,125:328-339.

20. KuipersHF,BiestaPJ,GroothuisTA,NeefjesJJ,MommaasAM, vandenElsenPJ:Statinsaffectcell-surfaceexpressionof majorhistocompatibilitycomplexclassIImoleculesby disruptingcholesterol-containingmicrodomains.Hum Immunol2005,66:653-665.

21. LeoneDA,PeschelA,BrownM,SchachnerH,BallMJ, GyuraszovaM,Salzer-MuharU,FukudaM,VizzardelliC,BohleB etal.:SurfaceLAMP-2Isanendocyticreceptorthatdiverts antigeninternalizedbyhumandendriticcellsintohighly immunogenicexosomes.JImmunol2017,199:531-546.

22. BoesM,CernyJ,MassolR,OpdenBrouwM,KirchhausenT, ChenJ,PloeghHL:T-cellengagementofdendriticcellsrapidly rearrangesMHCclassIItransport.Nature2002,418:983-988.

23.

 JongsmaGarstkaMA,ML,JanssenBerlinI,H,WijdevenMensinkRH,M,vanJanssenVeelenL,PA,JanssenSpaapenGM,RM etal.:AnER-associatedpathwaydefinesendosomal architectureforcontrolledcargotransport.Cell2016,166: 152-166.

ThispaperdemonstratesthattheperinuclearER-associatedubiquitin

ligaseRNF26mediatesretentionofendosomesinthePNcloudand,

therefore,governsthearchitectureoftheendolysosomalsystem.

24. NeefjesJ,JongsmaMML,BerlinI:Stoporgo?Endosome positioningintheestablishmentofcompartmentarchitecture, dynamics,andfunction.TrendsCellBiol2017,27:580-594.

25. MicheletX,GargS,WolfBJ,TuliA,Ricciardi-CastagnoliP, BrennerMB:MHCclassIIpresentationiscontrolledby thelysosomalsmallGTPase,Arl8b.JImmunol2015,194: 2079-2088.

26. GargS,SharmaM,UngC,TuliA,BarralDC,HavaDL,VeerapenN, BesraGS,HacohenN,BrennerMB:Lysosomaltrafficking, antigenpresentation,andmicrobialkillingarecontrolledby theArf-likeGTPaseArl8b.Immunity2011,35:182-193.

27.

 MarwahaRab7effectorR,AryaPLEKHM1SB,JaggabindsD,KaurArl8bH,toTulipromoteA,SharmacargoM:trafficThe tolysosomes.JCellBiol2017,216:1051-1070.

ThispaperdemonstratesthatinteractionbetweenlysosomalArl8band

theRab7effectorPLEKHM1onlateendosomes,andconsequent

Arl8b-mediated recruitment oftheHOPS complexestablish clusteringand

fusionoflateendosomesandlysosomes.

28. RowlandAA,ChitwoodPJ,PhillipsMJ,VoeltzGK:ERcontact sitesdefinethepositionandtimingofendosomefission.Cell 2014,159:1027-1041.

29. HoyerMJ,ChitwoodPJ,EbmeierCC,StriepenJF,QiRZ,OldWM, VoeltzGK:AnovelclassofERmembraneproteinsregulates ER-associatedendosomefission.Cell2018,175:254-265e214.

30. KleijmeerM,RammG,SchuurhuisD,GriffithJ,RescignoM, Ricciardi-CastagnoliP,RudenskyAY,OssendorpF,MeliefCJ, StoorvogelWetal.:Reorganizationofmultivesicularbodies regulatesMHCclassIIantigenpresentationbydendriticcells. JCellBiol2001,155:53-63.

31. ChowA,ToomreD,GarrettW,MellmanI:Dendriticcell maturationtriggersretrogradeMHCclassIItransport fromlysosomestotheplasmamembrane.Nature2002, 418:988-994.

32. tenBroekeT,WubboltsR,StoorvogelW:MHCclassIIantigen presentationbydendriticcellsregulatedthroughendosomal sorting.ColdSpringHarbPerspectBiol2013,5:a016873.

33. DeGassartA,CamossetoV,ThibodeauJ,CeppiM,CatalanN, PierreP,GattiE:MHCclassIIstabilizationatthesurfaceof humandendriticcellsistheresultofmaturation-dependent MARCHIdown-regulation.ProcNatlAcadSciUSA2008, 105:3491-3496.

