• No results found

systems Indefinite MPC and linear approximated economic MPC fornonlinear Journal of Process Control

N/A
N/A
Protected

Academic year: 2021

Share "systems Indefinite MPC and linear approximated economic MPC fornonlinear Journal of Process Control"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal

of

Process

Control

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

Indefinite

linear

MPC

and

approximated

economic

MPC

for

nonlinear

systems

Mario

Zanon

a,∗

,

Sébastien

Gros

b

,

Moritz

Diehl

a,c

aDepartmentESAT-STADIUS/OPTECKULeuvenUniversity,KasteelparkArenberg10,3001Leuven,Belgium

bDepartmentofSignalsandSystems,ChalmersUniversityofTechnology,Horsalsvagen11,SE-41296Goteborg,Sweden cDepartmentofMicrosystemsEngineeringIMTEK,UniversityofFreiburg,Georges-Koehler-Allee102,79110Freiburg,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16January2014

Receivedinrevisedform30April2014 Accepted30April2014

Availableonline28May2014 Keywords:

EconomicMPC LQR

StabilitytheoryforMPC

a

b

s

t

r

a

c

t

Thestabilityproofforeconomicmodelpredictivecontrol(MPC)reliesonstrictdissipativity,whichisin generalhardtocheck.Inthiscontribution,wewillfirstanalyzethelinearquadraticcasewithpossibly indefinitecost.Theconditionsforstabilitywillberecalledanditwillbeshownthateverystabilizing LQR/MPChasanequivalentpositivedefiniteLQR/MPCwhichyieldsthesameopenloopandclosedloop behavior.ThisanalysiswillthenbeusedtoformulateanapproximatednonlineareconomicMPCscheme, whichhasstabilityguarantees.Anexamplewillbeusedtoillustratetheproposedtechniqueandshow itspotentialintermsofperformance.

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

Economicmodelpredictivecontrol(MPC)hasrecentlygained popularity,asitdirectlyoptimizesagivenperformanceindex,as opposedtotrackingMPC,whichminimizesthedeviationfroma givenreference.ThemainadvantageofeconomicMPCover track-ingMPCbecomesobviousintransients,whenthesystemissteered tosteadystatesoastominimizethegivenperformanceindex.

ThestabilitytheoryofeconomicMPCinitiallyconsidered lin-earsystemsand convexobjectives[1,2].For nonlinearsystems, ananalysisofaverageperformanceboundswasproposedin[3]

andaverageconstraintswereconsideredin[4].Lyapunovstability ofeconomicMPCwasfirstprovenin[5]underastrongduality assumptionand generalized in [6,7] under a strictdissipativity assumption.Thenecessityofstrictdissipativityforoptimal steady-stateoperationhasbeenanalyzedin[11,12].Astabilityproofin theabsenceofterminalconstraintsisprovidedin[8].The exten-sionofthestabilityresultstoperiodicsystemshasbeenconsidered

夽 ThisresearchwassupportedbyResearchCouncilKUL:PFV/10/002Optimization inEngineeringCenterOPTEC,GOA/10/09MaNetandGOA/10/11Globalreal-time optimalcontrolofautonomousrobotsandmechatronicsystems.Flemish Govern-ment:FWO:PhD/postdocgrants;IWT:PhDGrants,projects:EurostarsSMART; BelgianFederalSciencePolicyOffice:IUAPP7(DYSCO,Dynamicalsystems,control andoptimization,2012–2017);EU:FP7-SADCO(MCITN-264735),FP7-TEMPO(MC ITN-607957),ERCHIGHWIND(259166).

∗ Correspondingauthor.Tel.:+4915756296036.

E-mailaddress:mario.zanon@imtek.uni-freiburg.de(M.Zanon).

in[9,10].EconomicMPCschemesbasedonLyapunovtechniques havebeenproposedin[13–15].

Inthenonlinearcase,thestrictdissipativityconditioncanbe extremelyhardtocheck,thusmakingitdifficulttoensurestability. Thiscontributionfocusesonthelinearquadraticcasewithpossibly indefinitestagecosts.Theanalysisbecomessimplerinthiscaseand theconditionsthatensurestabilityfortheLQRcontrollerhavebeen studiedin[16,17].

Themaincontributionsofthispaperare(a)theanalysisof lin-earquadraticeconomicMPCand(b)theconstructionofatracking nonlinearMPC(NMPC)schemewhichcloselymimicstheeconomic NMPC behavior while providing stability guarantees. The main resultsforthelinearquadraticcasearegiveninTheorems1and 2,whichstatethatanypossiblyindefinitestabilizingLQRorlinear quadraticMPCcanbereformulatedasapositivedefiniteonethat deliversthesametrajectory.Thisresultisthenusedforeconomic NMPC,toconstructanapproximatedeconomicNMPCschemeof trackingtypewhichprovidesstabilityguarantees.

Thepaperisstructuredasfollows.Section2proposesa motiva-tionalexamplewhichshowshowtrackingNMPCcanyieldnearly thesameperformanceaseconomicNMPC.InSection3,the con-ditionsforhavingastabilizingLQRarerecalled.Section4shows that,givenanyindefinitestabilizingLQR,thereexistsapositive definite LQRwhichyieldsthesame closedloop trajectory. Sec-tion5istheanalogueofSection4forthecaseofafinitehorizon (MPC).InSection6alinearexampleisproposedtoillustratethe theory.AnonlinearexamplewellknownintheeconomicNMPC literatureisproposedinSection7toillustratehowtheproposed http://dx.doi.org/10.1016/j.jprocont.2014.04.023

(2)

0 5 10 15 20 25 30 35 40 45 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 c A t 0 5 10 15 20 25 30 35 40 45 50 1 2 3 4 5 6 7 q t

Fig.1. StateandinputprofilesfortheeconomicNMPCscheme(blackline),trackingscheme0(blueline)andtrackingscheme1(redline).(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

frameworkcanbeusedforapproximatedeconomicNMPCwith stabilityguaranteesinthenonlinearcase.

2. Motivationalexample

Asamotivationtothisarticle,wewouldliketostartwithan examplethatshowshowatrackingNMPCformulationcanyielda goodperformancecomparedtoaneconomicNMPCformulation. We propose the following CSTRexample from [5,7]. It consid-ersasinglefirst-order,irreversiblechemicalreactionA→Bwith reactionratekrcA,wherekr=0.4l/(molmin)istherateconstant. QuantitiescAandcBdenotethemolarconcentrationsofAandB respectively.Theprocessdynamicsaregivenby

˙ cA= q

VR(cAf −cA)−krcA (1)

˙

cB=VRq(cBf−cB)+krcA (2)

wherecAf=1mol/l,cBf=0mol/ldenotethefeedconcentrationsof Aand Brespectively and VR=10lis the volumeof thereactor. Here,theflowthroughthereactorqisacontrolvariable.Inorder toensurelocalcontrollabilityatsteadystate,letusassumethat cA+cB=1.Thestatesarethusdefinedasx=cAandthecontrolsas u=q.Moreover,theflowrateisupperboundedbyq20l/min.

