• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Sensor networks to measure environmental noise at gravitational wave detector sites

Koley, S.

2020

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Koley, S. (2020). Sensor networks to measure environmental noise at gravitational wave detector sites.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

(2)

[1] N. Copernicus and C. G. Wallis, On the revolutions of the celestial spheres, vol. 1. St. John’s bookstore, 1939.

[2] J. L. Russell, “Kepler’s laws of planetary motion: 1609–1666,” The British journal for the history of science, vol. 2, no. 1, pp. 1–24, 1964.

[3] G. Galilei, “1610,” Sidereus nuncius, pp. 1–29, 1880.

[4] I. Newton, Mathematical principles of natural philosophy. A. Strahan, 1802. [5] U. J. Le Verrier, Theorie du mouvement de Mercure. Bachelier, 1845.

[6] A. Einstein, “N¨aherungsweise integration der feldgleichungen der gravitation, 22 jun 1916,” 1916.

[7] A. Einstein and N. Rosen, “On gravitational waves,” Journal of the Franklin Institute, vol. 223, no. 1, pp. 43–54, 1937.

[8] J. Weber, “Gravitational-wave-detector events,” Physical Review Letters, vol. 20, no. 23, p. 1307, 1968.

[9] R. Huse and J. Taylor, “Discovery of a pulsar in a binary system,” Neutron stars, black holes, and binary X-ray sources, vol. 48, p. 433, 1975.

[10] J. M. Weisberg and J. H. Taylor, “Relativistic binary pulsar b1913+ 16: Thirty years of observations and analysis,” arXiv preprint astro-ph/0407149, 2004.

[11] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Observation of gravitational waves from a binary black hole merger,” Physical review letters, vol. 116, no. 6, p. 061102, 2016. [12] L. S. Collaboration, V. Collaboration, et al., “Gwtc-1: A gravitational-wave transient

catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs,” arXiv preprint arXiv:1811.12907, 2018.

[13] B. Abbott, R. Abbott, R. Adhikari, A. Ananyeva, S. Anderson, S. Appert, K. Arai, M. Araya, J. Barayoga, B. Barish, et al., “Multi-messenger observations of a binary neutron star merger,” Astrophysical Journal Letters, vol. 848, no. 2, p. L12, 2017.

(3)

[14] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gw170814: a three-detector observation of gravitational waves from a binary black hole coalescence,” Physical review letters, vol. 119, no. 14, p. 141101, 2017.

[15] N. J. Cornish and T. B. Littenberg, “Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches,” Classical and Quantum Gravity, vol. 32, no. 13, p. 135012, 2015.

[16] G. Maps, “Aerial map of the adv gravitational wave observatory,” 2016.

[17] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gw170817: observation of gravitational waves from a binary neutron star inspiral,” Physical Review Letters, vol. 119, no. 16, p. 161101, 2017.

[18] M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, et al., “The einstein telescope: a third-generation gravitational wave observatory,” Classical and Quantum Gravity, vol. 27, no. 19, p. 194002, 2010.

[19] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, K. Ackley, C. Adams, P. Addesso, R. Adhikari, V. Adya, C. Affeldt, et al., “Exploring the sensitivity of next genera-tion gravitagenera-tional wave detectors,” Classical and Quantum Gravity, vol. 34, no. 4, p. 044001, 2017.

[20] I. Newton, “The philosophiæ,” Naturalis Principia Mathematica, vol. 1687.

[21] M. G. Beker, “Low-frequency sensitivity of next generation gravitational wave detec-tors,” 2013.

[22] J. Logue, C. Ott, I. Heng, P. Kalmus, and J. Scargill, “Inferring core-collapse supernova physics with gravitational waves,” Physical Review D, vol. 86, no. 4, p. 044023, 2012. [23] V. Roma, J. Powell, I. S. Heng, and R. Frey, “Astrophysics with core-collapse super-nova gravitational wave signals in the next generation of gravitational wave detectors,” Physical Review D, vol. 99, no. 6, p. 063018, 2019.

[24] S. Gossan, P. Sutton, A. Stuver, M. Zanolin, K. Gill, and C. D. Ott, “Observing grav-itational waves from core-collapse supernovae in the advanced detector era,” Physical Review D, vol. 93, no. 4, p. 042002, 2016.

[25] F. Hofmann, E. Barausse, and L. Rezzolla, “The final spin from binary black holes in quasi-circular orbits,” The Astrophysical Journal Letters, vol. 825, no. 2, p. L19, 2016. [26] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, vol. 1.

Ox-ford university press, 2008.

[27] K. Riles, “Recent searches for continuous gravitational waves,” Modern Physics Let-ters A, vol. 32, no. 39, p. 1730035, 2017.

(4)

[28] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, “String axiverse,” Physical Review D, vol. 81, no. 12, p. 123530, 2010.

[29] A. Arvanitaki and S. Dubovsky, “Exploring the string axiverse with precision black hole physics,” Physical Review D, vol. 83, no. 4, p. 044026, 2011.

[30] B. D. Lackey, “The neutron-star equation of state and gravitational waves from com-pact binaries,” 2012.

[31] B. Allen, “The stochastic gravity-wave background: sources and detection,” in Rel-ativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, vol. 26, pp. 373–418, 1997. [32] B. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, B. Allen, G. Allen,

M. Alshourbagy, R. Amin, S. Anderson, et al., “An upper limit on the stochastic gravitational-wave background of cosmological origin,” Nature, vol. 460, no. 7258, p. 990, 2009.

[33] G. Vajente, Analysis of sensitivity and noise sources for the Virgo gravitational wave interferometer. PhD thesis, PhD thesis, Scuola Normale Superiore di Pisa, 2008. 11, 12, 13, 14, 21, 35, 44, 2008.