34. MurkJL,HumbelBM,ZieseU,GriffithJM,PosthumaG,SlotJW, KosterAJ,VerkleijAJ,GeuzeHJ,KleijmeerMJ:Endosomal compartmentalizationinthreedimensions:implications formembranefusion.ProcNatlAcadSciUSA2003, 100:13332-13337.

35. vanderGootFG,GruenbergJ:Intra-endosomalmembrane traffic.TrendsCellBiol2006,16:514-521.

36. NeefjesJ,JongsmaML,PaulP,BakkeO:Towardsasystems understandingofMHCclassIandMHCclassIIantigen presentation.NatRevImmunol2011,11:823-836.

37. BoschB,HeipertzEL,DrakeJR,RochePA:Major

histocompatibilitycomplex(MHC)classII-peptidecomplexes arriveattheplasmamembraneincholesterol-rich

microclusters.JBiolChem2013,288:13236-13242.

38. LeBlancI,LuyetPP,PonsV,FergusonC,EmansN,PetiotA, MayranN,DemaurexN,FaureJ,SadoulRetal.: Endosome-to-cytosoltransportofviralnucleocapsids.NatCellBiol2005, 7:653-664.

39. AbramiL,LindsayM,PartonRG,LepplaSH,vanderGootFG: Membraneinsertionofanthraxprotectiveantigenand cytoplasmicdeliveryoflethalfactoroccuratdifferentstages oftheendocyticpathway.JCellBiol2004,166:645-651.

40. Amini-Bavil-OlyaeeS,ChoiYJ,LeeJH,ShiM,HuangIC,FarzanM, JungJU:TheantiviraleffectorIFITM3disruptsintracellular cholesterolhomeostasistoblockviralentry.CellHostMicrobe 2013,13:452-464.

41. RaposoG,StoorvogelW:Extracellularvesicles:exosomes, microvesicles,andfriends.JCellBiol2013,200:373-383.

42. CabukustaB,NeefjesJ:Mechanismsoflysosomalpositioning andmovement.Traffic2018,19:761-769.

43. BonifacinoJS,NeefjesJ:Movingandpositioningthe endolysosomalsystem.CurrOpinCellBiol2017,47:1-8.

44. MrakovicA,KayJG,FuruyaW,BrumellJH,BotelhoRJ:Rab7and Arl8GTPasesarenecessaryforlysosometubulationin macrophages.Traffic2012,13:1667-1679.

45. SaricA,HipolitoVE,KayJG,CantonJ,AntonescuCN,BotelhoRJ: mTORcontrolslysosometubulationandantigenpresentation inmacrophagesanddendriticcells.MolBiolCell2016, 27:321-333.

46. HipolitoVEB,Ospina-EscobarE,BotelhoRJ:Lysosome remodellingandadaptationduringphagocyteactivation.Cell Microbiol2018,20.

47. PuJ,SchindlerC,JiaR,JarnikM,BacklundP,BonifacinoJS: BORC,amultisubunitcomplexthatregulateslysosome positioning.DevCell2015,33:176-188.

48. GuardiaCM,FariasGG,JiaR,PuJ,BonifacinoJS:BORC functionsupstreamofkinesins1and3tocoordinateregional movementoflysosomesalongdifferentmicrotubuletracks. CellRep2016,17:1950-1961.

49. FilipekPA,deAraujoMEG,VogelGF,DeSmetCH,EberharterD, RebsamenM,RudashevskayaEL,KremserL,YordanovT, TschaiknerPetal.:LAMTOR/ragulatorisanegativeregulatorof Arl8b-andBORC-dependentlateendosomalpositioning.J CellBiol2017,216:4199-4215.

(8)

ER-endosomecontactspromoteendosometranslocationand neuriteoutgrowth.Nature2015,520:234-238.

51. PaulP,vandenHoornT,JongsmaML,BakkerMJ,HengeveldR, JanssenL,CresswellP,EganDA,vanHamM,TenBrinkeAetal.: Agenome-widemultidimensionalRNAiscreenreveals pathwayscontrollingMHCclassIIantigenpresentation.Cell 2011,145:268-283.

52. CellaM,EngeringA,PinetV,PietersJ,LanzavecchiaA: InflammatorystimuliinduceaccumulationofMHCclassII complexesondendriticcells.Nature1997,388:782-787.

53. ChoKJ,WalsengE,IshidoS,RochePA:Ubiquitinationby march-IpreventsMHCclassIIrecyclingandpromotesMHC classIIturnoverinantigen-presentingcells.ProcNatlAcadSci USA2015,112:10449-10454.

54.