Theeconomicstagecostisgivenby

(x,u)=−(2q(1−cA)−0.5q)+0.1(q−4)2, (3) whichgivesthesteadystatexs=cs

A=0.5mol/landqs=4l/min. Consideranalternativetrackingformulationwherethestage costispositivedefiniteanddefinedas

 tr(x,u)=



cA−cs A q−qs



T H



cA−cs A q−qs



, ∈{0,1} (4) H0=



14.227 0.825 0.825 0.066



, H1=



1 0 0 1



(5)

Asimulationhasbeenruninordertocomparetheeconomic performanceofthetrackingNMPCschemewith=0andthe eco-nomicNMPC scheme.Forcompleteness,alsotheperformancea morestandardtrackingschemewith=1hasbeencompared.All simulationsareruninPythonusingCasadi[18]todiscretizethe optimalcontrolproblem(OCP)andIpopt[19]tosolvethe nonlin-earprogrammingproblem(NLP).Thecontinuoustimedynamics havebeendiscretizedwithasamplingtime Ts=0.5minusinga fixedstepsizeRunge-Kuttaintegratoroforder4.Thechosen pre-dictionhorizonisN=100andtheendpointconstraintxN=xshas beenintroduced.

The proposed scenario lasts 50s and considers a system at steadystatethatisperturbedevery12.5swiththefollowing per-turbationd=[0.4,−0.4,0.2,−0.2]whichaltersthestateasfollows: cA(k12.5)=cA(k12.5)+d(k),k=1,2,3,4.ThemetricGhasbeen pro-posedin[20]tomeasurethegainobtainedbyusingeconomicMPC overtracking:

G=100Peco−P  tr

Ps , =0,1, (6)

wherePeco,Ptr,Psdenotetheaverageprofitobtainedbyeconomic NMPC,trackingNMPCandsteadystateoperationrespectively.

ThesimulationresultsyieldG0=0.0009andG1=1.139,which suggestthatscheme0hasanegligibleperformancelosscompared totheeconomicNMPCscheme,whilescheme1hasasmall per-formancelosswhichishoweversensiblyhigherthantheoneof scheme0.ThestateandinputtrajectoriesaredisplayedinFig.1, whereitcanbeseenthatscheme0deliversaninputtrajectory whichisveryclosetotheonedeliveredbyeconomicNMPC,while thestatetrajectoryisevencloser.Scheme1,ontheotherhand, deliverssignificantlydifferenttrajectories.

Proving stability for economic NMPC schemes can be very involved.Moreover,trackingNMPCproblemstypicallyhavealeast squaresstructurewhichcanbeexploitedinefficientalgorithms.For economicNMPC,onthecontrary,suchstructureisnotpresentand thecomplexityoftheproblemtendstobesignificantlyhigher.This motivatesourinterestintrackingNMPCformulationsthatmimic economicNMPCbehavior.

(3)

3. ExistenceofastabilizingLQR

Inthissectionwewillfocusonlinearquadraticdiscretetime infinite horizon OCPs. The linear quadratic regulator (LQR) is definedbythefollowingOCP

V(x0)=inf x,u ∞



k=0 l(xk,uk) (7a) s.t. x0=x0, (7b) xk+1=Axk+Buk, k≥0, (7c) lim k→∞xk=0, (7d)

withstatex=[x0,x1,...]andcontrolu=[u0,u1,...].Thestagecost isdefinedasl(xk,uk)=



xk uk



T H



xk uk



,withmatrixH=



Q ST S R



symmetricandpossiblyindefinite.Thisoptimizationproblemhas beenwidelystudiedintheliteratureandexcellentanalysescanbe foundin[17,21]fordiscretetimesystemsandin[16]forcontinuous timesystems.

Thecontributionsabovedefinea setofnecessaryconditions fortheboundednessofproblem(3)andestablishthelinktothe existenceof solutionstothealgebraic Riccatiequation.In [16], moreover,theconnectionismadebetweenthealgebraicRiccati equation,alinearmatrixinequality,afrequencyconditionanda dissipativityconditionandthepropertiesofasetofoptimalcontrol problems.Mostoftheresultsforcontinuoustimecanbedirectly translatedtodiscrete time.Inthissection,wewillbrieflyrecall theconditionsfortheexistenceofastabilizingLQRwithapossibly indefinitestagecost.

ItiswellknownthatthesolutiontotheLQRproblem(3)can beobtainedbycomputingthestabilizingsolutionofthediscrete algebraicRiccatiequation(DARE),definedas

D(A,B,Q,R,S):={(P,K)| Q+ATPAP(ST+ATPB)K=0,

K=(R+BTPB)−1(S+BTPA), (A−BK)<1},

(8)

wheredenotesthespectralradius,i.e.(A)=max{||| iseigen-valueofA}.Ingeneral,theDAREhasmanysolutionsbutonlyone, ifit exists,isstabilizingthesystem(A,B),yieldsthesolutionto theLQRproblemandthecost-to-goisthengivenbyV(x0)=xT

0Px0. Notethat,inthecaseofanindefinitecost,i.e.H / 0,alsothe cost-to-goPcanbeindefinite.

Onenecessarybutnotsufficientconditionfortheexistenceof asolutionto(8)istheinvertibilityofmatrix(R+BTPB).Inthe fol-lowing,wewillrecalltheconditionsforwhichtheLQRproblem(3) hasastabilizingsolution,whichalsoguaranteethat(R+BTPB)0 isinvertibleandtheDARE(8)doeshaveanecessarilyunique sta-bilizingsolution.

Ifstabilizabilityisassumed andanyofthefollowing equiva-lentconditionsissatisfied,thentheLQRhasauniquestabilizing solution.

• Thelinearmatrixinequality(LMI):

Ps.t.



Q+ATPAP ST+ATPB S+BTPA R+BTPB



0; (9)

• Thequadraticmatrixinequality(QMI):

Ps.t.

Q+ATPAP(ST+ATPB)(R+BTPB)−1(S+BTPA)0, (10a)

R+BTPB0; (10b)

• Thefrequencydomaininequality(FDI):

zs.t.|z|=1 (z):=R+S(Iz−A)−1B+BT(Iz−1AT)−1ST

+BT(Iz−1AT)−1Q(IzA)−1B0; (11) • Thedissipationinequality(DIE):

V:RnxR s.t.

xk,uk

l(xk,uk)+V(Axk+Buk)≥V(xk), (12) withnxthestatedimension.

TheconnectionbetweentheFDIanddetectabilityof(A,Q1/2) hasbeenestablishedin[17].