[34] A. Freise and K. Strain, “Interferometer techniques for gravitational-wave detection,” Living Reviews in Relativity, vol. 13, no. 1, p. 1, 2010.

[35] V. Collaboration et al., “Advanced virgo technical design report,” 2012.

[36] F. Acernese, P. Amico, M. Alshourbagy, F. Antonucci, S. Aoudia, P. Astone, S. Avino, D. Babusci, G. Ballardin, F. Barone, et al., “The automatic alignment system of the virgo interferometer,” in 42nd Rencontres de Moriond: Gravitational Waves and Ex-perimental Gravity, pp. 153–158, The GIOI publishers, 2007.

[37] G. Galilei, Dialogues concerning two new sciences. Dover, 1914.

[38] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Pro-ceedings of the London Mathematical Society, vol. 1, no. 1, pp. 4–11, 1885.

[39] L. Srinath, Advanced mechanics of solids. Tata McGraw-Hill, 2003.

[40] A. Dziewonski, A. Hales, and B. Bolt, “Numerical analysis of dispersed seismic waves,” Seismology: surface waves and earth oscillations, vol. 11, pp. 39–84, 1972. [41] R. A. Toupin, “Theories of elasticity with couple-stress,” Archive for Rational

Me-chanics and Analysis, vol. 17, no. 2, pp. 85–112, 1964.

[42] G. Arfken and H. Weber, “Mathematical methods for physicists (new york: Aca-demic),” 1970.

[43] W. T. Thomson, “Transmission of elastic waves through a stratified solid medium,” Journal of applied Physics, vol. 21, no. 2, pp. 89–93, 1950.

(5)

[44] N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bulletin of the seismological Society of America, vol. 43, no. 1, pp. 17–34, 1953.

[45] J. W. Dunkin, “Computation of modal solutions in layered, elastic media at high fre-quencies,” Bulletin of the Seismological Society of America, vol. 55, no. 2, pp. 335– 358, 1965.

[46] T. Watson, “A note on fast computation of rayleigh wave dispersion in the multilayered elastic half-space,” Bulletin of the Seismological Society of America, vol. 60, no. 1, pp. 161–166, 1970.

[47] M. Wathelet, “Geopsy manual,” Sesarray, SESAME European research project, 2006. [48] F. Schwab, L. Knopoff, and B. Bolt, “Fast surface wave and free mode computations,”

Methods in computational physics, vol. 11, pp. 87–180, 1972.

[49] B. Kennett and T. Clarke, “Rapid calculation of surface wave dispersion,” Geophysical Journal of the Royal Astronomical Society, vol. 72, no. 3, pp. 619–631, 1983.

[50] D. Draganov, X. Campman, J. Thorbecke, A. Verdel, and K. Wapenaar, “Reflection images from ambient seismic noise,” Geophysics, vol. 74, no. 5, pp. A63–A67, 2009. [51] W. Kimman and J. Trampert, “Approximations in seismic interferometry and their

effects on surface waves,” Geophysical Journal International, vol. 182, no. 1, pp. 461– 476, 2010.

[52] C. B. Park, R. D. Miller, and J. Xia, “Multichannel analysis of surface waves,” Geo-physics, vol. 64, no. 3, pp. 800–808, 1999.

[53] P. D. Bromirski, R. E. Flick, and N. Graham, “Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the ne pacific,” Journal of Geophysical Research: Oceans, vol. 104, no. C9, pp. 20753– 20766, 1999.

[54] M. Campillo and A. Paul, “Long-range correlations in the diffuse seismic coda,” Sci-ence, vol. 299, no. 5606, pp. 547–549, 2003.

[55] N. M. Shapiro and M. Campillo, “Emergence of broadband rayleigh waves from cor-relations of the ambient seismic noise,” Geophysical Research Letters, vol. 31, no. 7, 2004.

[56] P. Gouedard, L. Stehly, F. Brenguier, M. Campillo, Y. C. De Verdi`ere, E. Larose, L. Margerin, P. Roux, F. J. S´anchez-Sesma, N. Shapiro, et al., “Cross-correlation of random fields: mathematical approach and applications,” Geophysical prospecting, vol. 56, no. 3, pp. 375–393, 2008.

[57] K. Wapenaar, “Retrieving the elastodynamic green’s function of an arbitrary inho-mogeneous medium by cross correlation,” Physical review letters, vol. 93, no. 25, p. 254301, 2004.

(6)

[58] K. Wapenaar and J. Fokkema, “Greens function representations for seismic interfer-ometry,” Geophysics, vol. 71, no. 4, pp. SI33–SI46, 2006.

[59] H. Yao, C. Beghein, and R. D. Van Der Hilst, “Surface wave array tomography in se tibet from ambient seismic noise and two-station analysis-ii. crustal and upper-mantle structure,” Geophysical Journal International, vol. 173, no. 1, pp. 205–219, 2008. [60] W. Kimman, X. Campman, and J. Trampert, “Characteristics of seismic noise:

funda-mental and higher mode energy observed in the northeast of the netherlands,” Bulletin of the Seismological Society of America, vol. 102, no. 4, pp. 1388–1399, 2012. [61] K. Hannemann, C. Papazachos, M. Ohrnberger, A. Savvaidis, M. Anthymidis, and

A. M. Lontsi, “Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the mygdonia basin-euroseistest area, northern greece,” Journal of Geophysical Research: Solid Earth, vol. 119, no. 6, pp. 4979– 4999, 2014.

