• No results found

University of Groningen Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data Shafiee Kamalabad, Mahdi

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data Shafiee Kamalabad, Mahdi"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of

time series data

Shafiee Kamalabad, Mahdi

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Shafiee Kamalabad, M. (2019). Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Curriculum Vitae

Mahdi Shafiee Kamalabad was born on 21 September, 1982 in Tehran, Iran. In 2004, he obtained his bachelor’s degree in Statistics with the honor of top-ranked student from the University of Tabriz. He continued his studies with a master’s in Statistics at Allame Tabatabaie University (ATU). Mahdi wrote his master’s thesis under the supervision of Nader Nematollahi and Ahmad Parsian, and graduated as a top-ranked student from ATU in 2006. Afterwards, he received the Elite Certificate from the Ministry of Energy in Iran and was employed as a statistician and data scientist in the department of Strategic Management, Quality and Productivity in the Tehran Regional Electric Company (TREC) until 2014. During the course of his employment there he carried out statistical analyses and taught courses in Statistics at various universities. From 2015 to 2019, he was a PhD student at the University of Groningen where he wrote the present thesis under the supervision of Marco Grzegorczyk and Ernst Wit. His main research interests are Complex data Analysis, Network Inference, (Bayesian) Statistical Inference, Computational Statistics.

Referenties

GERELATEERDE DOCUMENTEN

The partially coupled model (M3), shown in Figure 2.4, is a consensus model between the conventional uncoupled model (M1) and the fully sequentially coupled model (M2), proposed

Thereby, to avoid model over-flexibility and to allow for some information exchange among time segments, we globally couple the segment-specific coupling (strength) parameters

Unlike in the uncoupled NH-DBN, where all interaction parameters have to be learned separately for each segment, and unlike the fully sequentially coupled NH-DBN, which enforces

We propose a new partially non-homogeneous dynamic Bayesian network (par- tially NH-DBN) model for learning network structures. When data are measured under different

(ii) Except for the homogeneous data (panel (a) in Figure 6.5), the frequentist hidden Markov model (FREQ-HMM) and espe- cially the frequentist mixture model (FREQ-MIX) are superior

Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data.. Shafiee

In hoofdstuk 2 hebben we twee nieuwe modellen geboden, gebaseerd op stuksgewijs Bayesiaanse regressiemodellen, namelijk het gedeeltelijk segmentge- wijs gekoppeld NH-DBN-model en

Advanced non-homogeneous dynamic Bayesian network models for statistical analyses of time series data.. University