Inordertoshowthattheseconditionsareindeednecessaryfor theexistenceofastabilizingLQR,letusadapttwotheoremsfrom

[16]tothecaseofdiscrete-timesystems.Thosetheoremsanalyze theboundednessofsimilarOCPsandrelateittotheconceptof dissipativity.ThisallowsonetoestablishboundednessoftheLQR OCP,thusprovingtheexistenceofastabilizingsolutiontotheDARE

(8).LetusdefinethefeasiblesetZnonthehorizonnas Zn(x0)={(x0,...,xn,u0,...,un−1)|x0=x0,

xk+1=Axk+Buk, k=0,...,n}. (13) Letusintroducethefollowingoptimalcontrolproblems(OCP) Vf+(x0)= inf (x,u)∈Z∞(x0) ∞



k=0 l(xk,uk), (14) V+(x0)= inf (x,u)∈Z∞(x0) ∞



k=0 l(xk,uk), s.t. lim k→∞xk=0, (15) V−(x0)= inf (x,u)∈Z∞(x0) 0



k=−∞ l(xk,uk), s.t. lim k→−∞xk=0, (16) V+ N(x0)= inf (x,u)∈ZN(x0),N≥0 N



k=0 l(xk,uk). (17)

OptimalityimpliesthatV+

N ≤0andVN+≤Vf+≤V+.If stabilizabil-ity isassumed, thenV+

N, Vf+, V+<∞and ifcontrollabilityis assumedV−>−∞.

Theorems1and2from[16]establishtheexistenceofa stabi-lizingLQR,byprovingtheboundednessofV+.Itisinterestingto notehowboundednessofV+canbeestablishedbylookingatthe boundednessofproblemsthatcanbequitedifferentfromit.Both theoremscanbedirectlytranslatedtodiscretetimeasfollows.

Proposition1. Assumethatthesystemxk+1=Axk+Bukis control-lable,thenthefollowingconditionsareequivalent:

1



Nk=0l(xk,uk)≥0foreveryN≥0andevery(x,u)∈ZN(0); 2V−(x)≤0;

3Vf+(x)≤0; 4V+

N(x)≤0;

5ThereexistsafunctionV(x)≤0whichsatisfiestheDIE(12). Moreover,wheneveranyoftheseconditionsissatisfied,then−∞≤ V−(x)V+

N(x)≤Vf+(x)≤V+(x)≤∞.Finally,anyfunctionV(x) satis-fyingtheDIE(12)satisfiesV−(x)V(x)V+(x)andV(x)V(x) V+

N(x)ifV(x)≤0.

(4)

Proposition2. Assumethatthesystemxk+1=Axk+Bukis control-lable,thenthefollowingconditionsareequivalent:

1



Nk=0l(xk,uk)≥0 for every N0 and every (x,u)ZN(0) with xN=0;

2V+(x)∞; 3V−(x)≤∞;

4ThereexistsafunctionV(x)whichsatisfiestheDIE(12).

Moreover,wheneveranyoftheseconditionsissatisfied,then−∞≤ V−(x)V(x)V+(x)∞.

Proof. Theprooffollowsthesameargumentsasin[16]. 

Remark1. ThefirstconditionofPropositions1and2istrivially satisfiedwhenH0.Boundednessoftheinfimaishencealways guaranteedforpositivesemidefinitecostfunctions,provided con-trollabilityisassumed.

Remark 2. Note that Condition 1 in both Propositions 1 and 2impliesthat thesystemisoptimallyoperated atsteadystate, thoughourdefinitionofoptimaloperationatsteadystatediffers slightlyfromtheonegivenin[22,11].

TheimportanceoftheDIE(12)fortheexistenceofastabilizing LQRisestablishedinProposition2.ForquadraticfunctionsV(x)= xTPx,theDIE(12)isequivalenttotheLMI(9).Thisiseasilyseenby replacingthedynamicequationsxk+1=Axk+BukintheDIE,which directlygivestheLMI.TheconditionV+>isthensatisfiedifand onlyifthereexistsarealsymmetricsolutionP=PTtotheLMI(see

[16],Theorem3).TheQMIistheSchurcomplementoftheLMI,thus itisequivalenttotheLMIifR+BTPB0holds.Notealsothatthe FDIimpliestheLMIanditallowstoestablishtheboundednessof theinfimaapriori,giventhesystemmatricesandthestagecost only.

Providedthatthepair(A,B)isstabilizable,theexistenceofa necessarilyuniquesymmetricsolutionP=PTtoD(A,B,Q,R,S)such that|(A−BK)|<0isguaranteedif,forall|z|=1,theFDIissatisfied, i.e.(z)>0,see[17,21].

Remark3. Notethat,inordertochecktheLMIcondition,the matrixPthatsatisfiesitdoesnotneedtobeasolutiontotheDARE. ThisconditioncanhencebecheckedbysolvingtheLMIforP:if asolutionexists,thentheconditioncanbesatisfied,thesystem isdissipativeandastabilizingLQRexists.Onthecontrary,ifthe solutiondoesnotexist,theconditioncannotbesatisfiedandthe systemisnotdissipative,thusthesystemcannotbestabilizedusing theproposedcostfunction.Notethatthischeckcanbeformulated asaconvexproblemthatisefficientlysolvable.

Remark4. IftheLMIconditionisnotsatisfied,onemightbe inter-estedindefininganewcostforwhichtheconditionholds.Inorder tomodifytheinitialcostaslittleaspossible,onecansolvethe followingconvexproblem

min P,T T 2 (18) s.t.



Q+ATPAP ST+ATPB S+BTPA R+BTPB



+T0, (19) whereT=



TQ TT S TS TR



and · canbeanymatrixnorm.Thenew costisthendefinedby ˜Q=Q+TQ, ˜R=R+TR, ˜S=S+TS.

Inthefollowing section,wewillassume thatthe aforemen-tionedconditionsaresatisfied,thusthatastabilizingLQRexists.

4. EquivalentLQRformulations

InSection3,theconditionsfortheexistenceofastabilizingLQR havebeengiven.In general,thestagecostdoesnot needtobe positivedefinite,i.e.H

0andthesolutionPtotheDAREcanalso beindefinite.InthissectionwewillshowthatanystabilizingLQR canbereformulatedasapositivedefiniteone,i.e.P 0andH 0, whichyieldsthesametrajectory.

Let us introduce the following notation. The DARE

D(A,B,Q,R,S) delivers a solution (P, K), where P=PT is a real symmetric matrix and K is a feedback gain. Let us define the LQR trajectory as (x0):=P(A,B,Q,R,S), i.e. the LQR prob-lem P(A,B,Q,R,S) has associated DARE (P,K)=D(A,B,Q,R,S) and delivers the closed loop trajectory (x0)=(xk)k≥0 with xk+1=(A−BK)xk. In the following, we will consider two problems equivalent if they deliver the same trajectory, i.e.

P(A1,B1,Q1,R1,S1)=P(A2,B2,Q2,R2,S2).

Definition 1. Problem P(A2,B2,Q2,R2,S2) is a positive def-inite reformulation of the possibly indefinite LQR problem

P(A1,B1,Q1,R1,S1) if



Q2 ST 2 S2 R2



0 and P(A2,B2,Q2,R2,S2)= P(A1,B1,Q1,R1,S1).

Theorem1. AnystabilizingLQRproblemcanbereformulatedasa positivedefiniteLQRproblem.