[62] K. Wang, Y. Luo, and Y. Yang, “Correction of phase velocity bias caused by strong directional noise sources in high-frequency ambient noise tomography: a case study in karamay, china,” Geophysical Journal International, vol. 205, no. 2, pp. 715–727, 2016.

[63] S. Koley, H. J. Bulten, J. van den Brand, M. Bader, X. Campman, and M. Beker, “Rayleigh wave phase velocity models for gravitational wave detectors using an array of nodal sensors,” First Break, vol. 35, no. 6, pp. 71–78, 2017.

[64] S. Koley, X. Campman, M. Bader, H. Bulten, J. Brand, F. Linde, and M. Beker, “Seis-mic noise characterization at a potential site for the einstein telescope underground gravitational wave detector,” in 80th EAGE Conference and Exhibition 2018, 2018. [65] R. Sleeman, A. Van Wettum, and J. Trampert, “Three-channel correlation analysis:

A new technique to measure instrumental noise of digitizers and seismic sensors,” Bulletin of the Seismological Society of America, vol. 96, no. 1, pp. 258–271, 2006. [66] P. Saulson, “Fundamentals of interferometric wave detectors,” 1994.

[67] R. T. Lacoss, E. J. Kelly, and M. N. Toks¨oz, “Estimation of seismic noise structure using arrays,” Geophysics, vol. 34, no. 1, pp. 21–38, 1969.

[68] M. Asten and J. Henstridge, “Array estimators and the use of microseisms for recon-naissance of sedimentary basins,” Geophysics, vol. 49, no. 11, pp. 1828–1837, 1984. [69] M. Horike, “Inversion of phase velocity of long-period microtremors to the

s-wave-velocity structure down to the basement in urbanized areas,” Journal of Physics of the Earth, vol. 33, no. 2, pp. 59–96, 1985.

[70] H. Okada, “Comparison of spatial autocorrelation method and frequency-wavenumber spectral method of estimating the phase velocity of rayleigh waves in long-period mi-crotremors,” Geophysical Bulletin of Hokkaido University, vol. 49, pp. 53–62, 1987.

(7)

[71] M. Ohori, A. Nobata, and K. Wakamatsu, “A comparison of esac and fk methods of estimating phase velocity using arbitrarily shaped microtremor arrays,” Bulletin of the Seismological Society of America, vol. 92, no. 6, pp. 2323–2332, 2002.

[72] B. Chouet, G. De Luca, G. Milana, P. Dawson, M. Martini, and R. Scarpa, “Shallow velocity structure of stromboli volcano, italy, derived from small-aperture array mea-surements of strombolian tremor,” Bulletin of the Seismological Society of America, vol. 88, no. 3, pp. 653–666, 1998.

[73] K. Aki, “Space and time spectra of stationary stochastic waves, with special reference to microtremors,” Bull. Earthq. Res. Inst., vol. 35, pp. 415–456, 1957.

[74] L. Socco and C. Strobbia, “Surface-wave method for near-surface characterization: a tutorial,” Near Surface Geophysics, vol. 2, no. 4, pp. 165–185, 2004.

[75] J. W. Woods and P. R. Lintz, “Plane waves at small arrays,” Geophysics, vol. 38, no. 6, pp. 1023–1041, 1973.

[76] G. Z. Forristall, “On the statistical distribution of wave heights in a storm,” Journal of Geophysical Research: Oceans, vol. 83, no. C5, pp. 2353–2358, 1978.

[77] J. Peterson et al., “Observations and modeling of seismic background noise,” 1993. [78] S. Ling and H. Okada, “An extended use of spatial autocorrelation method for the

esti-mation of structure using microtremors,” Proc. of the 89th SEGJ Conference, Nagoya, Japan, pp. 44–48, 1993.

[79] D. Marquadt, “An algorithm for least square minimization of nonlinear parameters,” SIAM Journal, vol. 11, 1963.

[80] J. Dorman and M. Ewing, “Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the new york-pennsylvania area,” Journal of Geo-physical Research, vol. 67, no. 13, pp. 5227–5241, 1962.

[81] Y.-Y. Song, J. P. Castagna, R. A. Black, and R. W. Knapp, “Sensitivity of near-surface shear-wave velocity determination from rayleigh and love waves,” in SEG Technical Program Expanded Abstracts 1989, pp. 509–512, Society of Exploration Geophysi-cists, 1989.

[82] M. A. Turner, Near-surface velocity reconstruction using surface wave inversion. PhD thesis, Department of Geology and Geophysics, University of Utah, 1990.

[83] R. B. Herrmann, Computer programs in seismology. University, 1987.

[84] M. K. Sen and P. L. Stoffa, “Nonlinear one-dimensional seismic waveform inversion using simulated annealing,” Geophysics, vol. 56, no. 10, pp. 1624–1638, 1991. [85] A. Lomax and R. Snieder, “Finding sets of acceptable solutions with a genetic

al-gorithm with application to surface wave group dispersion in europe,” Geophysical Research Letters, vol. 21, no. 24, pp. 2617–2620, 1994.

(8)

[86] M. Sambridge, “Geophysical inversion with a neighbourhood algorithmii. appraising the ensemble,” Geophysical Journal International, vol. 138, no. 3, pp. 727–746, 1999. [87] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical recipes

in fortran (cambridge,” 1992.

[88] F. Scherbaum, K.-G. Hinzen, and M. Ohrnberger, “Determination of shallow shear wave velocity profiles in the cologne, germany area using ambient vibrations,” Geo-physical Journal International, vol. 152, no. 3, pp. 597–612, 2003.

[89] G. T. Schuster, J. Li, K. Lu, A. Metwally, A. AlTheyab, and S. Hanafy, “Opportunities and pitfalls in surface-wave interpretation,” Interpretation, vol. 5, no. 1, pp. T131– T141, 2017.