 BannardShinJS,CysterO,McGowanJG:Ubiquitin-mediatedSJ,ErschingJ,IshidofluctuationsS,VictorainGD,MHC classIIfacilitateefficientgerminalcenterBcellresponses.J ExpMed2016,213:993-1009.

ThisarticledemonstratesthatgerminalcenterBcellsregulate

MARCH1-mediatedubiquitinationtodegradeoldp-MHC-IIcomplexesandallow

interactionofnewepitopes,acquiredwithamorerefinedBcellreceptor,

withThelpercells.Bcellswiththebestaffinityforantigensare,therefore,

abletoproliferate.

55.

 Bayer-SantosJenningsE,LiuE,M,DurkinRyanCH,AS,RiganoLapaqueLA,NKupzetal.:A,TheAlixsalmonellaE,CernyO, effectorSteDmediatesMARCH8-dependentubiquitinationof MHCIImoleculesandinhibitsTcellactivation.CellHost Microbe2016,20:584-595.

ThisarticledemonstratesthattheSalmonellaeffectorSteDinteractswith

MARCH8andmatureMHC-IIdimerstoenhanceMHC-IIubiquitination,

resultingininhibitionofTcellproliferation.

56. vanLuijnMM,KreftKL,JongsmaML,MesSW,Wierenga-WolfAF, vanMeursM,MeliefMJ,derKantR,JanssenL,JanssenHetal.: Multiplesclerosis-associatedCLEC16AcontrolsHLAclassII

expressionvialateendosomebiogenesis.Brain2015, 138:1531-1547.

57.

 VassilopoulosAlissafiT,BanosD,BoumpasA,BoonL,D,SparwasserChavakisT,T,CadwellGhigoKA,etWingal.:TregsK, restraindendriticcellautophagytoameliorateautoimmunity. JClinInvest2017,127:2789-2804.

Thispaper demonstratesTregstargetDCautophagicmachineryina

CTLA4-dependantmannertoreduceDCimmunogenicityandsuppress

autoimmune responses. CTLA4-dependant downregulation of

autop-hagydiminishedautoantigenpresentationbyDCs.

58. NedjicJ,AichingerM,EmmerichJ,MizushimaN,KleinL: AutophagyinthymicepitheliumshapestheT-cellrepertoire andisessentialfortolerance.Nature2008,455:396-400.

59. AichingerM,WuC,NedjicJ,KleinL:Macroautophagy substratesareloadedontoMHCclassIIofmedullary thymicepithelialcellsforcentraltolerance.JExpMed2013, 210:287-300.

60.

 SchusterRuckdeschelC,GeroldA,SerwoldKD,SchoberT,KisslerK,S:ProbstTheautoimmunity-L,BoernerK,KimMJ, associatedgeneCLEC16Amodulatesthymicepithelial cellautophagyandaltersTcellselection.Immunity2015, 42:942-952.

This paper demonstrates CLEC16A modulates autophagy in thymic

epithelial cells, which has consequences ontheir antigen-presenting

function.Asaresult,CLEC16AimpactsTcellselectionandtheriskof

autoimmunity.

61. TamRC,LiMW,GaoYP,PangYT,YanS,GeW,LauCS,ChanVS:

HumanCLEC16Aregulatesautophagythroughmodulating mTORactivity.ExpCellRes2017,352:304-312.

Referenties

GERELATEERDE DOCUMENTEN

Petra Paul 2 012The Systems Biology of MHC Class II Antigen Presentation. The Systems Biology of MHC Class II

To explain why treatment with glycol-split heparin both leads to reduced leukocyte influx but increased accumulation in lymph vessels we tested in vitro if hepa- rin/

A shift in MHC class II antigen presentation by B-CLL cells may lead to altered T helper cell activation and subsequent help to CD8 + CTLs.. It is unclear whether the T

The work described in this thesis was performed at the Division of Tumor Biology of the Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands; the Department

Development of an effective humoral immune response is mediated by two actions of the BCR: transmembrane signaling through BCR-complexes to induce B cell differentiation and

For enumeration of intracellular surviving bacteria, freshly isolated primary B cells were incubated with anti-IgM coated Salmonellae and Ramos cells with uncoated Salmonellae as

Using a simple mediation analysis, it was examined whether positive emotions and positive relations mediate the effect of the ​acts of kindness ​intervention on mental well-being at

During the period from April 11-20, 2009, the African portion of the Intertropical Front (ITF) was located at around 12.0 degrees north latitude, compared with the normal position