Beforeprovingthetheorem,twolemmasareintroducedthatwill helpinestablishingthedesiredresult.Thefollowinglemma con-sidersthecaseofasystem(A,B)whichispre-stabilizedusinga linearfeedbackK.Itprovesthat,bysuitablymodifyingthecost,an LQRcanbedefinedforthepre-stabilizedsystem(AK,B),whichis equivalenttotheoriginalLQRdefinedfor(A,B).

Lemma1. LetusassumethatastabilizingLQRexistsforsystem(A, B),withweightingmatricesQ,R,S.TheequivalenceP(A,B,Q,R,S)=

P(AK,B,QK,R,SK)holdsforanyarbitraryfeedbackmatrixK,when choosing AK=A−BK, QK=Q−STKKTS+KTRK, S

K=S−RK. Moreover, the real symmetric matrix PK, computed as (PK,K)=

D(AK,B,QK,R,SK),satisfiesPK=Pwith(P,K)=D(A,B,Q,R,S).The feedbackgainKKisgivenbyKK=K−K.

Proof. TheprooffollowsbysubstitutionofAK,QKandSKinto(8)

andsimplification[17].ThedetailsareprovidedinA.Notethatthe reformulationproposedinLemma1isequivalenttochoosingfor thecontrolinputuk=−Kxk+

v

k,i.e.

xk+1=(A−BK)xk+Bvk=AKxk+Bvk. (20) 

Remark5. Notethat,fromuk=−Kxk+

v

kand

v

k=−KKxk,one obtains

−Kxk=uk=−Kxk+

v

k=−Kxk−KKxk, whichalsoentailsKK=K−K.

Corollary 1. By choosing K=K, the DARE reduces to QK+ AT

KPAK−P=0. Thisentails that, forany arbitrarily chosen matrix RK such that RK+BTPB 0, the solution remains unchanged, i.e.

P(AK,B,QK,R,SK)=P(AK,B,QK,RK,SK).Oneobtainsthusa prob-lemwhosesolutionisKK=0and

v

k=0.

Proof:TheDAREcorrespondingtoP(AK,B,QK,RK,SK)isgivenby QK+ATKPAK−P−(SKT+AKPB)(RK+BTPB)−1(SK+BTPAK)=0.

(5)

Thelasttermisalwayszero,ascanbeseenbyreplacingthe expres-sionforK: SK+BTPAK= SRK+BTPABTPBK = S+BTPA(R+BTPB)K = S+BTPA(R+BTPB)(R+BTPB)−1(S+BTPA) = 0.

RegardlessofthechoiceofmatrixRK,theDAREsimplifiesandPis definedby

QK+AT

KPAK−P=0.

Remark6. TheconditionRK+BTPB 0isrequiredfortheLQRto exist,seee.g.(3).Thisconditioncanalternativelybederivedfrom dynamicprogrammingarguments.

ThefollowinglemmastatesthattheLQRcostcanbemodified suchthatthetrajectory(x0)remainsunchangedwhilethe cost-to-gomatrixPcanbeanyarbitrarysymmetricmatrix.

Lemma2. LetusassumethatastabilizingLQRexistsforsystem(A,B), withweightingmatricesQ,R,S.GivenanyrealsymmetricmatrixP,the equivalenceP(A,B,Q,R,S)=P(A,B,QP,RP,SP)holdswhenchoosing QP=Q+ATPAP,S

P=S+ATPBandRP=R+BTPB.Thesolution PPtoD(A,B,QP,RP,SP)isgivenbyPP=P−Pandtheresulting feed-backgainisKP=K.

Proof. BywritingtheDARED(A,B,QP,RP,SP),andreplacingthe expressionsforQP,RP,SP,oneimmediatelyobtainsD(A,B,Q,R,S), whichissolvedbymatrixPandfeedbackgainK.

BydefinitionP=P+PPandonecanwrite

0=Q+ATPAP(ST+ATPB)(R+BTPB)−1(S+BTPA) =Q+ATPAP+ATP PA−PP−(ST+ATPB+ATPPB) ×(R+BTPB+BTP PB) −1 (S+BTPA+BTP PA) =QP+ATP PA−PP−(STP+ATPPB)(RP+BTPPB) −1 (SP+BTP PA)  NotethatchoosingP=P,oneobtainsP

P=0.

Corollary 2. By successively applying Lemma 1 using K=K andLemma2,oneobtainsthatP(AK,B,QK,RK,SK)=P(AK,B,QK,P, RK,P,SK,P), where QK,P=QK+AT

KPAK−P, SK,P=SK+ATKPB and RK,P=RK+BTPB.Notethat,asRKcanbechosenarbitrarilylarge,also RK,Pcanbechosenarbitrarilylarge.

Usingtheselemmasandcorollaries,itiseasiertoproveTheorem 1.

Proof. (Theorem1)UsingtheequivalencegiveninCorollary2,it followsthatP(A,B,Q,R,S)=P(AK,B,QK,P,RK,P,SK,P)andKK,P=0. As we are interested in possibly indefinite but stabilizing LQR formulations, by hypothesis, the feedback gain K is stabilizing, i.e.(AK)=(A−BK)<1,wheredenotesthespectralradius,i.e. (A)=max{|||iseigenvalueofA}.ByLyapunovstabilitytheory, for anysymmetric matrix QL 0, there exists a matrix PL such thatAT

KPLAK−PL+QL=0.ChoosingP=P−PL,andrecallingthe resultofCorollary1,oneobtainsAT

KPAK−P=QL−QK.ThenQK,P= QK+AT

KPAK−P=QL 0.Onelaststepisneededtomakematrix HK,P=



QK,P ST K,P SK,P RK,P



positivedefinite.ByCorollary2,onecan arbi-trarilychoosematrix RK,P arbitrarilylargewithoutchangingthe solution(x0), northecost-to-goP. Theresult HK,P 0is then

obtainedbyselectingRK,P SK,PQ−1

K,PSTK,P.Whilethisreformulated problemalreadyyieldsanLQRwithpositivedefinitecost,itapplies tothe system(AK, B).By applying Lemma1 using K=−K one obtainsanLQRwithpositivedefinitecost,whichappliestothe sys-tem(A,B),i.e.P(A,B, ˜Q, ˜R, ˜S)=P(A,B,Q,R,S),where ˜Q =QK,P+ ST

K,PK+KTSK,P+KTRK,PK, ˜S =SK,P+RK,PKand ˜R =RK,P.Thiscanbe shownbyapplyingtheSchurcomplementtocheckpositive defi-niteness.Matrix ˜R ispositivedefinite,soitremainstoprovethat

˜

Q ˜STR˜−1˜S.Thisfollowsimmediatelyfromthedefinition: ˜

Q=QK,P+ST

K,PK+KTSK,P+KTRK,PK,

˜STR˜−1˜S =ST

K,PR−1K,PSK,P+SK,PT K+KTSK,P+KTRK,PK. Theresult ˜Q ˜STR˜−1˜SdirectlyfollowsfromQ

K,P STK,PR−1K,PSK,P.