[90] J. Xia, R. D. Miller, and C. B. Park, “Configuration of near-surface shear-wave ve-locity by inverting surface wave,” in Symposium on the Application of Geophysics to Engineering and Environmental Problems 1999, pp. 95–104, Society of Exploration Geophysicists, 1999.

[91] J. P. Castagna, M. L. Batzle, and R. L. Eastwood, “Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks,” Geophysics, vol. 50, no. 4, pp. 571–581, 1985.

[92] W. Van Dalfsen, J. Doornenbal, S. Dortland, and J. Gunnink, “A comprehensive seis-mic velocity model for the netherlands based on lithostratigraphic layers,” Netherlands Journal of Geosciences, vol. 85, no. 4, pp. 277–292, 2006.

[93] M. Wathelet, D. Jongmans, and M. Ohrnberger, “Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements,” Near surface geophysics, vol. 2, no. 4, pp. 211–221, 2004.

[94] M. Wathelet, “Geopsy geophysical signal database for noise array processing,” Soft-ware, LGIT, Grenoble, France, 2005.

[95] TNO-NITG, “Geological atlas of the subsurface of the netherlands,” National Geolog-ical Survey, Utrecht, The Netherlands., p. 103 pp, 2004.

[96] B. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Gw151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence,” Physical Review Letters, vol. 116, no. 24, p. 241103, 2016.

[97] L. Scientific, B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Gw170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2,” Physical Review Letters, vol. 118, no. 22, p. 221101, 2017.

(9)

[98] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gw170608: Observation of a 19 solar-mass binary black hole coalescence,” The Astrophysical Journal Letters, vol. 851, no. 2, p. L35, 2017.

[99] J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Advanced ligo,” Classical and quantum gravity, vol. 32, no. 7, p. 074001, 2015.

[100] F. Acernese, F. Antonucci, S. Aoudia, K. Arun, P. Astone, G. Ballardin, F. Barone, M. Barsuglia, T. S. Bauer, M. Beker, et al., “Measurements of superattenuator seismic isolation by virgo interferometer,” Astroparticle Physics, vol. 33, no. 3, pp. 182–189, 2010.

[101] D. Fiorucci, J. Harms, M. Barsuglia, I. Fiori, and F. Paoletti, “Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical appli-cations,” Physical Review D, vol. 97, no. 6, p. 062003, 2018.

[102] I. G. G. e Geotecniche, “Elaborati grafici masw,” Virgo Internal Document, 2013. [103] P. Stefanelli, C. Carmisciano, F. Caratori Tontini, L. Cocchi, N. Beverini, F. Fidecaro,

D. Embriaco, et al., “Microgravity vertical gradient measurement in the site of virgo interferometric antenna (pisa plain, italy),” Annals of Geophysics, 2008.

[104] G. Saccorotti, D. Piccinini, L. Cauchie, and I. Fiori, “Seismic noise by wind farms: a case study from the virgo gravitational wave observatory, italy,” Bulletin of the Seis-mological Society of America, vol. 101, no. 2, pp. 568–578, 2011.

[105] L. Stehly, M. Campillo, and N. Shapiro, “A study of the seismic noise from its long-range correlation properties,” Journal of Geophysical Research: Solid Earth, vol. 111, no. B10, 2006.

[106] R. Snieder, M. Miyazawa, E. Slob, I. Vasconcelos, and K. Wapenaar, “A comparison of strategies for seismic interferometry,” Surveys in Geophysics, vol. 30, no. 4-5, pp. 503– 523, 2009.

[107] K. Wapenaar, D. Draganov, R. Snieder, X. Campman, and A. Verdel, “Tutorial on seismic interferometry: Part 1basic principles and applications,” Geophysics, vol. 75, no. 5, pp. 75A195–75A209, 2010.

[108] R. Haubrich, W. Munk, and F. Snodgrass, “Comparative spectra of microseisms and swell,” Bulletin of the Seismological Society of America, vol. 53, no. 1, pp. 27–37, 1963.

[109] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[110] M. W. Asten, T. Dhu, and N. Lam, “Optimised array design for microtremor array studies applied to site classification; comparison of results with scpt logs,” in Proc. of 13th World Conf. on Earthquake Engineering, Vancouver, BC, Canada, vol. 16, 2004.

(10)

[111] F. Acernese, P. Amico, N. Arnaud, D. Babusci, R. Barill´e, F. Barone, L. Barsotti, M. Barsuglia, F. Beauville, M. Bizouard, et al., “Properties of seismic noise at the virgo site,” Classical and Quantum Gravity, vol. 21, no. 5, p. S433, 2004.

[112] S. Koley, H. J. Bulten, J. v. d. Brand, M. Bader, X. Campman, and M. Beker, “S-wave velocity model estimation using ambient seismic noise at virgo, italy,” in SEG Technical Program Expanded Abstracts 2017, pp. 2946–2950, Society of Exploration Geophysicists, 2017.

[113] E. Patacca, R. Sartori, and P. Scandone, “. tyrrhenian basin and apenninic arcs: kine-matic relations since late tortonian times,” Memorie della Societa’Geologica Italiana, vol. 45, pp. 425–451, 1990.

[114] P. Cantini, G. Testa, G. Zanchetta, and R. Cavallini, “The plio–pleistocene evolution of extensional tectonics in northern tuscany, as constrained by new gravimetric data from the montecarlo basin (lower arno valley, italy),” Tectonophysics, vol. 330, no. 1-2, pp. 25–43, 2001.

