• No results found

Gochlear implants from model to patients Briaire, J.J.

N/A
N/A
Protected

Academic year: 2021

Share "Gochlear implants from model to patients Briaire, J.J."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Gochlear implants from model to patients

Briaire, J.J.

Citation

Briaire, J. J. (2008, November 11). Gochlear implants from model to patients. Retrieved from https://hdl.handle.net/1887/13251

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13251

Note: To cite this publication please use the final published version (if applicable).

(2)

COCHLEAR IMPLANTS

FROM MODEL TO PATIENTS

(3)
(4)

COCHLEAR IMPLANTS

FROM MODEL TO PATIENTS

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof.mr. P.F. van der Heijden, volgens besluit van College voor Promoties

te verdedigen op dinsdag 11 November 2008 te klokke 11:15 uur

Jeroen Johannes Briaire

door geboren te Nootdorp

in 1974

(5)

Promotiecommissie Promotor:

Referent:

Overige leden:

Prof.Dr.Ir. J.H.M. Frijns

Prof.Dr. J. Wouters ( KU Leuven) Prof.Dr. P. van Dijk (UMC Groningen) Prof.Dr. J.G. van Dijk

Dr. W. Soede

Dr. B. van Zanten (UMC Utrecht)

ISBN 978-90-9023555-4

The printing of this thesis was financially sponsored by: Advanced Bionics, Stichting Atze Spoor Fonds, Med-El and Veenhuis Medical Audio B.V.

(6)

Aan Saskia, Pascal en Lianne

(7)
(8)

Contents

1 Introduction 13

1.1 The first bursts of electric sound . . . 16

1.2 Industry comes into play . . . 21

1.3 Different CI devices . . . 23

1.4 Overview of the present study . . . 23

2 Integrated Use of Volume Conduction and Neural Models to Sim- ulate the Response to Cochlear Implants 27 2.1 Introduction . . . 29

2.2 Electrical volume conduction in the cochlea . . . 31

2.3 Simulating the auditory nerve fibre responses . . . 36

2.4 Results . . . 38

2.4.1 Potential distributions due to intra-cochlear electrodes . 38 2.4.2 Model validation: the dependence of the neural responses on the electrode position . . . 40

2.4.3 Applications . . . 46

2.5 Conclusions and future directions . . . 49

2.A The generalised SEF auditory nerve fibre model . . . 51

3 3D Mesh Generation to Solve the Electrical Volume Conduction

Problem in the Implanted Inner Ear. 55

7

(9)

3.1 Introduction . . . 57

3.2 Numerical method selection . . . 59

3.2.1 Lumped parameter models . . . 60

3.2.2 Finite element method (FEM) . . . 61

3.2.3 Finite difference method (FDM) . . . 61

3.2.4 Boundary element method (BEM) . . . 62

3.3 A 3D cochlea mesh . . . 64

3.4 Constructing meshes of implants and the surrounding area . . 66

3.5 Calculated potential distributions . . . 71

3.6 Discussion and Conclusions . . . 73

4 Field Patterns in a 3D Tapered Spiral Model of the Electrically Stim- ulated Cochlea 77 4.1 Introduction . . . 79

4.2 Materials and Methods . . . 81

4.2.1 Numerical method to calculate the potential distribution in the cochlea . . . 81

4.2.2 Models of the cochlea . . . 82

4.3 Results . . . 88

4.3.1 Potential and current distributions in the cochlea . . . . 88

4.3.2 Neural responses . . . 95

4.4 Discussion . . . 97

4.5 Acknowledgements . . . 102

5 The Importance of Human Cochlear Anatomy for the Results with Modiolus Hugging Multi-Channel Cochlear Implants 103 5.1 Introduction . . . 105

5.2 Materials and Methods . . . 108

5.2.1 Three-dimensional volume conduction model of the hu- man and guinea pig cochlea . . . 108

8

(10)