Remark7. Inordertocomputetheequivalentpositivedefinite LQRmatrices ˜Q, ˜R, ˜S onecansolvethefollowingSDP

min ˜ P, ˜Q,˜R,˜S, ˜H ˜P −I 2 + ˜H −I 2 (21a) s.t. ˜H=



˜ Q ˜ST ˜S R˜



(21b) ˜ H0 (21c) ˜ P0 (21d) ˜ Q +ATPA˜ − ˜P(˜ST+ATPB)K˜ =0, (21e) ( ˜R +BTPB)K˜ (˜S+BTPA)˜ =0. (21f) Due toour choice of objective, theproblem is convexand, by

Theorem1itisalsofeasible,thusthesolutiontothisSDPalways existsandisunique.OneadvantageofsolvingtheproposedSDPto computematrices ˜Hand ˜Pisthatthenumericalpropertiesofthose matricesareoptimalinthesenseofthechosenmatrixnormand reference.

5. EquivalentMPCformulations

In this section, we will analyze the MPC problem. We will restrictourattentiontothecaseofnoactiveinequalityconstraint atsteadystate.Notethatthisdoesnotexcludethepossibilityof havingstateandinputconstraintsintheMPCformulation,aslong astheyarenotactiveatsteadystate.WhenconsideringanMPC problem,thetimehorizonbecomesfiniteandtheproblemtobe solvedis V(x0)=inf x,u N



k=0 l(xk,uk)+xTNPNxN (22a) s.t. x0=x0, (22b) xk+1=Axk+Buk, k=0,...,N−1, (22c) with l(xk,uk)=



xk uk



T H



xk uk



, matrices H=



Q ST S R



and PN symmetricandpossiblyindefinite.Whennoinequalityconstraints are imposed, the solutionto this problem can be obtainedby

(6)

propagatingbackwardsthediscreteRiccatiequation(DRE)

RN(A,B,Q,R,S,PN):={(P0,P1,...,PN,K0,K1,...,KN−1) |Pk−1 =Q+ATPkA−(ST+ATPkB)Kk−1,

Kk−1 =(R+BTPkB)−1(S+BTPkA),

k=N,...,1.}. (23a)

TheclosedloopMPCtrajectorycanthenbecomputedby simulat-ingforwardintimethesystem

xk+1=AK0xk=(A−BK0)xk,

whiletheMPCpredictedtrajectorycanbecomputedbysimulating forwardintime

xk+1=AKkxk=(ABKk)xk.

Remark8. Note that,iftheterminal costmatrix is chosenas PN=P,wherePisobtainedbysolvingtheLQR,thenthetheoryfrom Section4applies.ThissectionfocusesonthecasePN /= P.

Let us define the MPC predicted trajectory as (x0):=PN(A,B,Q,R,S,PN), i.e. the associated DRE is (P0,P1,...,PN,K0,K1,...,KN−1)=RN(A,B,Q,R,S,PN) and the closed loop trajectory is given by (x0)=(xk)0≤k≤N with xk+1=(A−BKk)xk.Inthefollowing,we willdefinetwo problems equivalent if they deliver the same predicted trajectory, i.e.

PN( ˜A, ˜B, ˜Q, ˜R, ˜S, ˜PN)=PN(A,B,Q,R,S,PN).

Definition 2. Problem PN( ˜A, ˜B, ˜Q, ˜R, ˜S, ˜PN) is a posi-tive definite reformulation of the possibly indefinite MPC problem PN(A,B,Q,R,S,PN) if



˜ Q ˜ST ˜S R˜



0, PN˜ 0 and PN( ˜A, ˜B, ˜Q, ˜R, ˜S, ˜PN)=PN(A,B,Q,R,S,PN).

Theorem1 considered thecase of an infinite horizon linear quadraticOCP(LQRproblem).Thefollowingtheoremconsidersthe caseofafinitehorizonOCPwithaterminalcostwhichisdifferent fromtheLQRcosttogo(MPCproblem).

Theorem2. EverystabilizingpossiblyindefiniteMPCschemeofthe form(5)withtimeinvariantmatricesA,B,Hcanbeformulatedasan equivalentpositivedefiniteMPCscheme.

Beforeprovingthetheorem,letusfirstintroducethefollowing lemma.

Lemma3. TwoDREsRN(A,B,Q,R,S,PN)andRN(A,B, ˜Q, ˜R, ˜S, ˜PN) yieldthesamefeedbacksequenceK0,...,KN−1if

˜

PN− ˜P=PN−P, ˜R+BTPB˜ =R+BTPB, ˜S +BTPA =˜ S+BTPA, (24) withPand ˜PcomputedbysolvingtheassociatedDAREsD(A,B,Q,R,S) andD(A,B, ˜Q, ˜R, ˜S).

Proof. Let us first consider the two equivalent LQR prob-lems P(A,B,Q,R,S)=P(A,B, ˜Q, ˜R, ˜S) with associated DAREs (P,K)=D(A,B,Q,R,S) and ( ˜P,K)=D(A,B, ˜Q, ˜R, ˜S). Defining k=Pk−P and ˜k= ˜Pk− ˜P, the two DREs can berewritten as

RN(A,B,Q,R,S,P+N)andRN(A,B, ˜Q, ˜R, ˜S, ˜P+ ˜N),i.e. P+k−1=Q+ATPA+ATkA−(ST+ATPB+ATkB)Kk−1, (25a) Kk−1=(R+BTPB+BTkB)−1(S+BTPA+BTkA), (25b) and ˜ P+ ˜k−1= ˜Q +ATPA +˜ AT˜kA−(˜ST+ATPB +˜ AT˜kB)Kk−1, (26a) Kk−1=( ˜R+BTPB˜ +BT˜kB)−1(˜S +BTPA +˜ BT˜kA). (26b)

Theidentityk= ˜kisobtainedifcondition(24)issatisfied.This canbeseenbyreplacingthevaluesofPand ˜PfromtheDAREinto Eqs.(Proof)and(Proof),whichgives

k−1=ATkA−(ST+ATPB)K−(ST+ATPB+ATkB)Kk−1, (27a) Kk−1=(R+BTPB+BTkB)−1(S+BTPA+BTkA), (27b) and ˜ k−1=ATkA˜ ST+ATPB)K˜ ST+ATPB +˜ ATkB)Kk−1,˜ (28a) Kk−1=( ˜R +BTPB +˜ BTkB)˜ −1S +BTPA +˜ BTkA).˜ (28b) Byreplacingcondition(24)into(Proof)oneimmediatelyobtains

(Proof). 

Remark9. Lemma3providessufficientconditionsforthe equiv-alenceoftwo DREsbut doesnot provideanyguarantee onthe existenceoftwoDREswhich satisfythoseconditions.It willbe clearintheproofofTheorem2thatthisisindeedpossible.