[115] J. Xia, R. D. Miller, and C. B. Park, “Estimation of shear wave velocity in a compress-ible gibson half-space by inverting rayleigh wave phase velocity,” in SEG Technical Program Expanded Abstracts 1997, pp. 1917–1920, Society of Exploration Geophysi-cists, 1997.

[116] Y. Jeng, J.-Y. Tsai, and S.-H. Chen, “An improved method of determining near-surface q,” Geophysics, vol. 64, no. 5, pp. 1608–1617, 1999.

[117] B. J. Mitchell, “Regional rayleigh wave attenuation in north america,” Journal of Geo-physical Research, vol. 80, no. 35, pp. 4904–4916, 1975.

[118] M. Toks¨oz, D. H. Johnston, and A. Timur, “Attenuation of seismic waves in dry and saturated rocks: I. laboratory measurements,” Geophysics, vol. 44, no. 4, pp. 681–690, 1979.

[119] D. L. Anderson, A. BMenahem, and C. B. Archambeau, “Attenuation of seismic en-ergy in the upper mantle,” Journal of Geophysical Research, vol. 70, no. 6, pp. 1441– 1448, 1965.

[120] K. Kudo and E. Shima, “Attenuation of shear waves in soil,” Bull. Earthq. Res. Inst, vol. 48, pp. 145–158, 1970.

[121] M. Cercato, “Computation of partial derivatives of rayleigh-wave phase velocity using second-order subdeterminants,” Geophysical Journal International, vol. 170, no. 1, pp. 217–238, 2007.

[122] J. Xia, R. D. Miller, C. B. Park, and G. Tian, “Determining q of near-surface materials from rayleigh waves,” Journal of applied geophysics, vol. 51, no. 2-4, pp. 121–129, 2002.

(11)

[123] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[124] M. Beccaria, M. Bernardini, S. Braccini, C. Bradaschia, A. Bozzi, C. Casciano, G. Cella, A. Ciampa, E. Cuoco, G. Curci, et al., “Relevance of newtonian seismic noise for the virgo interferometer sensitivity,” Classical and Quantum Gravity, vol. 15, no. 11, p. 3339, 1998.

[125] M. Schevenels, S. Franc¸ois, and G. Degrande, “Edt: An elastodynamics toolbox for matlab,” in Proceedings of COMPDYN 2009, 2nd International Conference on Com-putational Methods in Structural Dynamics and Earthquake Engineering, vol. 400, 2009.

[126] M. Bader, Thesis work in progress. PhD thesis, 2019.

[127] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, G. Ballardin, et al., “Advanced virgo: a second-generation interferometric gravitational wave detector,” Classical and Quantum Grav-ity, vol. 32, no. 2, p. 024001, 2014.

[128] B. P. Abbott, S. Bloemen, S. Ghosh, P. Groot, G. Nelemans, S. Nissanke, Y. Setyawati, S. Shah, et al., “Characterization of transient noise in advanced ligo relevant to gravi-tational wave signal gw150914,” 2016.

[129] A. Effler, R. Schofield, V. Frolov, G. Gonzalez, K. Kawabe, J. Smith, J. Birch, and R. McCarthy, “Environmental influences on the ligo gravitational wave detectors dur-ing the 6th science run,” Classical and Quantum Gravity, vol. 32, no. 3, p. 035017, 2015.

[130] B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Binary black hole mergers in the first advanced ligo observing run,” Physical Review X, vol. 6, no. 4, p. 041015, 2016. [131] B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P.

Ad-desso, R. Adhikari, V. Adya, et al., “Search for subsolar-mass ultracompact binaries in advanced ligos first observing run,” Physical review letters, vol. 121, no. 23, p. 231103, 2018.

[132] F. Acernese, T. Adams, K. Agatsuma, L. Aiello, A. Allocca, A. Amato, S. Antier, N. Arnaud, S. Ascenzi, P. Astone, et al., “Status of the advanced virgo gravita-tional wave detector,” Internagravita-tional Journal of Modern Physics A, vol. 32, no. 28n29, p. 1744003, 2017.

[133] B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Physi-cal Review D, vol. 38, no. 8, p. 2317, 1988.

[134] M. Pitkin, S. Reid, S. Rowan, and J. Hough, “Gravitational wave detection by interfer-ometry (ground and space),” Living Reviews in Relativity, vol. 14, no. 1, p. 5, 2011.

(12)

[135] J. S. Kissel, Calibrating and Improving the Sensitivity of the LIGO Detectors. PhD thesis, 2010.

[136] I. W. Martin, R. Bassiri, R. Nawrodt, M. Fejer, A. Gretarsson, E. Gustafson, G. Harry, J. Hough, I. MacLaren, S. Penn, et al., “Effect of heat treatment on mechanical dissi-pation in ta2o5 coatings,” Classical and Quantum Gravity, vol. 27, no. 22, p. 225020, 2010.

[137] G. Vajente, “Measurement of control noise budget,” Virgo internal note VIR-003A-08, 2008.

[138] T. Accadia, F. Acernese, F. Antonucci, P. Astone, G. Ballardin, F. Barone, M. Barsug-lia, T. S. Bauer, M. Beker, A. Belletoile, et al., “Noise from scattered light in virgo’s second science run data,” Classical and Quantum Gravity, vol. 27, no. 19, p. 194011, 2010.

[139] M. Evans, S. Gras, P. Fritschel, J. Miller, L. Barsotti, D. Martynov, A. Brooks, D. Coyne, R. Abbott, R. X. Adhikari, et al., “Observation of parametric instability in advanced ligo,” Physical review letters, vol. 114, no. 16, p. 161102, 2015.

[140] C. Will, “Cm will, living rev. relativity 17, 4 (2014).,” Living Rev. Relativity, vol. 17, p. 4, 2014.