5.2.2 Simulated electrode configurations . . . 111

5.2.3 Calculating the neural responses . . . 113

5.3 Results . . . 114

5.4 Discussion and Conclusions . . . 118

5.5 Acknowledgement . . . 124

6 Initial evaluation of the Clarion CII cochlear implant: Speech per- ception and neural response imaging 125 6.1 Introduction . . . 127

6.2 Patients, Materials and Methods . . . 128

6.2.1 The Clarion CII Cochlear Implant . . . 128

6.2.2 Patient Demographics and Follow-Up . . . 130

6.2.3 Neural Response Imaging . . . 133

6.3 Results . . . 134

6.3.1 Speech Perception in Quiet and in Background Noise . 136 6.3.2 Neural Responses . . . 140

6.4 Discussion and Conclusions . . . 145

6.5 Acknowledgement . . . 152

7 The relative value of predictive factors of cochlear implant perfor- mance depends on follow-up time 153 7.1 Introduction . . . 156

7.2 Materials and Methods . . . 157

7.2.1 Participants . . . 157

7.2.2 Profile fitting method . . . 161

7.2.3 Statistical Analysis . . . 162

7.3 Results . . . 163

7.3.1 Group comparisons . . . 163

7.3.2 Bivariate regression analyses . . . 166

9

(11)

7.3.3 Multiple regression analysis . . . 170

7.4 Discussion . . . 174

7.5 Conclusions . . . 177

7.6 Acknowledgement . . . 178

8 Unraveling the Electrically Evoked Compound Action Potential 179 8.1 Introduction . . . 181

8.2 Materials and methods . . . 184

8.2.1 The forward problem: simulating neural excitation in the human cochlea . . . 184

8.2.2 The backward problem: calculation of the compound ac- tion potential . . . 187

8.2.3 The use of an artifact rejection scheme . . . 188

8.3 Results . . . 190

8.4 Discussion . . . 200

8.5 Acknowledgement . . . 207

9 The consequences of neural degeneration regarding optimal coch- lear implant position in scala tympani: A model approach 209 9.1 Introduction . . . 211

9.2 Materials and Methods . . . 214

9.3 Results . . . 218

9.4 Discussion . . . 224

9.5 Acknowledgment . . . 229

10 Concept and initial testing of a new, basally perimodiolar elec- trode design 231 10.1 Introduction . . . 233

10.2 Materials and methods . . . 234

10.3 Results . . . 236

10

(12)

10.4 Discussion . . . 236

10.5 Acknowledgment . . . 237

11 The model as a clinical tool: General discussion and future per- spectives 239 11.1 Tuning the implant . . . 241

11.2 The individual patient’s cochlear model . . . 241

11.3 Objective measures . . . 242

11.4 Keeping up the pace . . . 244

11.5 The future of cochlear implants . . . 244

Bibliography 249

Summary 269

Samenvatting 275

Curriculum vitae 281

11

(13)

Referenties

GERELATEERDE DOCUMENTEN

If applicable, noise with a long- term frequency spectrum equal to speech (as available on the same CD used to present the words) was added to test the performance with the implant

When dealing with non-controlled retrospective studies, multiple regression analysis should be used to extract the influence of, for instance, electrode array design, or age

Figure 8.12: The AP-plots for (A) a fiber at the center of the excitation area and (B) a fiber at the edge of the excitation area for a large stimulus current (12 dB above

This reduced benefit of threshold difference for the medial contact can be explained by the fact that the site of excitation changes for these apical contacts from the

The positioner was deliberately only inserted partially, in order to achieve a perimodiolar position for the basal contacts, while the more apical contacts were intended to be in

As mentioned above, new areas of interest in the field of cochlear implants will arise, such as new micro-electro-mechanical (MEM) arrays with control circuitry build into the

Intraoperative measures of electrically evoked auditory nerve compound action potential, Am J Otol 15, 137–144..

In chapter 5 a comparison was made between the outcomes of a guinea pig computer model and a realistic model of the human cochlea, both implanted with a model of a HiFocus