Proof. (Theorem2)Theprooffollowsfromcombiningtheresults ofTheorem1andLemma3.Inparticular,conditions(24)canbe easilyenforcedinTheorem1.FromCorollary1wehavethatST

K+ BTPAK=ST

K,P+BTPPAK=0,foranychoiceofmatrixP.Asmatrix RK,P canbearbitrarilychosen,onecanchooseRK,P=R+BTPB BTP

PB.

AsinTheorem1,wecanchooseP=P−PL,toobtainPP=PL.In ordertoguaranteepositivedefiniteness,letuschooseQLarbitrarily butpositivedefiniteandscaleitbyafactor >0.TheLyapunov equationbecomes AT

KPLAK− PL+ QL=0and,subsequently, ST

K,P =− BTPLAK, RK,P =R+BTPB BTPLB.

TheconditionforensuringpositivedefinitenessRK,P ST

K,PQK,P−1SK,P thusbecomes

R+BTPB BTPLB+ (BTAT

KPLB)QL−1(BTPLAKB), (29) whichholdsfor sufficientlysmall.Thetransformationbackfrom system(AK,B)tosystem(A,B)canthenbedoneasinTheorem1.

Remark10. InthesamewayasforTheorem1,alsoforTheorem 2,theMPCreformulationcanbecomputedbysolvingthefollowing SDP min ˜ P, ˜Q,˜R,˜S, ˜H ˜P−I 2 + ˜H −I 2 (30a) s.t. ˜H=



˜ Q ˜ST ˜S R˜



(30b) ˜ H 0 (30c) ˜ P0 (30d) ˜ Q +ATPA˜ − ˜P(˜ST+ATPB)K˜ =0, (30e) ( ˜R +BTPB)K˜ (˜S +BTPA)˜ =0, (30f) ˜ R+BTPB˜ =R+BTPB, (30g) ˜S+BTPA˜ =S+BTPA. (30h)

Thenewterminalcostisthengivenby ˜PN=PN−P+ ˜P.

Remark11. ThereformulationobtainedinTheorem2yieldsa convexifiedstagecostwhichisindependentofthechosenterminal cost.Itcanbeverifiedthattheresultisalsovalidforthecaseofan endpointconstraintintheMPCscheme.

(7)

6. Numericalexample

Inordertoillustratetheresultspresentedintheprevious sec-tion,letusconsiderthelinearsystem

xk+1 =Axk+Buk, A =

−0.3319−0.3393 00.7595.1250 10.5399.4245 −0.5090 0.9388 0.8864

, B=

0−1.3835.1060 −0.1496

. Thestagecostischosenindefiniteanddefinedas

H=



Q ST S R



=

−1.0029 −0.0896 1.1050 −0.0420 −0.0896 1.6790 −0.5762 0.2112 1.1050 −0.5762 −0.4381 −0.2832 −0.0420 0.2112 −0.2832 0.6192

. (31)

ToobtainapositivedefiniteequivalentLQRonecaneitherapply theproceduredevelopedintheproofofTheorem1orsolveSDP(7), whichresultsinmatrices ˜Hand ˜Pwiththefollowingproperties

( ˜HTh1) =

615.9651 1.0000 0.9516 0.0017

, ( ˜HSDP) =

1.3444 0.6252 0.0010 0.0010

, (˜PTh1) =

3310.0529.4083 1.0004

, (˜PSDP) =

10.0140.2345 0.0383

.

Inparticular,itcanbeseenthatsolvingSDP(7)yieldsbetter con-ditionedmatrices,asaneffectofthechosencostfunction,which aimsatfindingmatrices ˜Hand ˜Pasclosetotheidentityas possi-ble.Inthisexample,theFrobeniusnormwasusedintheobjective function.

Tovisualizetheresults,asimulationhasbeenrunstartingfrom x0=[1,0,0].TheresultingtrajectoryandthevalueofthethreeLQR formulationsaredisplayedinFig.2.Itcanbeseenthatall formu-lationsstabilizethesystemandtheobtainedtrajectoriescoincide. However,onlythetworeformulatedLQRyieldapositivedefinite valuefunction,whichisalsoaLyapunovfunctionforthesystem.

7. ApproximatedeconomicNMPC

EconomicNMPCconsistsinoptimizingacostwhichisnot neces-sarilypositivedefinite,thusstandardstabilityproofsdonothold. AstabilityproofforeconomicNMPChasbeenproposedin[7].It reliesontheconceptofstrictdissipativity,whichisunfortunately extremelyhardtocheckinthegeneralcase.Thismotivatesasearch forNMPCschemesthatapproximateeconomicbehavior,butfor whichitisrathereasytoprovestability.

Localinformationaboutthesystemcanbeobtainedbylooking atthesecondorderexpansionatsteady-state.Theoptimalsteady stateiscomputedbysolvingthefollowingNLP

min

x,u (x,u) s.t. x=f(x,u), (32) wherexandudenotethestateandcontrolvectorsandfunctionf(x, u)istheconsidereddiscretetimesystem.UsingwT=[xTuT],the LagrangianofProblem(32)isgivenbyL(w,)=(x,u)−T(x f(x,u)),whereisthevectorofLagrangemultipliersassociated withtheequalityconstraints.Thesecondorderexpansionatsteady stateisthenobtainedbyusingthelinearsystem(A,B)with

A =

f(x,u)

x





ws , B=

f(x,u)

u





ws ,

wherexsandusdenotethestateandcontrolvectorsatsteadystate. The cost function is given by 2(x,u)=1/2(w−ws)TH(w−ws), wherematrixHisgivenby

H=



Q S ST R



=

2 L(w,)

w2





ws .

NotethatmatrixHisingeneralindefinite,henceanNMPCscheme using2(·,·)asstagecostisingeneralnotoftrackingtypeand stabilityisguaranteedifthesystemisdissipative.Checkingifthe linearsystemisdissipativeisstraightforward:iftheLMI,QMIorFDI conditionissatisfied,thenthesystemisdissipative.Alternatively onecancheckifthecost,rotatedasin[5]isconvex.

Ifthenonlinearsystemislocallycontrollableatsteadystatebut notdissipative,steady-stateoperationisnotoptimal[12].If nev-erthelessoneisinterestedinstabilizingthesystematsteadystate, theobjectivecanberegularizedsoastomakethesystem dissi-pative,seee.g.[5,7].Addingregularizationcanmakethesystem dissipative,butthestagecostcanneverthelessstillbeindefinite.As thesystemisdissipative,theindefiniteLQRorlinearMPCscheme willbestabilizingforthelinearsystem.AccordingtoTheorem2, onecanconvexifytheindefinitestagecosttocomputeapositive definitestagecostandtheconvexifiedLQRandMPCproblemsare thenequivalenttotheoriginalones.Thisnewpositivedefinitestage costcanthenbeusedinanNMPCcontexttostabilizethenonlinear plant.Asthecostisquadraticpositivedefinite,theNMPCschemeis oftrackingtype.TheclassicalNMPCstabilityproofsarethen appli-cable[23].Moreover,thestagecostisasecondorderapproximation ofthenonlineareconomicstagecost.