[141] D. Eardley and D. Lee, “Dm eardley, dl lee, ap lightman, rv wagoner, and cm will, phys. rev. lett. 30, 884 (1973).,” Phys. Rev. Lett., vol. 30, p. 884, 1973.

[142] M. Isi and A. J. Weinstein, “Probing gravitational wave polarizations with signals from compact binary coalescences,” arXiv preprint arXiv:1710.03794, 2017.

[143] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. Creighton, “Findchirp: An algorithm for detection of gravitational waves from inspiraling compact binaries,” Physical Review D, vol. 85, no. 12, p. 122006, 2012.

[144] R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and applied Kalman filtering, vol. 3. Wiley New York, 1992.

[145] J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, “Active noise cancellation in a suspended interferometer,” Review of Scientific Instruments, vol. 83, no. 2, p. 024501, 2012.

[146] L. P. Singer, H.-Y. Chen, D. E. Holz, W. M. Farr, L. R. Price, V. Raymond, S. B. Cenko, N. Gehrels, J. Cannizzo, M. M. Kasliwal, et al., “Going the distance: mapping host galaxies of ligo and virgo sources in three dimensions using local cosmography and targeted follow-up,” The Astrophysical Journal Letters, vol. 829, no. 1, p. L15, 2016. [147] A. Freise, S. Chelkowski, S. Hild, W. Del Pozzo, A. Perreca, and A. Vecchio, “Triple

michelson interferometer for a third-generation gravitational wave detector,” Classical and Quantum Gravity, vol. 26, no. 8, p. 085012, 2009.

(13)

[148] A. Freise, S. Hild, K. Somiya, K. A. Strain, A. Vicer´e, M. Barsuglia, and S. Chelkowski, “Optical detector topology for third-generation gravitational wave ob-servatories,” General Relativity and Gravitation, vol. 43, no. 2, pp. 537–567, 2011. [149] S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun,

F. Barone, B. Barr, M. Barsuglia, M. Beker, et al., “Sensitivity studies for third-generation gravitational wave observatories,” Classical and Quantum Gravity, vol. 28, no. 9, p. 094013, 2011.

[150] S. Hild, S. Chelkowski, and A. Freise, “Pushing towards the et sensitivity us-ing’conventional’technology,” arXiv preprint arXiv:0810.0604, 2008.

[151] B. Sathyaprakash, M. Abernathy, F. Acernese, P. Ajith, B. Allen, P. Amaro-Seoane, N. Andersson, S. Aoudia, K. Arun, P. Astone, et al., “Scientific objectives of einstein telescope,” Classical and Quantum Gravity, vol. 29, no. 12, p. 124013, 2012.

[152] E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black branes,” Classical and Quantum Gravity, vol. 26, no. 16, p. 163001, 2009. [153] I. Kamaretsos, M. Hannam, S. Husa, and B. S. Sathyaprakash, “Black-hole hair loss:

Learning about binary progenitors from ringdown signals,” Physical Review D, vol. 85, no. 2, p. 024018, 2012.

[154] R. Adhikari, N. Smith, A. Brooks, L. Barsotti, B. Shapiro, B. Lantz, D. McClelland, E. Gustafson, D. Martynov, V. Mitrofanov, et al., “Ligo voyager upgrade: Design concept,” tech. rep., Tech. Rep. LIGO-T1400226, 2018.

[155] D. Reitze, R. X. Adhikari, S. Ballmer, B. Barish, L. Barsotti, G. Billingsley, D. A. Brown, Y. Chen, D. Coyne, R. Eisenstein, et al., “Cosmic explorer: the us contribu-tion to gravitacontribu-tional-wave astronomy beyond ligo,” arXiv preprint arXiv:1907.04833, 2019.

[156] ´E. ´E. Flanagan and T. Hinderer, “Constraining neutron-star tidal love numbers with gravitational-wave detectors,” Physical Review D, vol. 77, no. 2, p. 021502, 2008. [157] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, “Constraints on a

phe-nomenologically parametrized neutron-star equation of state,” Physical Review D, vol. 79, no. 12, p. 124032, 2009.

[158] L.-j. Ruan, “Relativistic heavy-ion collider (rhic) physics overview,” Frontiers of Physics in China, vol. 5, no. 2, pp. 205–214, 2010.

[159] S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, K. Danzmann, and R. Schnabel, “Experimental characterization of frequency-dependent squeezed light,” Physical Review A, vol. 71, no. 1, p. 013806, 2005.

[160] S. Hild, H. Grote, M. Hewitson, H. L¨uck, J. Smith, K. Strain, B. Willke, and K. Danz-mann, “Demonstration and comparison of tuned and detuned signal recycling in a large-scale gravitational wave detector,” Classical and Quantum Gravity, vol. 24, no. 6, p. 1513, 2007.

(14)

[161] I. Martin, H. Armandula, C. Comtet, M. Fejer, A. Gretarsson, G. Harry, J. Hough, J. M. Mackowski, I. MacLaren, C. Michel, et al., “Measurements of a low-temperature mechanical dissipation peak in a single layer of ta2o5 doped with tio2,” Classical and Quantum gravity, vol. 25, no. 5, p. 055005, 2008.

[162] S. Hild, “Beyond the second generation of laser-interferometric gravitational wave observatories,” Classical and Quantum Gravity, vol. 29, no. 12, p. 124006, 2012. [163] P. L. Goupillaud, “Signal design in the vibroseis® technique,” Geophysics, vol. 41,

no. 6, pp. 1291–1304, 1976.