Notethattheconvexificationprocedureproposedinthispaper reliesonasecond orderapproximationoftheeconomicNMPC, whichfailstoexistifthesystemisnotlocallystabilizableatsteady state,i.e.if(A,B)isnotstabilizable.Techniquestoovercomethis limitationarethesubjectofongoingresearch.

7.1. Numericalexample

Inordertoillustratetheseconcepts,letuslookattheCSTR exam-plefrom[5,7].AnalogouslyasinSection2,wewillassumethat cA+cB=1inordertohavelocalstabilizabilityatsteadystate.The realeconomicstagecostis

(x,u)=−(2q(1−cA)−0.5q), (33) andthequadraticterm (q−4)2with =0.1isaddedinorderto makethesystemdissipative.WhileinSection2weconsidered eco-nomicNMPCwiththeregularizedstagecost,letusnowconsider theoriginaleconomicstagecost(33).

TheoptimalsteadystatecomputedbysolvingProblem(32)is cA=0.5mol/Landq=4L/min.Thesecondorderexpansionatsteady stategives A =0.6757, B=0.0203, H =



Q S ST R



=



0 1.1832 1.1832 −0.0229



.

As anticipated, this system is not dissipative, hence, the LMIcondition (9) cannot besatisfied. In [5], theregularization 0.505(cA+cB+q) is added to the cost. In [7], the regularization (q−4)2isaddedtothecostwith =0.1.Intheframework pro-posedinthispaper,theregularizationcanbechosenastheminimal one which is needed in order to satisfy the LMI(9) using the approachproposedinRemark4.Choosingtorestrictthe regular-izationtotheform (q−4)2asproposedin[7]andsolvingSDP(7), oneobtainsthattheneededregularizationforthelinearsystemis =0.0275.Notethatthisvalueisonlyvalidforthelinearsystem anddoesnotguaranteestabilityoftheeconomicNMPCschemea

(8)

0 10 20 30 40 50 60 −1 0 1 x1 0 10 20 30 40 50 60 −0.5 0 0.5 x2 0 10 20 30 40 50 60 −1 0 1 x3 t 0 10 20 30 40 50 60 −2 −1 0 VIndef 0 10 20 30 40 50 60 0 0.2 0.4 VSDP 0 10 20 30 40 50 60 0 5 10 VTh3 t

Fig.2.TrajectoryandvaluefunctionforthethreeLQRformulations.

priori.ItisinsteadguaranteedthatthetrackingNMPCusingthe reg-ularizedandconvexifiedcostisstabilizingforthenonlinearplant. ByconvexifyingthecostintheframeworkofTheorem2usingthe minimalregularization =0.0275,oneobtains

H2 =



25.0142 0.5528 0.5528 0.0132



.

Inthefollowing,wewillcallscheme2theNMPCschemewhich usesatrackingstagecostdefinedbymatrixH2andregularized eco-nomicNMPCtheeconomicNMPCschemewhichusesthestagecost proposedin[7],i.e.cost(33)regularizedwith0.1(q−4)2.Using =0.1,onewouldobtainmatrixH0usedinSection2.Thisexplains whyscheme0yieldsstateandinputprofilesthatcloselymimicthe onesobtainedwiththeregularizedeconomicNMPC(cf.Section2

andFig.1).

ThetrackingNMPCscheme2hasbeencomparedtothe reg-ularized economic NMPC formulation in the same scenario as in Section2. In this second example, though, gain G is com-putedusing theaverageprofit ofeach schemecomputedusing the actual stage cost (33). For the tracking scheme that uses

H2,oneobtainsG2=−8.0599,whichindicatesthattheeconomic NMPC formulation, regularized with the term 0.1(q−4)2 per-forms worse than the tracking NMPC formulation which uses H2.ForthetrackingimplementationwhichusesH1 instead,one obtainsG1=2.1907,whichindicatesthattheregularizedeconomic NMPCformulationperformsbetterthanthissecondtrackingNMPC formulation.

ThestateandinputprofilesaredisplayedinFig.3,whereitcan beseenthatthetrackingscheme2outputstrajectoriesthatare sig-nificantlydifferentfromtheregularizedeconomicNMPCscheme. Inparticular,trackingscheme2hasamoreaggressivebehaviorand itactivatestheinputboundsinseveraloccasions.

Providedthateithertheterminalcostandconstraintare cho-senadequately[23] orthehorizon ischosen longenough[24], thetrackingNMPCschemehastheadvantageofimmediately pro-vidingstabilityguarantees.Moreover,theunderlyingOCPcanbe efficientlysolvedbynumericalalgorithmsforfastNMPC,e.g.the realtimeiteration(RTI)scheme[25]withtheGauss-Newton Hes-sianapproximation.ForeconomicNMPCinstead,theunderlying OCPisingeneralmoredifficulttosolve.

0 5 10 15 20 25 30 35 40 45 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 cA t 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10 12 14 16 18 20 q t

Fig.3.StateandinputtrajectoriesobtainedwiththeeconomicNMPCscheme(blackline),withthetrackingscheme2(blueline)andwiththetrackingscheme1(redline). (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(9)

8. Conclusions

In this paper we have analyzed economic MPC for the lin-earquadraticcase.Boththecasesoffiniteandinfiniteprediction horizonshavebeenconsideredandithasbeenshownthatevery stabilizingLQRorMPCschemecanbereformulatedsuchthatthe costis positive definite, whilepreserving thesameclosed loop behavior.

Approximatedeconomic NMPCwithstability guaranteeshas beenproposed,basedonthepreviousresults.Theapplicationto a simple well knownexample has shown thepotential of this approachalsointermsofeconomicperformance.

Futureworkwillfocusonextendingtheproposedframework tomoregeneralsettings, includingperiodicsystemsand active constraintsatsteadystate.

AppendixA. ProofofLemma1

By replacing the definitions of AK, QK and SK in

D(AK,B,QK,R,SK),oneobtains 0=QK+AT KPKAK−PK−(STK+ATKPKB)(R+BTPKB) −1 (SK+BTP KAK) =Q−STKKTS+KTRK+(ABK)TP K(A−BK)−PK −(STKTR+(ABK)TP KB)(R+BTPKB) −1 ×(S−RK+BTP K(A−BK))

Thelasttermofthesumcanberewrittenas (STKTR+(ABK)TP KB)(R+BTPKB) −1 (S−RK+BTP K(A−BK)) =−KT(R+BTP KB)(R+BTPKB) −1







I (S−RK+BTP K(A−BK)) +(ST+ATP KB)(R+BTPKB) −1 (SRK+BTP K(A−BK)) =−KTS+KTRK−KTBTP KA+K T BTP KBK +(ST+ATP KB)(R+BTPKB) −1 (S+BTP KA) −(ST+ATP KB)(R+BTPKB) −1 (R+BTP KB)







I K =−KTS+KTRK−KTBTPKA+KTBTPKBK −STKATP KBK+(ST+ATPKB)(R+BTPKB) −1 (S+BTP KA). ReplacingthisexpressioninD(AK,B,QK,R,SK)andsimplifyingone obtains Q+ATP KA−PK−(ST+ATPKB)(R+BTPKB) −1 (S+BTP KA)=0, whichdirectlyentailsPK=P.

TheresultKK=K−Kisobtainedasfollows KK =(R+BTPB)−1(S K+BTPAK) =(R+BTPB)−1(SRK+BTPABTPBK) =(R+BTPB)−1(S+BTPA)(R+BTPB)−1(R+BTPB)K =K−K. References

[1]J.Rawlings,D.Bonne,J.Jorgensen,A.Venkat,S.Jorgensen,Unreachable set-pointsinmodelpredictive control,IEEETrans.Autom. Control53(2008) 2209–2215.

[2]J.B.Rawlings,R.Amrit,Optimizingprocesseconomicperformanceusingmodel predictivecontrol,in:ProceedingsofNMPC08Pavia,2009.

[3]D. Angeli, R. Amrit, J. Rawlings, Receding horizon costoptimization for overlyconstrainednonlinearplants,in:ProceedingsoftheJoint48thIEEE ConferenceonDecisionandControland28thChineseControlConference, 2009.

[4]D.Angeli,J.Rawlings,Recedinghorizoncostoptimizationandcontrolfor non-linearplants,in:Proceedingsofthe8thIFACSymposiumonNonlinearControl Systems,2010.

[5]M.Diehl,R. Amrit,J. Rawlings, ALyapunovfunction foreconomic opti-mizingmodelpredictivecontrol,IEEETrans.Autom.Control56(3)(2011) 703–707.

[6]D.Angeli,R.Amrit,J.Rawlings,Enforcingconvergenceinnonlineareconomic MPC,in:Proceedingsofthe50thIEEEConferenceonDecisionandControland EuropeanControlConference(CDC-ECC),2011.

[7]R.Amrit,J.Rawlings,D.Angeli,Economicoptimizationusingmodelpredictive controlwithaterminalcost,Annu.Rev.Control35(2011)178–186.

[8]L.Grüne,Economicrecedinghorizoncontrolwithoutterminalconstraints, Automatica49(2013)725–734.

[9]R.Huang,L.T.Biegler,E.Harinath,Robuststabilityofeconomicallyoriented infinitehorizonNMPCthatincludecyclicprocesses,J.ProcessControl22(2012) 29–51.

[10]M.Zanon,S.Gros,M.Diehl,ALyapunovfunctionforperiodiceconomic opti-mizingmodelpredictivecontrol,in:Proceedingsofthe52ndConferenceon DecisionandControl(CDC),2013.

[11]M.Müller,D.Angeli,F.Allgöwer,Onconvergenceofaveragelyconstrained economicMPCandnecessityofdissipativityforoptimalsteady-stateoperation, in:ProceedingsoftheAmericanControlConference,2013.

[12]M.Müller,D.Angeli,F.Allgöwer,Onnecessityandrobustnessof dissipa-tivityineconomicmodelpredictivecontrol,UniversityofStuttgart,2013, preprint.

[13]M.Heidarinejad,J.Liu,P.D.Christofides,Economicmodelpredictivecontrol usingLyapunovtechniques:handlingasynchronous,delayedmeasurements anddistributedimplementation,in:Proceedingsofthe50thIEEE Confer-enceonDecisionandControlandEuropeanControlConference(CDC-ECC), 2011.

[14]M.Heidarinejad,J.Liu,P.D.Christofides,Economicmodelpredictivecontrolof switchednonlinearsystems,Syst.ControlLett.62(2013)77–84.

[15]M.Ellis,P.D. Christofides,Economicmodel predictivecontrol with time-varyingobjectivefunctionfornonlinearprocesssystems,AIChEJ.60(2014) 507–519.

[16]J.C.Willems,LeastsquaresstationaryoptimalcontrolandthealgebraicRiccati equation,IEEETrans.Autom.ControlAC16(6)(1971)621–634.

[17]B.P.Molinari,ThestabilizingsolutionofthediscretealgebraicRiccatiequation, IEEETrans.Autom.Control20(1975)396–399.

[18]J.Andersson,J.Åkesson,M.Diehl,CasADi–asymbolicpackageforautomatic differentiationandoptimalcontrol,in:S.Forth,P.Hovland,E.Phipps,J.Utke,A. Walther(Eds.),RecentAdvancesinAlgorithmicDifferentiation,LectureNotes inComputationalScienceandEngineering,Springer,Berlin,2012.

[19]A.Wächter,AnInteriorPointAlgorithmforLarge-ScaleNonlinearOptimization withApplicationsinProcessEngineering,CarnegieMellonUniversity,2002, Ph.D.thesis.

[20]R. Amrit, J.B. Rawlings, L.T. Biegler, Optimizing process economics online using model predictive control, Comput. Chem. Eng. 58 (2013) 334–343.

[21]A.C.M. Ran, H.L. Trentelman, Linear quadratic problems with indefinite cost for discrete time systems, SIAM J. Matrix Anal. Appl. 14 (1993) 776–797.

[22]D.Angeli, R.Amrit,J. Rawlings,Onaverageperformanceandstabilityof economicmodelpredictivecontrol,IEEETrans.Autom.Control57(2012) 1615–1626.

[23]J.Rawlings,D.Mayne,ModelPredictiveControl:TheoryandDesign,NobHill, 2009.

[24]L.Grüne,NMPCwithoutterminalconstraints,in:ProceedingsoftheIFAC Con-ferenceonNonlinearModelPredictiveControl2012,2012.

[25]M.Diehl,H.Bock,J.Schlöder,R.Findeisen,Z.Nagy,F.Allgöwer,Real-time optimization and Nonlinear Model Predictive Control of Processes gov-ernedbydifferential–algebraicequations,J.ProcessControl12(4)(2002) 577–585.

Referenties

GERELATEERDE DOCUMENTEN

Het grote aantal afgevoerde dieren op Melkvee 4 komt doordat er een aantal Delta vaarzen ver- trokken zijn en doordat er nogal wat dieren met subklinische mastitis zijn

Er zijn verschillende studies gedaan naar de effectiviteit en bijwerkingen van amisulpride bij patiënten met schizofrenie en deze onderzoeken werden in verschillende

LANGUAGE SHIFT WITHIN TWO GENERATIONS: AFRIKAANS MOTHER TONGUE PARENTS RAISING ENGLISH MOTHER TONGUE

7: Een plaatselijk dieper uitgegraven deel in de relatief vlakke bodem van de gracht en de gelaagde onderste opvulling (Stad Gent, De Zwarte Doos,

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

*Kies voor volle producten, zoals volle kwark, volle melk, margarine en olie.. Vermijd lightproducten, zoetstof en

To address the asynchrony in distributed power control, some methods are proposed in [18]–[25]. In [18], [19], the energy trading game is investigated using Bayesian game theory,

Het bepalen, selecteren, koesteren en leren over veelbelovende (kiemen van) vernieuwingen bij het bevorderen van vernieuwing is geen vrijblijvende kwestie, heeft ook het project