[164] P. D. Bromirski, F. K. Duennebier, and R. A. Stephen, “Mid-ocean microseisms,” Geo-chemistry, Geophysics, Geosystems, vol. 6, no. 4, 2005.

[165] J. F. Claerbout, “Synthesis of a layered medium from its acoustic transmission re-sponse,” Geophysics, vol. 33, no. 2, pp. 264–269, 1968.

[166] K. Aki and P. G. Richards, Quantitative seismology. 2002.

[167] N. N. Bojarski, “Generalized reaction principles and reciprocity theorems for the wave equations, and the relationship between the time-advanced and time-retarded fields,” The Journal of the Acoustical Society of America, vol. 74, no. 1, pp. 281–285, 1983. [168] Y.-H. Pao and V. Varatharajulu, “Huygens principle, radiation conditions, and integral

formulas for the scattering of elastic waves,” The Journal of the Acoustical Society of America, vol. 59, no. 6, pp. 1361–1371, 1976.

[169] K. Hasselmann, “On the non-linear energy transfer in a gravity wave spectrum part 2. conservation theorems; wave-particle analogy; irrevesibility,” Journal of Fluid Me-chanics, vol. 15, no. 2, pp. 273–281, 1963.

[170] M. S. Longuet-Higgins, “A theory of the origin of microseisms,” Phil. Trans. R. Soc. Lond. A, vol. 243, no. 857, pp. 1–35, 1950.

[171] N. Benech, J. Brum, S. Catheline, T. Gallot, and C. Negreira, “Near-field effects in green’s function retrieval from cross-correlation of elastic fields: Experimental study with application to elastography,” The Journal of the Acoustical Society of America, vol. 133, no. 5, pp. 2755–2766, 2013.

[172] T. Netherlands, “Terziet 140 m deep borehole geological report,” tech. rep., ET-0015A-19, url: https://tds.virgo-gw.eu/ql/?c=15052, 2017.

[173] P. Welch, “The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Transac-tions on audio and electroacoustics, vol. 15, no. 2, pp. 70–73, 1967.

[174] C. B. Park, R. D. Miller, and J. Xia, “Detection of higher mode surface waves over unconsolidated sediments by the msaw method,” in Symposium on the Application of Geophysics to Engineering and Environmental Problems 2000, pp. 1–9, Society of Exploration Geophysicists, 2000.

(15)

[175] S. Foti, F. Hollender, F. Garofalo, D. Albarello, M. Asten, P.-Y. Bard, C. Comina, C. Cornou, B. Cox, G. Di Giulio, et al., “Guidelines for the good practice of surface wave analysis: A product of the interpacific project,” Bulletin of Earthquake Engineer-ing, vol. 16, no. 6, pp. 2367–2420, 2018.

[176] K. H. Stokoe, S. Wright, J. Bay, and J. Roesset, “Characterization of geotechical sites by sasw method,” Unknown Journal, pp. 15–25, 1994.

[177] N. Gucunski and R. D. Woods, “Instrumentation for sasw testing,” in Recent advances in instrumentation, data acquisition and testing in soil dynamics, pp. 1–16, Publ by ASCE, 1991.

[178] H. E. Wright, D. G. Frey, et al., International Studies on the Quaternary: Papers Pre-pared on the Occasion of the VII Congress of the International Association for Qua-ternary Research Boulder, Colorado, 1965, vol. 84. Geological Society of America, 1965.

[179] R. Dreesen and J. Thorez, “Sedimentary environments, conodont biofacies and paleoe-cology of the belgian famennian (upper devonian)-an approach,” Annales de la Soci´et´e g´eologique de Belgique, 1980.

[180] P. Roux, L. Moreau, A. Lecointre, G. Hillers, M. Campillo, Y. Ben-Zion, D. Zigone, and F. Vernon, “A methodological approach towards high-resolution surface wave imaging of the san jacinto fault zone using ambient-noise recordings at a spatially dense array,” Geophysical Journal International, vol. 206, no. 2, pp. 980–992, 2016. [181] G. Bensen, M. Ritzwoller, M. Barmin, A. Levshin, F. Lin, M. Moschetti, N. Shapiro,

and Y. Yang, “Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements,” Geophysical Journal International, vol. 169, no. 3, pp. 1239–1260, 2007.

[182] K. Wapenaar, “Green’s function retrieval by cross-correlation in case of one-sided il-lumination,” Geophysical Research Letters, vol. 33, no. 19, 2006.

[183] E. Ruigrok, S. Gibbons, and K. Wapenaar, “Cross-correlation beamforming,” Journal of Seismology, vol. 21, no. 3, pp. 495–508, 2017.

[184] A. Levshin, V. Pisarenko, and G. Pogrebinsky, “Frequency-time analysis of oscilla-tions,” in Annales de Geophysique, vol. 28, pp. 211–+, EDITIONS CNRS 20/22 RUE ST. AMAND, 75015 PARIS, FRANCE, 1972.

[185] A. Dziewonski, S. Bloch, and M. Landisman, “A technique for the analysis of tran-sient seismic signals,” Bulletin of the seismological Society of America, vol. 59, no. 1, pp. 427–444, 1969.

[186] D. R. Russell, R. B. Herrmann, and H.-J. Hwang, “Application of frequency variable filters to surface-wave amplitude analysis,” Bulletin of the Seismological Society of America, vol. 78, no. 1, pp. 339–354, 1988.

(16)

[187] Y. Luo, Y. Yang, Y. Xu, H. Xu, K. Zhao, and K. Wang, “On the limitations of inter-station distances in ambient noise tomography,” Geophysical Journal International, vol. 201, no. 2, pp. 652–661, 2015.

[188] M. Barmin, M. Ritzwoller, and A. Levshin, “A fast and reliable method for surface wave tomography,” in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Sur-face Waves, pp. 1351–1375, Springer, 2001.

[189] K. Driml, B. Smith, J. Saunders, and R. Taylor, “Vibroseis or dynamite: Investigating source characteristics,” ASEG Extended Abstracts, vol. 2004, no. 1, pp. 1–6, 2004. [190] G. J. M. Baeten, “Theoretical and practical aspects of the vibroseis method,” 1989. [191] M. Lansley, J. Gibson, F. Lin, A. Egreteau, and J. Meunier, “The case for longer sweeps

in vibrator acquisition,” in SEG Technical Program Expanded Abstracts 2009, pp. 94– 98, Society of Exploration Geophysicists, 2009.

[192] J. Lindsey, “Seismic sources i have known,” The Leading Edge, vol. 10, no. 10, pp. 47– 48, 1991.

[193] P. Ras, M. Daly, and G. Baeten, “Harmonic distortion in slip sweep records,” in SEG Technical Program Expanded Abstracts 1999, pp. 609–612, Society of Exploration Geophysicists, 1999.

[194] ¨O. Yilmaz, Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of exploration geophysicists, 2001.

[195] J. R. Sheehan, W. E. Doll, and W. A. Mandell, “An evaluation of methods and avail-able software for seismic refraction tomography analysis,” Journal of Environmental & Engineering Geophysics, vol. 10, no. 1, pp. 21–34, 2005.

[196] D. Palmer, “An introduction to the generalized reciprocal method of seismic refraction interpretation,” Geophysics, vol. 46, no. 11, pp. 1508–1518, 1981.

[197] M. Slotnick, “Lessons in seismic computing: Soc,” Expl. Geophys, 1959.

[198] A. Alekseev, A. Belonosova, I. Burmakov, G. Krasnopevtseva, N. Matveeva, G. Ners-essov, N. Pavlenkova, V. Romanov, and V. Ryaboy, “Seismic studies of low-velocity layers and horizontal inhomogeneities within the crust and upper mantle on the terri-tory of the ussr,” Tectonophysics, vol. 20, no. 1-4, pp. 47–56, 1973.

[199] H. Gebrande and H. Miller, “Refraktionsseismik,” Angewandte Geowissenschaften II, pp. 226–260, 1985.

[200] J. Wong, L. Han, J. Bancroft, and R. Stewart, “Automatic time-picking of first arrivals on noisy microseismic data,” CSEG. 0 0.2 0.4 0.6 0.8, vol. 1, no. 1.2, pp. 1–4, 2009. [201] Y. A. Kravtsov and Y. I. Orlov, “On the validity conditions of the geometricaloptics

(17)

[202] M. J. Woodward, “Wave-equation tomography,” Geophysics, vol. 57, no. 1, pp. 15–26, 1992.

[203] W. S. Harlan, “Tomographic estimation of shear velocities from shallow cross-well seismic data,” in SEG Technical Program Expanded Abstracts 1990, pp. 86–89, Soci-ety of Exploration Geophysicists, 1990.

[204] Y. Luo and G. T. Schuster, “Wave-equation traveltime inversion,” Geophysics, vol. 56, no. 5, pp. 645–653, 1991.

[205] M. Woodward and F. Rocca, “Wave equation tomography: 58th ann,” in Internat. Mtg. Soc. Expl. Geophys, Expanded Abstracts, pp. 1232–1235, 1988.

[206] G. T. Schuster and A. Quintus-Bosz, “Wavepath eikonal traveltime inversion: Theory,” Geophysics, vol. 58, no. 9, pp. 1314–1323, 1993.

[207] K. Chatziioannou, R. Cotesta, S. Ghonge, J. Lange, K. K.-Y. Ng, J. C. Bustillo, J. Clark, C.-J. Haster, S. Khan, M. Puerrer, et al., “On the properties of the massive binary black hole merger gw170729,” arXiv preprint arXiv:1903.06742, 2019. [208] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,

P. Addesso, R. Adhikari, V. Adya, et al., “Gravitational waves and gamma-rays from a binary neutron star merger: Gw170817 and grb 170817a,” The Astrophysical Journal Letters, vol. 848, no. 2, p. L13, 2017.

[209] L. S. Collaboration, V. Collaboration, M. Collaboration, D. E. C. G.-E. Collaboration, D. Collaboration, D. Collaboration, L. C. O. Collaboration, V. Collaboration, M. Col-laboration, et al., “A gravitational-wave standard siren measurement of the hubble constant,” Nature, vol. 551, no. 7678, pp. 85–88, 2017.

[210] P. A. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Ban-day, R. Barreiro, J. Bartlett, N. Bartolo, et al., “Planck 2015 results-xiii. cosmological parameters,” Astronomy & Astrophysics, vol. 594, p. A13, 2016.

Referenties

GERELATEERDE DOCUMENTEN

Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment... ‘South African EUCAARI –

Seismic TF (bench top/ ground) Floor shaked with big shaker, vert... Attempts to Stiffen the supports.. • Tests with Optic

As an extension to the entire exercise of processing ambient seismic noise, we also estimated the near surface quality factor model by making use of the observed Rayleigh

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

- failure relations replace failure sets and associate actions with the times at which they can be refused, thus acquiring properties land 2. The first two generalization

• possibilities to produce clay from mud on the tidal marsh in a sustainable way for future rein- forcements (clay engine);?. • possibilities to store mud in the Natura 2000

We determine Rayleigh wave group velocity curves between station pairs based on the cross- correlation of daily seismic records..

Our results provide guidelines and insights about five issues: (i) how much the retailer should order at each replenishment and how much he/she should invest in emission reduction